HPCC Systems® I

ECL Programmers Guide

Boca Raton Documentation Team

@' LexisNexis’

Risk Solutions

ECL Programmers Guide

ECL Programmers Guide

Boca Raton Documentation Team
Copyright © 2015 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document viaemail to <docf eedback@pccsyst ens. con

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst 1ogo are registered trademarks of Reed Elsevier Properties Inc., used under license.
HPCC &/stems® isaregistered trademark of LexisNexis Risk Data Management Inc.
Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2015 Version 5.2.0-1

© 2015 HPCC Systems®. All rights reserved
2

ECL Programmers Guide

[= oo =100 01T 010 J @00 (0= o] =3 4
F N i1 LU (I O = 1o o P 4
Creating EXAMPIE Dalalcccuuiiiiiieiii e e et e e e e e e e s e e e e e e e et r e et e et e et e e e aaas 6
(1ol I 1o 2= o 0] £ PP 14
Efficient Value TYPE USBOEcvvi it e e e e e e e e e et e e et e e et e e et e e aaeeaanns 17
USING the GROUP FUNCLIONiuiiiii e e e e e e e e e e e e e e et e e e e e e e e e et e eatneeeaneees 22
F T o == o B = PSPPI 25
I o o TRl T - SRPPPPRRTN 28
[N o g B =T To (oo g 3 AN N1 1 P 29
WOrKing With XIML Dataluiiiiiiiiiiieiiii e e e e e e e e e e e et e e et e et e eat e e saneeaenees 30
WOrKiNG Wit BLOBS ...uiiiiiiiiiiiei et e e e e e e e e et e e et e et e et e e et e e et e e e ta e e aneeannns 37
USiNg ECL KeyS (INDEX FlBS) 1iivuuuiiiiiieiiiieiiiiie ettt s e e et s s e e e e e et s e e e e e e aesanennn s 39

WOTKING WiIth SUPEIFIIES ... e e e e e e e e e e et e e et e e et e e et e e e eeanns 47
010 g LI @Y= V= NS 47
Creating and Maintaining SUPEIFIlESiiiniiii e 49
INAEXING INTO SUPEIFIIES . .oiniiiici e e e e e e e e e et e e et e e e eenes 54
(UL T o T IS T o 1= (=P 56

WOTKING WIth ROXIE ... iiiiieiii et e e e e e e e e e e et e e ettt e e et e e et e e et e e e e e e an e eeaneeeannas 59
ROXIE OVEIN VIBW ...ieiii ettt sttt e e et e e et e e et et s e e e et e e e e et e e e e et e e e e et e e e e tt e eeetan e 59
SOAP-ENADIING QUETTES .. ouiiiiii e e e e e e e e e et e e et e e et e e e et e e aaeeeeas 62
Complex Roxie QUENY TECHNIGUESciiiiii et e e e e e e e e e aanas 63
SOAPCALL from THOr 10 ROXIE ...eiiiiiiieeiii et e et e e et e e e e s 65
Controlling ROXIE QUETNTESuuiiii i ciiie e e e e et e e e e e e e e e e e e e e et e e et e e et s e e et e e et e e et aeenaaees 70
(O U= VA I o] = =S 73
S F T S 1= o] o1 o 79

LT 1T o T 1T 0T S)T P 84
Cartesian Product Of TWO DaASELSueieiiiieeiiiiiee et e et e et e e et e e ettt s e e e et s e e eett s eaeeraaeeeens 84
Records Containing Any Of @ Sat Of WOIAScouiiiiiii e e e 86
SmMple RANAOM SAMPIES . ..o e e e e e e e e e e e aa s 89
Hex String t0 DECIMEI SEHNQ . .vvuiiiiieiie e e e e e e e e e e e e e et e e et e et e e et e e et e e ean e eenaas 91

© 2015 HPCC Systems®. All rights reserved
3

ECL Programmers Guide
ECL Programming Concepts

ECL Programming Concepts
Attribute Creation

Similarities and Differences

The similarities come from the fundamental requirement of solving any data processing problem: First, understand
the problem.

After that, in many programming environments, you use a “top-down” approach to map out the most direct line of
logic to get your input transformed into the desired output. This is where the process diverges in ECL, because the
tool itself requires adifferent way of thinking about forming the solution, and the direct route is not always the fastest.
ECL requires a“bottom-up” approach to problem solving.

“Atomic” Programming

In ECL, once you understand what the end result needsto be, you ignorethedirect linefrom problem input to end result
and instead start by breaking the issue into as many pieces as possible—the smaller the better. By creating “atomic”
bits of ECL code, you've done al the known and easy bits of the problem. This usually gets you 80% of the way to
the solution without having to do anything terribly difficult.

Once you've taken all the bits and made them as atomic as possible, you can then start combining them to go the other
20% of the way to produce your final solution. In other words, you start by doing the little bits that you know you can
easily do, then use those bitsin combination to produceincreasingly complex logic that builds the solution organically.

Growing Solutions

The basic Attribute building blocksin ECL are the Set, Boolean, Recordset, and Vaue Attribute types. Each of these
can be made as“atomic” as needed so that they may be used in combination to produce “molecules’ of more complex
logic that may then be further combined to produce a complete “organism” that produces the final result.

For example, assume you have a problem that requires you to produce a set of records wherein a particular field in
your output must contain one of several specified values (say, 1, 3, 4, or 7). In many programming languages, the
pseudo-code to produce that output would look something like this:

Start at top of MyFile

Loop through MyFile records

If MField =1 or WField =3 or MJField = 4 or M/Field =7
I nclude record in output set

El se
Throw out record and go back to top of | oop

end if and | oop

Whilein ECL, the actual code would be:

Set Val i dvalues :=[1,3,4,7]; /1 Set Definition
IsValidRec : = MyFile. WField IN SetValidVal ues; //Bool ean
Val RecsM/File := MyFil e(lsValidRec); //filtered Recordset

QUTPUT(Val RecsM/Fi | €) ;
The thought process behind writing this code is:

“1 know | have a set of constant valuesin the spec, so | can start by creating a Set attribute of the valid values...

© 2015 HPCC Systems®. All rights reserved
4

ECL Programmers Guide
ECL Programming Concepts

“And now that | have a Set defined, | can use that Set to create a Boolean Attribute to test whether the field I'm
interested in contains one of the valid values...

“And now that | have a Boolean defined, | can use that Boolean as the filter condition to produce the Recordset |
need to output.”

The process starts with creating the Set Attribute “atom,” then using it to build the Boolean “molecule,” then using
the Boolean to grow the “organism”—the final solution.

“Ugly” ECL is Possible, Too

Of course, that particular set of ECL could have been written like this (following a more top down thinking process):

QUTPUT(MFil e(MyField IN[1,3,4,7]));
The end result, in this case, would be the same.

However, the overall usefulness of this code is drastically reduced because, in the first form, al the “atomic” bits
are available for re-use elsewhere when similar problems come along. In this second form, they are not. And in all
programming styles, code re-use is considered to be a good thing.

Easy Optimization

Most importantly, by breaking your ECL code into its smallest possible components, you allow ECL’s optimizing
compiler to do the best job possible of determining how to accomplish your desired result. This leads to another
dichotomy between ECL and other programming languages. usually, the less code you write, the more “elegant” the
solution; but in ECL, the more code you write, the better and more el egant the solution isgenerated for you. Remember,
your Attributes are just definitions telling the compiler what to do, not how to do it. The more you break down the
problem into its component pieces, the more leeway you give the optimizer to produce the fastest, most efficient
executable code.

© 2015 HPCC Systems®. All rights reserved
5

ECL Programmers Guide
ECL Programming Concepts

Creating Example Data
Getting Code Files

All the example code for the Programmer's Guide is available for download from the HPCC Systems website from
the same page that the PDF is available (click here). To make this code available for use in the ECL IDE, you simply:

1. Download the ECL_Code Files.ZIPfile.
2. Inthe ECL IDE, highlight your "My Files’ folder, right-click and select "Insert Folder" from the popup menu.

3. Nameyour new folder "ProgrammersGuide” (please note -- spaces are NOT allowed in your ECL repository folder
names).

4. Inthe ECL IDE, highlight your "ProgrammersGuide" folder, right-click and select "Locate File in Explorer” from
the popup menu.

5. Extract al the filesfrom the ECL_Code _Files.ZIPfile into your new folder.

Generating Files

The code that generates the example data used by al the Programmer's Guide articles is contained in a file named
Gendata.ECL. You simply need to open that file in the ECL IDE (select File > Open from the menu, select the

Gendata.ECL file, and it will open in a Builder window) then press the Submit button to generate the data files. The
process takes a couple of minutes to run. Hereis the code, fully explained.

Some Constants

| MPORT st d;
P Multl := 1000;
P Mult2 := 1000;

Total Parents := P_Miltl * P_Milt2;
Tot al Chil dren : = 5000000;

These constants define the numbers used to generate 1,000,000 parent records and 5,000,000 child records. By defining
these once as attributes the code could be easily made to generate a smaller number of parent records (such as 10,000
by changing both multipliersfrom 1000 to 100). However, the code aswritten is designed for amaximum of 1,000,000
parent records and would have to be changed in several placesto accommodate generating more. The number of child
records can be changed either direction without any other changes to the code (although if pushed too far upward
you may encounter runtime errors regarding the maximum variable record length for the nested child dataset). For
the purposes of demonstrating the techniques in these Programmer's Guide articles, 1,000,000 parent and 5,000,000
child records are more than sufficient.

The RECORD Structures

Layout _Person : = RECORD
UNSI GNED3 Per sonl D;
STRI NGL5 Fi r st Nane;
STRIN&5 Last Nane;
STRI NGL M ddl el ni ti al ;
STRI NGL Gender ;
STRINHA2 Street;
STRINGRZO City;

© 2015 HPCC Systems®. All rights reserved
6

ECL Programmers Guide
ECL Programming Concepts

STRI N& St at e;
STRI NGb Zi p;
END;

Layout _Accounts : = RECORD
STRI N&O Account;
STRI NGB OpenDat e;
STRI N& I ndust r yCode;
STRI NGL Acct Type;
STRI NGL Acct Rat e;
UNS| GNED1 Codel;
UNSI GNED1 Code2;
UNSI GNED4 Hi ghCredi t;
UNSI GNED4 Bal ance;

END;

Layout Accounts_Li nk : = RECORD
UNSI GNED3 Per sonl D;
Layout _Accounts;

END;

Layout _Conbi ned : = RECORD, MAXLENGTH(1000)
Layout _Per son;
DATASET(Layout _Accounts) Accounts;

END;

These RECORD structures define the field layouts for three datasets: a parent file (Layout_Person), a child file
(Layout_Accounts_Link), and aparent with nested child dataset (Layout_Combined). These are used to generate three
separate datafiles. The Layout Accounts Link and Layout Accounts structures are separate because the child records
in the nested structure will not contain the linking field to the parent, whereas the separate child file must contain
thelink.

Starting Point Data

//define data for record generation:
/1100 possible mddle initials, 52 letters and 48 bl anks
SetMddlelnitials :="'ABCDEFGH JKLMNOPQRSTUVWKYZ '+
' ABCDEFGHI JKLMNOPQRSTUVWKYZ '

/11000 First nanes
SET OF STRI NG14 Set Fnames : = [
' TI MTOHY ', "ALCI AN ', ' CHAMENE ',
1

/11000 Last nanes
SET OF STRINGL6 SetlLnanmes := [
' Bl ALES ', COOLI NG ', " CROTHALL '
IE

These sets define the data that will be used to generate the records. By providing 1,000 first and last names, this code
can generate 1,000,000 unigue names.

/12400 street addresses to choose from
SET OF STRI NG31 SetStreets := |
''1 SANDHURST DR ',"1 SPENCER LN Y
Il

/| Mat ched sets of 9540 City, State, Zips
SET OF STRINGL5 SetCity := [
' ABBEVI LLE ', ' ABBOTTSTOMN ', " ABELL ',

Il

SET OF STRING SetStates := [

© 2015 HPCC Systems®. All rights reserved
7

ECL Programmers Guide
ECL Programming Concepts

VLA LCUPA LMD LUNG UMD L TX X I MY LA WD
N

SET OF STRINGS SetZips : = [
' 70510' ,' 17301’ ,' 20606' , ' 28315' ,' 21005' , ' 79311' ,' 79604' ,

o ld

Having 2400 street addresses and 9540 (valid) city, state, zip combinations provides plenty of opportunity to generate
areasonable mix of addresses.

Generating Parent Records

Bl ankSet := DATASET([{O,'"',"'"',""'

T T
Layout _Conbi ned) ;

Count CSZ :

9540;

Here is the beginning of the data generation code. The BlankSet is a single empty “seed” record, used to start the
process. The CountCSZ attribute simply definesthe maximum number of city, state, zip combinationsthat are available
for use in subsequent calculations that will determine which to use in a given record.

Layout Conbi ned Creat eRecs(Layout Comnbi ned L,

| NTEGER C,

I NTEGER W : = TRANSFORM
| F(W£L, Set Fnanes[C], L. Fi r st Nane) ;
| F(We2, Set Lnanes[C], L. Last Nang) ;

SELF. Fi r st Nane :
SELF. Last Nane
SELF : = L;

END;

base fn := NORMALI ZE(Bl ankSet, P_Mul t 1, Cr eat eRecs(LEFT, COUNTER, 1)) ;

base fln := NORMALI ZE(base fn ,P_Milt2, Creat eRecs(LEFT, COUNTER, 2));

The purpose of this codeisto generate 1,000,000 unique first/last name records as a starting point. The NORMALIZE
operation is unique in that its second parameter defines the number of times to call the TRANSFORM function for
each input record. This makesit uniquely suited to generating the kind of “bogus’ data we need.

We're doing two NORMALIZE operations here. The first generates 1,000 records with unique first names from the
single blank record in the BlankSet inline DATASET. Then the second takes the 1,000 records from the first NOR-
MALIZE and creates 1,000 new records with unique last names for each input record, resulting in 1,000,000 unique
first/last name records.

One interesting “trick” here is the use of a single TRANSFORM function for both of the NORMALIZE operations.
Defining the TRANSFORM to receive one “extra’ (third) parameter than it normally takes is what allows this. This
parameter simply flags which NORMALIZE pass the TRANSFORM is doing.

Layout Conbi ned Popul at eRecs(Layout _Conbi ned L,
Layout _Conbi ned R,
| NTEGER HashVal) : = TRANSFORM
:= (HashVal % Count CSZ) + 1;

I F(L. Personl D = 0,

Thorli b. Node() + 1,

L. Personl D + CLUSTERSI ZE) ;
Set M ddl el nitial s[(Hashval % 100) + 1];

CSZ_Rec
SELF. Per sonl D

SELF. M ddl elnitial

SELF. Gender = CHOOSE((Hashval %2) + 1,"F ,'M);
SELF. Street = Set Streets[(HashVval % 2400) + 1];
SELF.City = SetCi ty[CSZ_Rec] ;
SELF. State = Set St at es[CSZ_Rec] ;
SELF. Zi p = Set Zi ps[CSZ_Rec] ;
SELF = R

END;

© 2015 HPCC Systems®. All rights reserved
8

ECL Programmers Guide
ECL Programming Concepts

base fln_dist := Dl STRI BUTE(base_fI n, HASH32(Fi r st Nane, Last Nang)) ;

base_peopl e : = | TERATE(base_f | n_di st,
Popul at eRecs(LEFT,
RI GHT,
HASHCRC(Rl GHT. Fi r st Nanme, Rl GHT. Last Nane)) ,
LOCAL) ;

base_peopl e_di st := DI STRI BUTE(base_peopl e, HASH32(Per sonl D)) ;

Once the two NORMALIZE operations have done their work, the next task is to populate the rest of the fields. Since
one of those fieldsis the PersonID, which is the unique identifier field for the record, the fastest way to populate it is
with ITERATE using the LOCAL option. Using the Thorlib.Node() function and CLUSTERSIZE compiler directive,
you can uniquely number each record in parallel on each node with ITERATE. You may end up with afew holesin
the numbering towards the end, but since the only requirement here is uniqueness and not contiguity, those holes are
irrelevant. Since the first two NORMALIZE operations took place on a single node (look at the data skews shown in
the ECL Watch graph), the first thing to do is DISTRIBUTE the records so each node has a proportional chunk of the
datato work with. Then the ITERATE can do its work on each chunk of recordsin parallel.

To introduce an element of randomity to the data choices, the ITERATE passes a hash value to the TRANSFORM
functionasan “extra’ third parameter. Thisisthe sametechnique used previously, but passing cal culated valuesinstead
of constants.

The CSZ_Rec attribute definition illustrates the use of local attribute definitions inside TRANSFORM functions.
Defining the expression once, then using it multiple times as needed to produce a valid city, state, zip combination.
Therest of the fields are populated by data selected using the passed in hash value in their expressions. The modulus
division operator (%—produces the remainder of the division) is used to ensure that avalueis calculated that isin the
valid range of the number of elements for the given set of data from which the field is popul ated.

Generating Child Records

Bl ankKi ds : = DATASET([{O,"',""',"'","'',"',0,0,0,0}],
Layout _Accounts_Li nk);

Set Li nks := SET(base_peopl e, Personl D) ;

Set | ndustryCodes := ['BB','DC,'ON ,'FM,"'FP' ,'FF ,'FC ,'FA ,'FZ',
"CG.'FS 'QC .'ZZ .'HZ .'UT' .'HF .'CS .'DM,
"JA LUFY "HT L, UUE , ' DZ', AT]

Set Acct Rates :=['1','0",'9","*' "Z','5'" "B ,'2",
'3 ,'4 AT '8, E,C;

Set Dat eYears := ['1987','1988','1989','1990',"'1991','1992',"' 1993,
'1994','1995',"'1996',"' 1997','1998',"' 1999',"' 2000',
'2001','2002', "' 2003',' 2004',"' 2005', "' 2006'];

Set Mont hDays : = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] ;

Set Narrs

[229, 158, 2, 0, 66, 233, 123, 214, 169, 248, 67, 127, 168,
65, 208, 114, 73, 218, 238, 57, 125, 113, 88,
247, 244,121, 54, 220, 98, 97] ;

Once again, we start by defining a“ seed” record for the processasan inline DATASET and several sets of appropriate
data for the specific fields. The SET function builds a set of valid PersonlD values to use to create the links between
the parent and child records.

Layout _Accounts_Li nk CreateKids(Layout Accounts_Link L,
I NTEGER C) : = TRANSFORM
CSZ_1 DX := C % Count CSZ + 1;

© 2015 HPCC Systems®. All rights reserved
9

ECL Programmers Guide
ECL Programming Concepts

HashVal
Dat eMont h
SELF. Personl D :

HASH32(Set Ci t y[CSZ_I DX] , Set St at es[CSZ_| DX] , Set Zi ps[CSZ_I DX]) ;
Hashval % 12 + 1;
CHOOSE(TRUNCATE(C / Tot al Parents) + 1,
IF(C %2 = 0,
Set Li nks[C % Tot al Parents + 1],
Set Li nks[Tot al Parents - (C % Total Parents)]),
IF(C %3 <> 0,
Set Li nks[C % Tot al Parents + 1],
Set Li nks[Tot al Parents - (C % Total Parents)]),
IF(C %5 = 0,
Set Li nks[C % Tot al Parents + 1],
Set Li nks[Total Parents - (C % Total Parents)]),
IF(C %7 <> 0,
Set Li nks[C % Tot al Parents + 1],
Set Li nks[Tot al Parents - (C % Total Parents)]),
Set Li nks[C % Total Parents + 1]);
(STRI NG HashVal ;
Set Dat eYear s[Dat eMont h] + | NTFORVAT(Dat eMont h, 2, 1) +
| NTFORMAT(HashVal % Set Mont hDays|[Dat eMont h] +1, 2, 1) ;
Set | ndust rycodes[HashVal % 24 + 1];
CHOOSE(Hashval %+1,' O ,' R ,'1','9',"' ');
Set Acct Rat es[HashVal % 15 + 1];
Set Narr s[HashVal % 15 + 1];
Set Narr s[HashVal % 15 + 16];
HashVal % 50000;
TRUNCATE((HashVal % 50000) * ((Hashval % 100 + 1) / 100));

SELF. Account
SELF. OpenDat e

SELF. | ndust r yCode :
SELF. Acct Type
SELF. Acct Rat e
SELF. Codel
SELF. Code2
SELF. Hi ghCredi t
SELF. Bal ance
END;

base_ki ds : = NORMALI ZE(Bl ankKi ds,
Tot al Chi | dren,
Cr eat eKi ds(LEFT, COUNTER)) ;
base_ki ds_di st := DI STRI BUTE(base_ki ds, HASH32(Per sonl D)) ;

This process is similar to the one used for the parent records. This time, instead of passing in a hash value, alocal
attribute does that work inside the TRANSFORM. Just as before, the hash value is used to select the actual data to
goin each field of the record.

Theinteresting bit hereisthe expression to determine the Personi D field value. Since we're generating 5,000,000 child
recordsit would be very simpleto just give each parent five children. However, rea-world datararely looks like that.
Therefore, the CHOOSE function is used to select a different method for each set of amillion child records. The first
million usesthefirst | F expression, and the second million uses the second, and so on... This creates avarying number
of children for each parent, ranging from one to nine.

Create the Nested Child Dataset Records

Layout _Conbi ned AddKi ds(Layout Conbi ned L, base_kids R) := TRANSFORM
SELF. Accounts := L.Accounts +
RON{ R Account, R OpenDat e, R | ndust r yCode,
R Acct Type, R Acct Rat e, R Codel,
R Code2, R Hi ghCredit, R Bal ance},
Layout _Account s);
SELF := L;
END;
base_conbi ned : = DENORMALI ZE(base_peopl e_di st ,
base_ki ds_di st,
LEFT. Per sonl D = RI GHT. Per sonl D,
AddKi ds(LEFT, RIGHT));

Now that we have separate recordsets of parent and child records, the next step isto combine them into asingle dataset
with each parent's child data nested within the same physical record as the parent. The reason for nesting the child data
thisway isto alow easy parent-child queries in the Data Refinery and Rapid data Delivery Engine without requiring
the use of separate JOIN steps to make the links between the parent and child records.

© 2015 HPCC Systems®. All rights reserved
10

ECL Programmers Guide
ECL Programming Concepts

To build the nested child dataset requires the DENORMALIZE operation. This operation finds the links between
the parent records and their associated children, calling the TRANSFORM function as many times as there are child
records for each parent. The interesting technique here is the use of the ROW function to construct each additional
nested child record. Thisisdoneto eliminate thelinking field (Personl D) from each child record stored in the combined
dataset, since it is the same value as contained in the parent record's PersoniD field.

Write Files to Disk

aL o

@

(OS]

P1 :

QUTPUT(PRQJECT(base_peopl e_di st, Layout Person), ,"' ~PROGGUI DE: : EXAMPLEDATA: : Peopl e' , OVERWRI TE) ;
QUTPUT(base_ki ds_di st , , ' ~PROGGUI DE: : EXAMPLEDATA: : Account s' , OVERWRI TE) ;
QUTPUT(base_conbi ned, , ' ~PROGGUI DE: : EXAMPLEDATA: : Peopl eAcct s' , OVERWRI TE) ;

PARALLEL(OL, 02, CB) ;

These OUTPUT attribute definitions will write the datasets to disk. They are written as attribute definitions because
they will be used in a SEQUENTIAL action. The PARALLEL action attribute simply indicates that al these disk
writes can occur “simultaneously” if the optimizer decides it can do that.

The first OUTPUT uses a PROJECT to produce the parent records as a separate file because the data was originally
generated into a RECORD structure that contains the nested child DATASET field (Accounts) in preparation for
creating the third file. The PROJECT eliminates that empty Accounts field from the output for this dataset.

D1 :

DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Peopl €',
{Layout _Per son, UNSI GNED8 RecPos{virtual (fileposition)}}, THOR);

DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Account s' ,
{Layout _Accounts_Li nk, UNSI GNED8 RecPos{virtual (fileposition)}}, THOR);

DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Peopl eAcct s',
{, MAXLENGTH(1000) Layout _Conbi ned, UNSI GNED8 RecPos{virtual (fileposition)}}, THOR);

These DATASET declarations are needed to be able to build indexes. The UNSIGNED8 RecPos fields are the virtual
fields (they only exist at runtime and not on disk) that are the internal record pointers. They're declared hereto be able
to reference them in the subsequent INDEX declarations.

Bl :
B2 :
B3 :

P2 :

| NDEX(D1, { Per sonl D, RecPos}, ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : Peopl e. Personl D') ;

| NDEX(D2, { Per sonl D, RecPos}, ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : Accounts. Personl D) ;

| NDEX(D3, { Per sonl D, RecPos}, ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : Peopl eAccts. Personl D') ;
BUI LD(| 1, OVERWRI TE) ;

BU LD(| 2, OVERWRI TE) ;

BUI LD(| 3, OVERWRI TE) ;

PARALLEL(B1, B2, B3) ;

These INDEX declarations allow the BUILD actions to use the single-parameter form. Once again, the PARALLEL
action attribute indicates the index build may be done all at the same time.

SEQUENTI AL(P1, P2) ;

This SEQUENTIAL action simply says, “write al the datafiles to disk, and then build the indexes.”

Defining the Files

Once the datasets and indexes have been written to disk you must declare the filesin order to use them in the example
ECL code in the rest of the articles. These declarations are contained in the DeclareData.ECL file. To make them

© 2015 HPCC Systems®. All rights reserved
11

ECL Programmers Guide

ECL Programming Con

cepts

available to the rest of the example code you simply need to IMPORT it. Therefore, at the beginning of each example

you will find thisline of code:

| MPORT $;

This IMPORTSs all the files in the ProgrammersGuide folder (including the DeclareData MODULE structure defin-
ition). Referencing anything from DeclareData is done by prepending $.DeclareData to the name of the EXPORT

definition you need to use, like this:

M/File := $. Decl areData. Person. File; //rename $Decl areData. Person.File to M/File to make

// subsequent code

Here is some of the code contained in the DeclareData.ECL file:
EXPORT Decl areData : = MODULE

EXPORT Layout _Person : = RECORD
UNSI GNED3 Per sonl D;
STRI NGL5 Fi r st Nane;
STRI N&5 Last Nane;
STRI NGL M ddl el ni ti al ;
STRI NGL Gender ;
STRINA2 Street;
STRIN&O GCity;
STRI N& State;
STRI NGb Zi p;

END;

EXPORT Layout _Accounts := RECORD
STRI N&20 Account ;
STRI NG3 OpenDat e;
STRI N& I ndust r yCode;
STRI NGL Acct Type;
STRI NGL Acct Rat e;
UNSI GNED1 Codel;
UNSI GNED1 Code?2;
UNSI GNED4 Hi ghCredi t;
UNSI GNED4 Bal ance;

END;

EXPORT Layout Accounts_Link : = RECORD
UNSI GNED3 Per sonl D
Layout _Accounts;

END;

SHARED Layout _Conbi ned : = RECORD, MAXLENGTH(1000)
Layout _Person;
DATASET(Layout _Account s) Accounts;

END;

EXPORT Person := MODULE
EXPORT File DATASET(' ~PROGGUI DE: : EXAMPLEDATA:
EXPORT Fil ePl us : = DATASET(' ~PROGGUI DE: : EXAMPLEDATA

{Layout _Person, UNSI GNED8 RecPos{virtual (fil eposition)}},

END;

si npl er

: : Peopl e', Layout _Per son,
: : Peopl €',

EXPORT Accounts := DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Accounts' ,

{Layout _Account s_Li nk,

UNSI GNED8 RecPos{virtual (fileposition)}},

THOR) ;

EXPORT Per sonAccounts: = DATASET(' ~PROGCUI DE: : EXAMPLEDATA: : Peopl eAcct s’ ,

{ Layout _Conbi ned,

UNSI GNED8 RecPos{virtual (fileposition)}},

THOR) ;

THOR) ;

THOR) ;

© 2015 HPCC Systems®. All rights reserved

12

ECL Programmers Guide
ECL Programming Concepts

EXPORT | DX_Per son_Personl D : =
| NDEX(Per son,
{ Per sonl D, RecPos},
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Peopl e. Personl D) ;

EXPORT | DX_Accounts_Personl D : =
| NDEX(Account s,
{Per sonl D, RecPos},
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Account s. Personl D) ;

EXPORT | DX_Per sonAccounts_Personl D : =
| NDEX(Per sonAccount s,
{ Per sonl D, RecPos},
' ~PROCGCUI DE: : EXAMPLEDATA: : KEYS: : Peopl eAccts. Personl D') ;

END;

By using a MODULE structure as a container, all the DATASET and INDEX declarations are in a single attribute
editor window. This makes maintenance and update simple while allowing complete access to them all.

© 2015 HPCC Systems®. All rights reserved
13

ECL Programmers Guide
ECL Programming Concepts

Cross-Tab Reports

Cross-Tab reports are a very useful way of discovering statistical information about the data that you work with.
They can be easily produced using the TABLE function and the aggregate functions (COUNT, SUM, MIN, MAX,
AVE, VARIANCE, COVARIANCE, CORRELATION). The resulting recordset contains a single record for each
unique value of the “group by” fields specified in the TABLE function, along with the statistics you generate with
the aggregate functions.

The TABLE function's“group by” parametersare used and duplicated asthefirst set of fieldsinthe RECORD structure,
followed by any number of aggregate function calls, al using the GROUP keyword asthe replacement for the recordset
required by the first parameter of each of the aggregate functions. The GROUP keyword specifies performing the
aggregate operation on the group and is the key to creating a Cross-Tab report. This creates an output table containing
asingle row for each unique value of the “group by” parameters.

A Simple CrossTab

The example code below (contained in the CrossTab.ECL file) produces an output of State/CountAccts with counts
from the nested child dataset created by the GenData.ECL code (see the Creating Example Data article):

| MPORT $;
Person : = $. Decl ar eDat a. Per sonAccount s;

Count Accts : = COUNT(Person. Accounts);

M/Report Format 1 : = RECORD

State = Person. St at e;

Al = Count Acct s;
G oupCount : = COUNT(GROUP) ;
END;

RepTabl el : = TABLE(Per son, MyReport For mat 1, St at e, Count Accts);
OUTPUT(RepTabl el) ;

/* The result set would | ook sonmething |like this:
State Al G oupCount

AK 1 7

AK 2 3

AL 1 42

AL 2 54

AR 1 103

AR 2 89

AR 3 2 */

Slight modifications allow some more sophisticated statistics to be produced, such as:

M/Report Format 2 : = RECORD

State{cardinality(56)} := Person. State;
Al : = Count Acct s;

G oupCount = COUNT(GROUP) ;

Mal eCount = COUNT(GROUP, Per son. Gender

mZ
- —

Femal eCount :
END;

COUNT(GROUP, Per son. Gender

RepTabl e2 : = TABLE(Per son, MyReport For mat 2, St at e, Count Accts);

OUTPUT(RepTabl e2) ;

Thisaddsabreakdown of how many men and women there arein each category, by using the optional second parameter
to COUNT (available only for use in RECORD structures where its first parameter is the GROUP keyword).

© 2015 HPCC Systems®. All rights reserved
14

ECL Programmers Guide
ECL Programming Concepts

The addition of the { cardinality(56)} to the State definition is a hint to the optimizer that there are exactly 56 values
possiblein that field, allowing it to select the best algorithm to produce the output as quickly as possible.

The possihilities are endless for the type of statistics you can generate against any set of data.

A More Complex Example

As adightly more complex example, the following code produces a Cross-Tab result table with the average balance
on a bankcard trade, average high credit on a bankcard trade, and the average total balance on bankcards, tabulated
by state and sex.

This code demonstrates using separate aggregate attributes as the value parameters to the aggregate function in the
CrossTab.

I sVal i dType(STRI NGL PassedType) := PassedType IN['O, 'R, 'I'];
I sRevol v : = Person. Accounts. Acct Type = 'R OR
(~IsVal i dType(Person. Account s. Acct Type) AND
Per son. Accounts. Account[1] IN['"4', '5', "6']);
Set Bankl ndCodes := ['BB', '"ON, 'FS', "FC];
I sBank : = Person. Accounts. | ndustryCode | N Set Bankl ndCodes;
| sBankCard : = | sBank AND | sRevol v;

AvgBal AVE(Per son. Account s(i sBankCar d), Bal ance) ;

Tot Bal := SUM Person. Account s(i sBankCard), Bal ance) ;
AvgHC : = AVE(Person. Account s(i sBankCard), Hi ghCredit);
Rl : = RECORD

per son. st at e;
per son. gender ;

Nunber = COUNT(GROUP) ;

Aver ageBal = AVE(GROUP, AvgBal) ;

Aver ageTot al Bal : = AVE(GROUP, Tot Bal) ;

Aver ageHC = AVE(GROUP, AvgHC) ;
END;

T1 : = TABLE(person, Rl, state, gender);

OUTPUT(T1) ;

A Statistical Example

The following example demonstrates the VARIANCE, COVARIANCE and CORRELATION functions to analyze
grid points. It also shows the technique of putting the CrossTab into aMACRO, calling the MACRO to generate the
specific result for agiven dataset.

pointRec := { REAL x, REAL y };

anal yze(ds) := MACRO
#uni quenane(rec)
% ec% : = RECORD
G COUNT(GROUP) ,

SX = SUM GROUP, ds. Xx),

sy = SUM GROUP, ds.y),

SXX = SUM GROUP, ds.x * ds.x),
SXy = SUM GROUP, ds.x * ds.y),
syy = SUM GROUP, ds.y * ds.y),
var x = VARI ANCE(GROUP, ds. Xx);

© 2015 HPCC Systems®. All rights reserved
15

ECL Programmers Guide
ECL Programming Concepts

vary := VAR ANCE(GROUP, ds.y);

var xy := COVARI ANCE(GROUP, ds.x, ds.y);

rc = CORRELATI ON(GROUP, ds.x, ds.y) ;
END,;

#uni quenane(st at s)
U%stats% : = TABLE(ds, % ec%) ;

OQUTPUT(%st at s%) ;
QUTPUT(%t at s% { varx - (sxx-sx*sx/c)/c
vary - (syy-sy*syl/c)/c
varxy - (sxy-sx*sy/c)/c
rc - (varxy/ SQRT(varx*vary)) });
QUTPUT(%stats% { 'bestFit: y='"+(STRING ((sy-sx*varxy/varx)/c)+ + '+(STRI NG (varxy/varx)+' x' });
ENDVACRO,

dsl := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 : = DATASET([{1.93896e+009, 2.04482e+009},
{1.77971e+009, 8.54858e+008},
{2.96181e+009, 1.24848e+009},
{2.7744e+009, 1.26357e+009},
{1.14416e+009, 4.3429e+008},
{3.38728e+009, 1.30238e+009},
{3.19538e+009, 1.71177e+009}], poi nt Rec)
ds3 : = DATASET([{1, 1.00039},
{2, 2.07702},
{3, 2.86158},
{4, 3.87114},
{5, 5.12417},
{6, 6.20283}], pointRec)

anal yze(dsl);
anal yze(ds2);
anal yze(ds3);

© 2015 HPCC Systems®. All rights reserved
16

ECL Programmers Guide
ECL Programming Concepts

Efficient Value Type Usage

Architecting data structuresis an art that can make a big difference in ultimate performance and data storage require-
ments. Despite the extensive resources available in the clusters, saving a byte here and a couple of bytes there can be
important -- even in a Big Data massively parallel processing system, resources are not infinite.

Numeric Data Type Selection

Selecting theright typeto use for numeric datadepends on whether the valuesareintegers or contain fractional portions
(floating point data).

Integer Data

When working with integer data, you should always specify the exact size of INTEGERN or UNSIGNEDRN that is
required to hold the largest number possible for that particular field. This will improve execution performance and
compiler efficiency because the default integer data type is INTEGERS (aso the default for Attributes with integer
expressions).

The following table defines the largest values for each given type:

Type Si gned Unsi gned
INTEGER1 -128 to 127 to 255
I NTEGER2 -32,768 to 32, 767 to 65, 535

| NTEGER3 -8, 388,608 to 8, 388, 607
I NTEGER4 -2, 147, 483, 648

to 2,147, 483, 647
| NTEGERS - 549, 755, 813, 888

to 549, 755, 813, 887

to 16, 777, 215
to 4,294, 967, 295

[eNeoNeNe]

o

to 1,099, 511, 627, 775

I NTEGER6 - 140, 737, 488, 355, 328 0 to 281, 474,976, 710, 655
to 140, 737, 488, 355, 327
I NTEGER7 36, 028, 797, 018, 963, 968 0 to 72,057,594, 037, 927, 935

to 36,028, 797, 018, 963, 967
I NTEGER8 -9, 223, 372, 036, 854, 775,808 O to 18, 446, 744,073, 709, 551, 615
to 9, 223,372, 036, 854, 775, 807

For example, if you have data coming in from the “outside world” where a 4-byte integer field contains values that
range from zero (0) to ninety-nine (99), then it makes sense to move that datainto an UNSIGNED field. This saves
three bytes per record, which, if the dataset isfairly large one (say, 10 billion records), can translate into considerable
savings on disk storage requirements.

One advantage ECL has over other languages is the richness of its integer types. By alowing you to select the exact
number of bytes (in the range of one to eight), you can tailor your storage requirements to the exact range of values
you need to store, without wasting extra bytes.

Note that the use of the BIG_ENDIAN forms of all the integer types is limited to defining data as it comesin and
goes back out to the “outside world”—all integer data used internally must be in LITTLE_ENDIAN format. The
BIG_ENDIAN format is specifically designed for interfacing with external data sources, only.

Floating Point Data

When using floating point types, you should always specify the exact size of the REALN required to hold the largest
(and/or smallest) number possible for that particular field. Thiswill improve execution performance and compiler ef-
ficiency because REAL defaultsto REALS8 (eight bytes) unless otherwise specified. REAL valuesare stored internally
in |EEE signed floating point format; REAL4 isthe 32-bit format and REAL8 is the 64-bit format.

The following table defines the number of significant digits of precision and the largest and smallest values that can
be represented as REAL (floating point) values:

© 2015 HPCC Systems®. All rights reserved
17

ECL Programmers Guide
ECL Programming Concepts

Type Significant Digits Largest Val ue Snal | est Val ue
REAL4 7 (9999999) 3.402823e+038 1.175494e- 038
REAL8 15 (999999999999999) 1.797693e+308 2.225074e- 308

If you need more than fifteen significant digits in your calculations, then you should consider using the DECIMAL
type. If al components of an expression are DECIMAL types then the result is calculated using BCD math libraries
(performing base-10 math instead of floating point's base-2 math). This gives you the capability of achieving up to
thirty-two digitsof precision, if needed. By using base-10 math, you also eliminate the rounding i ssuesthat are common
to floating point math.

String Data Type Selection

Deciding which of the various string data types to use can be a complex process, since there are severa choices:
STRING, QSTRING, VARSTRING, UNICODE, and VARUNICODE. The obvious choices are between the various
STRING types and UNICODE. Y ou need to use UNICODE and/or VARUNICODE only if you are actually dealing
with Unicode data. If that is the case, then the selection is simple. However, deciding exactly which type of string
type to use can be more challenging.

STRING vs. VARSTRING

Data that comes in from or goes out to the “outside world” may contain null-terminated strings. If that is the case,
then you need to use VARSTRING to define those fields in the ingest/output data file. However, the temptation of
programmers with alot of C/C++ programming experience is to use VARSTRING for everything, in the belief that
it will be more efficient—but that belief is mistaken.

There is no inherent advantage to using VARSTRING instead of STRING within the system. STRING is the base
internal string data type, and so is the more efficient type to use. The VARSTRING type is specifically designed for
interfacing with external data sources, although it may be used within the system, also.

This applies equally to making the choice between using UNICODE versus VARUNICODE.

STRING vs. QSTRING

Depending on what use you need to make of your data, you may or may not care about retaining the original case of
the characters. Therefore, if you DO NOT care about the case, then storing your string dataiin all uppercaseis perfectly
appropriate and QSTRING is your logical choiceinstead of the STRING type. If, however, you DO need to maintain
case sensitive data, then STRING isthe only choice to make.

The advantage that QSTRING has over STRING is an “instant” 25% data compression rate, since QSTRING data
characters are represented by six bits each instead of eight. It achieves this by storing the data in uppercase and only
allowing al phanumeric characters and a small set of special characters(! " #$% & ' () * +,-./;<=>?@[\]"_).

For strings smaller than four bytes there is no advantage to using QSTRING over STRING, since fields must still
be aligned on byte boundaries. Therefore, the smallest QSTRING that makes any sense to use is a QSTRING4 (four
characters stored in three bytesinstead of four).

Fixed Length vs. Variable Length Strings

A string field or parameter may be defined at a specific length, by appending the number of charactersto the type name
(such as, STRING20 for a 20-character string). They may aso be defined as variable-length by simply not defining
the length (such as, STRING for a variable-length string).

String fields or parameters that are known to always be a specific size should be declared to the exact size needed.
Thiswill improve efficiency and performance by allowing the compiler to optimize for that specific size string and not

© 2015 HPCC Systems®. All rights reserved
18

ECL Programmers Guide
ECL Programming Concepts

incur the overhead of dynamically calculating the variable length at runtime. The variable-length value type (STRING,
QSTRING, or UNICODE) should only be used when the string length is variable or unknown.

You can use the LENGTH function to determine the length of a variable length string passed as a parameter to a
function. A string passed to a function in which the parameter has been declared as a STRING20 will always have
a length of 20, regardless of its content. For example, a STRING20 which contains ‘ABC’ will have a length of
20, not 3 (unless, of course, you include the TRIM function in the expression). A string that has been declared as a
variable-length STRING and contains ‘ABC’ will have alength of 3.

STRIN&O CityNane :
STRING CityNane :

'"Olando'; // LENGTH(GC tyNanme) is 20
'"Orlando'; // LENGTH(CityNane) is 7

User-Defined Data Types

There are severa ways you may define your own data types in ECL. The RECORD and TY PE structures are the
most common.

RECORD Structure

The RECORD structure can be likened to a struct in the C/C++ languages. It defines arelated set of fields that are the
fields of arecordset, whether that recordset is a dataset on disk, or atemporary TABLE, or the result of any operation
using a TRANSFORM function.

The RECORD structureis a user-defined data type because, once defined as an attribute you may use that attribute as:
* the data type for parameters passed to TRANSFORM functions
* the data type for a“field” in another RECORD structure (nested structures)
* the structure of a nested child DATASET field in another RECORD structure

Here's an example that shows all three uses (contained in the RecStruct.ECL file) :
| MPORT Pr ogr ammer sGui de. Decl areDat a AS ProgCui de;

Layout _Person : = RECORD
UNSI GNED1 Per sonl D
STRI NGL5 Fi r st Nane;
STRI N&5 Last Nane;
END;
Person : = DATASET([{1,' Fred','Smth'},
{2,'Joe', "' Bl ow },
{3,"Jane','Smth'}], Layout Person);

Layout _Accounts : = RECORD
STRI NGLO Account;
UNSI GNED4 Bal ance;
END;
Layout _Accounts_Li nk : = RECORD
UNSI GNED1 Per sonl D;
Layout _Accounts; /I nest ed RECORD structure
END;

Accounts := DATASET([{1,'45621234', 452},
{1,'55621234' , 5000},
{2,'45629876' , 4215},
{3, '45628734' ,8525}], Layout _Account s_Li nk);

Layout _Conbi ned : = RECORD
Layout _Per son;

© 2015 HPCC Systems®. All rights reserved
19

ECL Programmers Guide
ECL Programming Concepts

DATASET(Layout _Accounts) Accounts; /I nested child DATASET
END;

P_recs : = PROQJECT(Person, TRANSFORM Layout Conbi ned, SELF := LEFT; SELF :=[]));

Layout _Conbi ned Conbi neRecs(Layout _Conbi ned L,
Layout Accounts_Link R) := TRANSFORM
SELF. Accounts := L.Accounts + RON{R Account, R Bal ance}, Layout_Accounts);
SELF : = L;
END; //input and output types

Nest edPeopl eAccts : = DENORMALI ZE(P_r ecs,
Account s,
LEFT. per soni d=RI GHT. per soni d,
Conbi neRecs(LEFT, RI GHT)) ;

OUTPUT(Nest edPeopl eAcct s) ;

The Layout_Accounts_Link contains Layout Accounts. Thereisno field name giventoit, which meansthat it simply
inherits all the fields in that structure, as they are defined, and those inherited fields are referenced as if they were
explicitly declared in the Layout_Accounts Link RECORD structure, like this:

X := Accounts. Bal ance;

However, if aname had been given toit, then it would define a nested structure and the fields in that nested structure
would have to be referenced using the nested structure's name as part of the qualifier, like this:

[/ Assum ng the definition was this:
Layout _Accounts_Li nk : = RECORD

UNSI GNED1 Per sonl D

Layout _Account s Acct Struct ; /I nested RECORD wi t h nane
END;

//then the field reference woul d have to be this:
X := Accounts. Acct Struct . Bal ance;

The Layout Accounts RECORD structure attribute defines the structure of the child DATASET field in
Layout_Combined. The Layout_Combined RECORD structure is then used as the LEFT input and output for the
CombineRecs TRANSFORM function.

TYPE Structure

The TY PE structure is an obvious user-defined type because you are defining a datatype that is not already supported
in the ECL language. Its purposeisto allow you to import data in whatever format you receive it, work with it in one
of the internal formats, then re-write the datain its original format back to disk.

It works by defining specific callback functions inside the TY PE structure (LOAD, STORE, etc.) that the system will
use to read and write the data from and to disk. The LOAD callback function reads the data from disk and defines the
internal type the data will be as you work with it as the return data type from the LOAD function you write.

Get XLen(DATA x, UNSI GNED | en) := TRANSFER(((DATA4) (x[1..1en])), UNSI GNED4) ;
xstring(UNSI GNED | en) := TYPE
EXPORT | NTEGER PHYSI CALLENGTH(DATA x) := Cet XLen(x,len) + |en;
EXPORT STRI NG LOAD(DATA x) (STRING x[(I en+1) .. Get XLen(x, | en) + len];
EXPORT DATA STORE(STRI NG x) : = TRANSFER(LENGTH(x), DATA4) [1. .l en] + (DATA)X;

END;

pstr = xstring(l); /| typedef for user defined type
pppstr = xstring(3);

naneStr : = STRI NG20; /] typedef of a systemtype

nanesRecord : = RECORD
pstr sur nane;

© 2015 HPCC Systems®. All rights reserved
20

ECL Programmers Guide
ECL Programming Concepts

naneStr forenane;
pppStr addr;

END,;

ds :

DATASET([{' TAYLOR ,' RICHARD ,' 123 MAIN },

{'HALLI DAY' ,' GAVIN ,"'456 H CH ST'}],
{nanmeStr sur,nameStr fore, nameStr addr});

nanesRecord MoveData(ds L) : = TRANSFORM

SELF. sur nanme = L.sur;
SELF.forenane := L.fore;
SELF. addr = L. addr;

END;

out := PRQIECT(ds, MoveDat a(LEFT));

QUTPUT(out) ;

This example defines a“Pascal string” data type with the leading length stored as one to four bytes prepended to the
data

TypeDef Attributes

The TypeDef attribute is another obvious user-defined type because you are defining a specific instance of adatatype
that isalready supported inthe ECL language asanew name, either for convenience of maintenance or code readability

purposes. The above example also demonstrates the use of TypeDef attributes.

© 2015 HPCC Systems®. All rights reserved
21

ECL Programmers Guide
ECL Programming Concepts

Using the GROUP Function

The GROUP function provides important functionality when processing very large datasets. The basic concept is that
the GROUP function will break the dataset up into a number of smaller subsets, but the GROUPed dataset is still
treated as a single entity in your ECL code.

Operations on a GROUPed dataset are automatically performed on each subset, separately. Therefore, an operation
on a GROUPed dataset will appear in the ECL code as a single operation, but will in fact internally be accomplished
by serially performing the same operation against each subset in turn. The advantage this approach has is that each
individual operation is much smaller, and more likely to be able to be accomplished without spilling to disk, which
means the total time to perform all the separate operations will typically be less than performing the same operation
against the entire dataset (sometimes dramatically so).

GROUP vs. SORT

The GROUP function does not automatically sort the recordsit’s operating on—it will GROUP based on the order of
therecordsit is given. Therefore, SORTing the records first by the field(s) on which you want to GROUP is usually
done (except in circumstances where the GROUP field(s) are used only to break a single large operation up into a
number of much smaller operations).

For the set of operations that use TRANSFORM functions (such as ITERATE, PROJECT, ROLLUP, etc), operating
on a GROUPed dataset where the operation is performed on each fragment (group) in the recordset, independently,
implies that testing for boundary conditions will be different than if you were working with a SORTed dataset. For
example, the following code (contained in GROUPfunc.ECL) uses the GROUP function to rank peopl€'s accounts,
based on the open date and balance. The account with the newest open date is ranked highest (if there are multiple
accounts opened the same day the one with the highest balance is used). There is no boundary check needed in the
TRANSFORM function because the ITERATE starts over again with each person, so the L.Ranking field value for
each new person group is zero (0).

| MPORT $;
accounts := $. Decl areDat a. Account s;

rec : = RECORD
account s. Per sonl D
account s. Account ;
account s. opendat e;
account s. bal ance;
UNSI GNED1 Ranking : = 0;
END;

tbl := TABLE(accounts,rec);

rec RankG pAccts(rec L, rec R} := TRANSFORM
SELF. Ranki ng : = L. Ranking + 1;
SELF := R;
END;
G pRecs : = SORT(GROUP(SORT(tbl, Personl D), Personl D), - Opendat e, - Bal ance) ;
i1l := | TERATE(G pRecs, RankG pAcct s(LEFT, RI GHT)) ;
QUTPUT(i 1) ;

The following code just uses SORT to achieve the same record order as in the previous code. Notice the boundary
check codeinthe TRANSFORM function. Thisisrequired, sincethe ITERATE will perform asingle operation against
the entire dataset.:

rec RankSrtAccts(rec L, rec R} := TRANSFORM
SELF. Ranking : = | F(L. Personl D = R Personl D, L. Ranking + 1, 1);

© 2015 HPCC Systems®. All rights reserved
22

ECL Programmers Guide
ECL Programming Concepts

SELF := R;
END;
Sort Recs : = SORT(tbl, Personl D, - Opendat e, - Bal ance) ;
i 2 := | TERATE(Sor t Recs, RankSrt Acct s(LEFT, RI GHT)) ;
QUTPUT(i 2) ;

The different bounds checking in each isrequired by the fragmenting created by the GROUP function. The ITERATE
operates separately on each fragment in the first example, and operates on the entire record set in the second.

Performance Considerations

There is also a major performance advantage to using the GROUP function. For example, the SORT isan nlog n
operation, so breaking large record sets up into smaller sets of sets can dramatically improve the amount of time it
takes to perform the sorting operation.

Assuming that a dataset contains 1 billion 1,000-byte records (1,000,000,000) and you're operating on a 100-node
supercomputer. Assuming also that the datais evenly distributed, then you have 10 million records per node occupying
1 gigabyte of memory on each node. Suppose you need to sort the data by three fields: by personlD, opendate, and
balance. Y ou could achieve the result three possible ways: a global SORT, adistributed local SORT, or a GROUPed
distributed local SORT.

Here's an example that demonstrates all three methods (contained in GROUPfunc.ECL):

bf := NORMALI ZE(accounts,
CLUSTERSI ZE * 2,
TRANSFORM RECORDOF(Pr ogCui de. Account s) ,
SELF := LEFT));
DI STRI BUTE(bf , RANDOM)) : PERSI ST(' ~PROGGUI DE: : PERSI ST: : Test G- oupSort');
DI STRI BUTE(ds, HASH32(per soni d)) ;

dsO :
dsl :

// do a global sort
sl : = SORT(dsO, personi d, opendat e, - bal ance) ;
a := OUTPUT(s1,,' ~PROGGU DE: : EXAMPLEDATA: : Test G- oupSort1' , OVERWRI TE) ;

/] do a distributed |ocal sort
s3 SORT(ds1, personi d, opendat e, - bal ance, LOCAL) ;
b QUTPUT(s3, , ' ~PROGGUI DE: : EXAMPLEDATA: : Test G- oupSort 2' , OVERWRI TE) ;

/! do a grouped |ocal sort

s4 : = SORT(ds1, personi d, LOCAL);

g2 : = GROUP(s4, personid, LOCAL);

s5 : = SORT(g2, opendat e, - bal ance) ;

¢ := OUTPUT(s5,,' ~PROGGU DE: : EXAMPLEDATA: : Test G oupSort 3' , OVERWRI TE) ;
SEQUENTI AL(&, b, c);

The result sets for all of these SORT operations are identical. However, the time it takes to produce them is not. The
above example operates only on 10 million 46-byte records per node, not the one billion 1,000-byte records previously
mentioned, but it certainly illustrates the techniques.

For the hypothetical one billion record example, the performance of the Global Sort is calculated by the formula: 1
billion times the log of 1 billion (9), resulting in a performance metric of 9 billion. The performance of Distributed
Local Sort is calculated by the formula: 10 million times the log of 10 million (7), resulting in a performance metric
of 70 million. Assuming the GROUP operation created 1,000 sub-groups on each node, the performance of Grouped
Local Sort is calculated by the formula: 1,000 times (10,000 times the log of 10,000 (4)), resulting in a performance
metric of 40 million.

The performance metric numbersthemselves are meaningless, but their ratiosdo indicate the differencein performance
you can expect to see between SORT methods. This means that the distributed local SORT will be roughly 128 times
faster than the global SORT (9 hillion / 70 million) and the grouped SORT will be roughly 225 times faster than the

© 2015 HPCC Systems®. All rights reserved
23

ECL Programmers Guide
ECL Programming Concepts

global SORT (9 hillion / 40 million) and the grouped SORT will be about 1.75 times faster than the distributed local
SORT (70 million / 40 million).

© 2015 HPCC Systems®. All rights reserved
24

ECL Programmers Guide
ECL Programming Concepts

Automated ECL

Onceyou have established standard ECL processesthat you know you need to perform regularly, you can beginto make
those processes automated. Doing this eliminates the need to remember the order of processes, or their periodicity.

One form of automation typically involves launching MACROs with the ECLPlus application. By using MACROs,
you can have standard processes that operate on different input each time, but produce the same result. Since ECL Plus
isacommand-line application, its use can be automatically launched in many different ways— DOS Batch files, from
within another application, or ...

Here's an example. This MACRO (contained in DeclareData.ECL) takes two parameters: the name of afile, and the
name of afield in that file to produce a count of the unique values in that field and a crosstab report of the number
of instances of each value.

EXPORT MAC Count Fi el dVal ues(infile,infield) := MACRO
/] Create the count of unique values in the infield
COUNT(DEDUP(TABLE(i nfile,{infile.infield}),infield, ALL));

/] Create the crosstab report
#UNI QUENAVE(r _macr o)
% _macr 0% : = RECORD
infile.infield;
I NTEGER cnt : = COUNT(GROUP) ;
END;
#UNI QUENAME(y_nacr 0)
% _macro% : = TABLE(infile, % _macro%infield, FEW;
QOUTPUT (CHOOSEN(%/_nmacr 0% 50000)) ;
ENDMACRO,

By using #UNIQUENAME to generate all the attribute names, this MACRO can be used multiple times in the same
workunit. Y ou can test the MACRO through the ECL IDE program by executing aquery like thisin the ECL Builder
window:

| MPORT Progr anmer sGui de AS PG
PG. Decl ar eDat a. MAC_Count Fi el dVal ues(PG Decl ar eDat a. Person. fi |l e, gender) ;

Once you've throughly tested the MACRO and are certain it works correctly, you can automate the process by using
ECLplus.

Install the ECL plus program in its own directory on the same PC that runsthe ECL IDE, and create an ECLPLUS.INI
filewith the correct settingsto access your cluster (see the Command Line ECL section of the Client Tools PDF). Then
you can open a Command Prompt window and run the same query from the command line like this:

C:\ ecl pl us>ecl pl us ecl =$Pr ogGui de. MAC_Count Fi el dVal ues(Progr amrer sGui de. Decl ar eDat a. Per son. Fi | e, gender)

Notice that you're using the ecl= command line option and not the $Module.Attribute option. Thisisthe“proper” way
to make aMACRO expand and execute through ECL plus. The $Module.Attribute option is only used to execute ECL
Builder window queries that have been saved as attributes in the repository (Builder Window Runnable—BWR code)
and won't work with MACROs.

When the MACRO expands and executes, you get aresult that looks like thisin your Command Prompt window:

Wor kuni t W20070118- 145647 submitted
[Resul t 1]
Result 1
2
[Resul t _2]
gender cnt
F 500000

© 2015 HPCC Systems®. All rights reserved
25

ECL Programmers Guide
ECL Programming Concepts

M 500000

Y ou can re-direct this output to afile by using the output="filename” option on the command line, like this:

C:\ ecl pl us>ecl pl us ecl =$Pr ogGui de. MAC_Count Fi el dVal ues(Programrer sGui de. Decl ar eDat a. Per son. Fi | e,

out put ="MyFile.txt"

This will send the output to the “MyFileitxt” file on your local PC. For larger output files, you'll want to have the
OUTPUT action in your ECL code write the result set to disk in the supercomputer then de-spray it to your landing
zone (you can use the FileServices.Despray function to do this from within your ECL code).

Using Text Files

Another automation option isto generate a text file containing the ECL code to execute, then execute that code from
the command line.

For example, you could create afile containing this:

I MPORT Pr ogr anmer sGui de AS PG
PG Decl ar eDat a. MAC_Count Fi el dVal ues(PG Decl ar eDat a. Person. fi | e, gender) ;
PG Decl ar eDat a. MAC_Count Fi el dVal ues(PG Decl ar eDat a. person. Fi | e, st at e)

These two MACRO calls will generate the field ordinality count and crosstab report for two fields in the same file.
Y ou could then execute them like this (where “test.ECL" is the name of the file you created):

C:\ecl pl us>ecl plus @est. ecl
Thiswill generate similar results to that above.

The advantage this method hasisthe ability to include any necessary “setup” ECL codein the file before the MACRO
calls, like this (contained in RunText.ECL):

| MPORT Pr ogr anmer sGui de AS PG
M/Rec : = RECORD

STRI NGL val uel;

STRI NGL val ue2;
END;

D := DATASET([{'A,'B'},
{'8.,'C},
{*A,'D},
{IB"IB'}Y
{"A,'C},
{IB"ID}Y
{A, B},
{rc.'c},
{rc,'D},
{"A,"A}], WRec);

PG Decl ar eDat a. MAC_Count Fi el dVal ues(D, Val uel)
PG Decl ar eDat a. MAC _Count Fi el dVal ues(D, Val ue2)

So that you get aresult like this:

C:\ecl pl us>ecl plus @est. ecl
Wor kuni t W20070118- 145647 subnitted

[Resul t 1]

result_1

3

[Resul t 2]

valuel cnt
C 2
A 5

© 2015 HPCC Systems®. All rights reserved
26

gender)

ECL Programmers Guide
ECL Programming Concepts

B 3
[Resul t 3]

result_3

4

[Resul t 4]

val ue2 cnt
3

Ww>00

3
1
3

How you create thistext fileis up to you. To fully automate the process you may want to write a daemon application
that watches a directory (such as your HPCC environment's landing zone) to detect new files dropped in (by whatever
means) and generate the appropriate ECL code file to process that new file in some standard fashion (typically using
MACRO cdlls), then execute it from ECL plus command line as described above. The realm of possibilitiesis endless.

© 2015 HPCC Systems®. All rights reserved
27

ECL Programmers Guide
ECL Programming Concepts

Job “Fallure”

Sometimes jobs fail. And sometimes that behavior is by design.

For example, attempting to send an entire output result back to the ECL IDE program when that result contains more
than 10 megabytes of datawill cause the job to "fail" with the error “Dataset too large to output to workunit (limit 10
megabytes).” Thisjob “failure” is deliberate on the part of the system (and you can reset this particular limit on a per-
workunit basis using #OPTION), because any time you are writing that amount of data out you should be writing it
to afileto de-spray. Otherwise, you will rapidly fill your system data store.

Other examples of thistype of deliberate system "failure" isexceeding skew limitsor exceeding any other runtimelimit.
For some of these limits there are ways to reset the limit itself (which is usualy NOT the best solution). Otherwise,
the deliberate “failure” isasignal that there is something inherently wrong with the job and perhaps the approach you
are using needs to be re-thought.

Contact Technical Support whenever such an issue arises and we will help you formulate a strategy to accomplish
what you need to without incurring these deliberate system "failures.”

© 2015 HPCC Systems®. All rights reserved
28

ECL Programmers Guide
ECL Programming Concepts

Non-Random RANDOM

There are occasions when you need arandom number, but once you've gotten it, you want that value to stay the same
for the duration of the workunit. For example, the “problem” with this code is that it will OUTPUT three different
values (this code isin NonRandomRandom.ECL):

I NTEGER1 Randl := (RANDOM) % 25) + 1;
OUTPUT(Randl) ;
OQUTPUT(Randl) ;
OQUTPUT(Randl) ;

To make the “random” value persistent throughout the workunit, you can ssmply add the STORED Workflow Service
to the attribute definition, like this (this code is also in NonRandomRandom.ECL):

I NTEGERL Rand2 := (RANDOM) % 25) + 1 : STORED(' MyRandonVal ue');
OUTPUT(Rand?2) ;
QUTPUT(Rand2) ;
OUTPUT(Rand?2) ;

Thiswill cause the “random” value to be calculated once, then used throughout the rest of the workunit.

The GLOBAL Workflow Service would accomplish the same thing, but using STORED has the added advantage that
the “random” value used for the workunit is displayed on the ECL Watch page for that workunit, allowing you to
better debug your code by seeing exactly what “random” value was used for the job.

© 2015 HPCC Systems®. All rights reserved
29

ECL Programmers Guide
ECL Programming Concepts

Working with XML Data

Datais not always handed to you in nice, easy-to-work-with, fixed-length flat files; it comesin many forms. One form
growing in usage every day is XML. ECL has a number of ways of handling XML data—some obvious and some
not so obvious.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified XPATH matchesavery large amount of data, then alarge data structurewill be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Simple XML Data Handling

The XML options on DATASET and OUTPUT allow you to easily work with ssimple XML data. For example, an
XML filethat looks like this (this data generated by the code in GenData.ECL):

<?xm version=1.0 ...?>
<ti nmezones>
<ar ea>
<code>
215
</ code>
<st at e>
PA
</ st ate>
<descri pti on>
Pennsyl vani a (Phi | adel phi a area)
</ descri ption>
<zone>
Eastern Ti me Zone
</ zone>
</ ar ea>
<ar ea>
<code>
216
</ code>
<st at e>
H
</ st ate>
<descri pti on>
Chio (Cd evel and area)
</ descri ption>
<zone>
Eastern Ti me Zone
</ zone>
</ ar ea>
</ti mezones>

Thisfile can be declared for usein your ECL code (asthisfileisdeclared asthe TimeZonesXML DATASET declared
in the DeclareData MODULE Structure) like this:

EXPORT Ti meZonesXM. : =
DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : XM__t i nezones'
{ STRI NG code
STRI NG st at e,
STRI NG descri pti on,
STRI NG ti mezone{ XPATH(' zone') }},
XM_('tinezones/area'))

© 2015 HPCC Systems®. All rights reserved
30

ECL Programmers Guide
ECL Programming Concepts

This makes the data contained within each XML tag inthefileavailable for usein your ECL codejust like any flat-file
dataset. The field names in the RECORD structure (in this case, in-lined in the DATASET declaration) duplicate the
tag names in the file. The use of the XPATH modifier on the timezone field allows us to specify that the field comes
from the <zone> tag. This mechanism allows us to name fields differently from their tag names.

By defining the fields as STRING types without specifying their length, you can be sure you're getting all the data—
including any carriage-returns, line feeds, and tabs in the XML file that are contained within the field tags (as are
present in thisfile). This simple OUTPUT shows the result (this and all subseguent code examplesin this article are
contained in the XML code.ECL file).

| MPORT $;
ds := $.Decl areDat a.ti mezonesXM;
OQUTPUT(ds) ;

Notice that the result displayed in the ECL IDE program contains squares in the data—these are the carriage-returns,
line feeds, and tabs in the data. You can get rid of the extraneous carriage-returns, line feeds, and tabs by simply
passing the records through a PROJECT operation, like this:

Striplt(STRING str) := REGEXREPLACE(' [\r\n\t]',str,"'$1');
RECORDOF(ds) DoStrip(ds L) := TRANSFORM
SELF. code := Striplt(L.code);
SELF.state := Striplt(L.state);
SELF. description := Striplt(L.description);
SELF. ti nezone := Striplt(L.tinezone);
END;
Stri ppedRecs : = PRQIECT(ds, DoStri p(LEFT));
OUTPUT(St ri ppedRecs) ;

The use of the REGEXREPL A CE function makesthe process very simple. Itsfirst parameter isastandard Perl regular
expression representing the charactersto look for: carriage return (\r), line feed (\n), and tab (\t).

Y ou can now operate on the StrippedRecs recordset (or ProgGuide. TimeZonesXML dataset) just as you would with
any other. For example, you might want to simply filter out unnecessary fields and records and write the result to a
new XML file to pass on, something like this:

InterestingRecs := StrippedRecs((| NTEGER) code BETVWEEN 301 AND 303);
QUTPUT(I nt er esti ngRecs, {code, ti mezone},
' ~PROGCUI DE: : EXAMPLEDATA: : QUT: : ti mezones300' ,
XM_(" area' , HEADI NG(' <?xml version=1.0 ...?>\n<tinezones>\n','</tinezones>')), OVERWRI TE);

Theresulting XML filelooks like this:

<?xm version=1.0 ...?>

<ti mezones>

<ar ea><code>301</ code><zone>East ern Ti ne Zone</ zone></ ar ea>
<ar ea><code>302</ code><zone>Eastern Ti ne Zone</zone></ ar ea>
<ar ea><code>303</ code><zone>Mount ai n Ti me Zone</ zone></ ar ea>
</ti mezones>

Complex XML Data Handling

Y ou can create much more complex XML output by using the CSV option on OUTPUT instead of the XML option.
The XML option will only produce the straight-forward style of XML shown above. However, some applications
require the use of XML attributes inside the tags. This code demonstrates how to produce that format:

CRLF : = (STRI NG x' ODOA' ;
Qut Rec : = RECORD

STRI NG Li ne;
END;

© 2015 HPCC Systems®. All rights reserved
31

ECL Programmers Guide
ECL Programming Concepts

Qut Rec DoConpl exXM_(I nteresti ngRecs L) := TRANSFORM

SELF.Line := ' <area code="' + L.code + '"> + CRLF +
<zone>' + L.tinezone + '</zone>' + CRLF +
</ area>';
END;

Conpl exXM. : = PRQIECT(I nt er esti ngRecs, DoConpl exXM_(LEFT)) ;
QUTPUT(Conpl exXM., , ' ~PROGGUI DE: : EXAMPLEDATA: : QUT: : Conpl ext i nezones301' ,
CSV(HEADI NG ' <?xml version=1.0 ... ?> +CRLF+' <ti mezones>' +CRLF, ' </ti mezones>')), OVERWRI TE) ;

The RECORD structure defines a single output field to contain each logical XML record that you build with the
TRANSFORM function. The PROJECT operation builds al of the individual output records, then the CSV option
on the OUTPUT action specifies the file header and footer records (in this case, the XML file tags) and you get the
result shown here:

<?xm version=1.0 ...?>
<ti mezones>
<area code="301">
<zone>Eastern Ti me Zone</ zone>
</ area>
<area code="302">
<zone>Eastern Ti me Zone</zone>
</ ar ea>
<area code="303">
<zone>Mount ai n Ti ne Zone</ zone>
</ area>
</ti mezones>

So, if using the CSV option is the way to OUTPUT complex XML data formats, how can you access existing com-
plex-format XML data and use ECL to work with it?

The answer liesin using the XPATH option on field definitionsin the input RECORD structure, like this:

NewTi meZones : =
DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : OQUT: : Conpl exti mezones301' ,
{STRI NG area {XPATH('<>')}},
XM_('timezones/area'));

The specified { XPATH('<>")} option basically says “give me everything that's in this XML tag, including the tags
themselves’ so that you can then use ECL to parse through the text to do your work. The NewTimeZones data records
look like this one (since it includes al the carriage return/line feeds) when you do a simple OUTPUT and copy the
record to atext editor:

<area code="301">
<zone>Eastern Ti ne Zone</zone>
</ ar ea>

Y ou can then use any of the string handling functions in ECL or the Service Library functions in StringLib or Uni-
codelLib (see the Services Library Reference) to work with the text. However, the more powerful ECL text parsing
tool is the PARSE function, allowing you to define regular expressions and/or ECL PATTERN attribute definitions
to process the data.

This example uses the TRANSFORM version of PARSE to get at the XML data:

{ds. code, ds.timezone} Xfornm(NewTli meZones L) := TRANSFORM

SELF. code = XMLTEXT(' @ode');
SELF. ti nezone : = XMLTEXT(' zone');
END;

Par sedZones : = PARSE(NewTi neZones, ar ea, Xf or m(LEFT) , XM_L("' area'));
OUTPUT(Par sedZones) ;

In this code we're using the XML form of PARSE and its associated XMLTEXT function to parse the data from
the complex XML structure. The parameter to XMLTEXT is the XPATH to the data we're interested in (the major

© 2015 HPCC Systems®. All rights reserved
32

ECL Programmers Guide
ECL Programming Concepts

subset of the XPATH standard that ECL supportsis documented in the Language Reference in the RECORD structure
discussion).

Input with Complex XML Formats

XML data comesin many possible formats, and some of them make use of “child datasets’ such that a given tag may
contain multiple instances of other tags that contain individua field tags themselves.

Here's an example of such acomplex structure using UCC data. An individual Filing may contain one or more Trans-
actions, which in turn may contain multiple Debtor and SecuredParty records:

<ucc
<Fi |'i ng nunmber =' 5200105" >
<Transaction |D="'5">
<St art Dat e>08/ 01/ 2001</ St ar t Dat e>
<LapseDat e>08/ 01/ 2006</ LapseDat e>
<For nType>UCC 1 FI LI NG STATEMENT</ For mlype>
<AnendType>NONE</ AmrendType>
<AmendAct i on>NONE</ AnendAct i on>
<Ent er edDat e>08/ 02/ 2002</ Ent er edDat e>
<Recei vedDat e>08/ 01/ 2002</ Recei vedDat e>
<Appr ovedDat e>08/ 02/ 2002</ Appr ovedDat e>
<Debtor entityld='19'>
<l sBusi ness>t rue</ | sBusi ness>
<O gNanme><! [CDATA[BOGUS LABORATORI ES, | NC.]]></ O gNanme>
<St at us>ACTI VE</ St at us>
<Addr ess1><! [CDATA[334 SOUTH 900 WEST]] ></ Addr ess1>
<Addr ess4><! [CDATA[SALT LAKE CI TY 45 84104]] ></ Addr ess4>
<G ty><! [CDATA[SALT LAKE CI TY]]></City>
<St at e>UTAH</ St at e>
<Zi p>84104</ Zi p>
<O gType>CORP</ Or gType>
<OrgJuri sdicti on><! [CDATA[SALT LAKE CI TY]] ></ OrgJuri sdi cti on>
<Or gl D>654245- 0142</ Or gl D>
<Ent er edDat e>08/ 02/ 2002</ Ent er edDat e>
</ Debt or >
<Debtor entityld="7">
<l sBusi ness>f al se</ | sBusi ness>
<Fi r st Name><! [CDATA[FRED]] ></ Fi r st Narme>
<Last Nane><! [CDATA[JONES]] ></ Last Nanme>
<St at us>ACTI VE</ St at us>
<Addr ess1><! [CDATA[1038 E. 900 N.]]></Addressi1>
<Addr ess4><! [CDATA[OGDEN 45 84404]] ></ Addr ess4>
<Ci ty><! [CDATA] OGDEN] | ></ Ci ty>
<St at e>UTAH</ St at e>
<Zi p>84404</ Zi p>
<Or gType>NONE</ Or gType>
<Ent er edDat e>08/ 02/ 2002</ Ent er edDat e>
</ Debt or >
<SecuredParty entityld="' 20" >
<l sBusi ness>t r ue</ | sBusi ness>
<O gNanme><! [CDATA] WVELLS FARGO BANK]] ></ Or gNane>
<St at us>ACTI VE</ St at us>
<Addr ess1><! [CDATA[ATTN: LOAN OPERATI ONS CENTER]] ></ Addr ess1>
<Addr ess3><! [CDATA[P. O. BOX 9120]] ></ Addr ess3>
<Addr ess4><! [CDATA[BO SE 13 83707-2203]] ></ Addr ess4>
<Ci ty><! [CDATA[BO SE] | ></City>
<St at e>l DAHO</ St at e>
<Zi p>83707-2203</ Zi p>
<St at us>ACTI VE</ St at us>
<Ent er edDat e>08/ 02/ 2002</ Ent er edDat e>
</ Secur edPart y>
<Col | at eral >

© 2015 HPCC Systems®. All rights reserved
33

ECL Programmers Guide
ECL Programming Concepts

<Act i on>ADD</ Acti on>
<Descri pti on><! [CDATA[ALL ACCOUNTS]] ></ Descri pti on>
<Ef f ecti veDat e>08/ 01/ 2002</ Ef f ect i veDat e>
</ Col | at eral >
</ Transacti on>
<Transaction | D=' 375799' >
<St art Dat e>08/ 01/ 2002</ St ar t Dat e>
<LapseDat e>08/ 01/ 2006</ LapseDat e>
<For nifype>UCC 3 AMENDVMENT</ For nilype>
<AmrendType>TERM NATI ON BY DEBTOR</ AnendType>
<AnmendAct i on>NONE</ AmrendAct i on>
<Ent er edDat e>02/ 23/ 2004</ Ent er edDat e>
<Recei vedDat e>02/ 18/ 2004</ Recei vedDat e>
<Appr ovedDat e>02/ 23/ 2004</ Appr ovedDat e>
</ Transacti on>
</ Filing>
</ ucC>

The key to working with this type of complex XML data are the RECORD structures that define the layout of the
XML data.

Col | at eral Rec : = RECORD
STRI NG Acti on { XPATH(" Action')};
STRI NG Descri ption {XPATH("' Description')};
STRI NG Ef fectiveDate {XPATH(' EffectiveDate')};
END;

PartyRec := RECORD

STRING Partyl D {XPATH(' @ntityld)};
STRING | sBusiness { XPATH("' | sBusi ness')};
STRING O gNane { XPATH(' Or gNane') };
STRING FirstName {XPATH(' Fi r st Nane') };
STRING Last Nane { XPATH(' Last Nane') };
STRING Status {XPATH("' Status[1]')};
STRING Addressl { XPATH("' Addressl1')};
STRING Address2 { XPATH("' Addr ess2')};
STRING Address3 { XPATH("' Addr ess3')};
STRING Address4 { XPATH("' Addr ess4')};
STRING City {XPATH(' City')};
STRING State {XPATH(' State')};
STRING Zip {XPATH(" Zi p') };
STRING OrgType {XPATH(' Or gType')};
STRING OrgJdurisdiction { XPATH(' OrgJuri sdiction')};
STRING OrglD {XPATH(' Orgl D)};
STRI NGLO Ent er edDat e {XPATH("' Ent eredDate') };
END;

Transacti onRec : = RECORD

STRI NG TransactionlD {XPATH(' @D)};
STRI NG10 StartDate {XPATH(' StartDate')};
STRI NGLO LapseDat e {XPATH(' LapseDate')};
STRI NG For mType { XPATH(" For nilype') };
STRI NG AmrendType { XPATH(" AmendType')};
STRI NG AmendAct i on { XPATH(" AmendAction')};
STRI NGLO Ent er edDat e {XPATH("' Ent eredDate') };
STRI NG10 Recei vedDate { XPATH(' Recei vedDate')};
STRI NGLO Appr ovedDat e { XPATH("' Appr ovedDate')};
DATASET(PartyRec) Debtors { XPATH("' Debtor")};
DATASET(Part yRec) SecuredParties {XPATH(' SecuredParty')};
Col | at eral Rec Col | at eral {XPATH(' Col | ateral ')}
END;

UCC_Rec : = RECORD
STRI NG Fi | i ngNunmber {XPATH(' @unber')};

© 2015 HPCC Systems®. All rights reserved
34

ECL Programmers Guide
ECL Programming Concepts

DATASET(Tr ansact i onRec) Transacti ons { XPATH(' Transaction')};
END;

UCC : = DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : XML_UCC , UCC_Rec, XML(' UCC/ Fi ling'));

Building from the bottom up, these RECORD structures combine to create the final UCC_Rec layout that definesthe
entire format of this XML data.

The XML option on the final DATASET declaration specifies the XPATH to the record tag (Filing) then the child
DATASET “field” definitions in the RECORD structures handle the multiple instance issues. Because ECL is case
insensitiveand XML syntax iscase sensitive, it isnecessary to usethe XPATH to defineall thefield tags. The PartyRec
RECORD structure works with both the Debtors and SecuredParties child DATASET fields because both contain the
same tags and information.

Onceyou've defined the layout, how can you extract the datainto anormalized relational structureto work withitinthe
supercomputer? NORMALIZE istheanswer. NORMAL I ZE needsto know how many timesto call its TRANSFORM,
so0 you must use the TABLE function to get the counts, like this:

Xact Thl : = TABLE(UCC, {| NTEGER Xact Count := COUNT(Transactions), UCC});

QUTPUT(Xact Thl) ;

This TABLE function gets the counts of the multiple Transaction records per Filing so that we can use NORMALIZE
to extract them into a table of their own.

Qut _Transacts : = RECORD
STRI NG Fi | i ngNunber ;
STRI NG Transact i onl D,
STRI NGLO St art Dat e;
STRI NGLO LapseDat e;
STRI NG For nmlype,;
STRI NG AnmendType;
STRI NG AnendAct i on;
STRI NG10 Ent er edDat e;
STRI NGLO Recei vedDat e;
STRI NG10 Appr ovedDat e;
DATASET(Part yRec) Debt ors;
DATASET(Part yRec) SecuredParti es;
Col | at er al Rec Col | ateral ;

END;

Qut _Transacts Get_Transact s(Xact Thl L, : = TRANSFORM

SELF. Fi | i ngNunber := L. FilingNunber;

| NTEGER ©)

SELF L. Transacti ons[(] ;
END;
Transacts : = NORMALI ZE(Xact Thl , LEFT. Xact Count, Get _Tr ansact s(LEFT, COUNTER)) ;

OUTPUT(Tr ansact s) ;

This NORMALIZE extracts all the Transactions into a separate recordset with just one Transaction per record with
the parent information (the Filing number) appended. However, each record here still contains multiple Debtor and
SecuredParty child records.

PartyCounts : = TABLE(Transacts,
{I NTEGER Debt or Count := COUNT(Debt ors),
| NTEGER PartyCount := COUNT(SecuredParties),

Transact s});
OUTPUT(Par t yCount s) ;
This TABLE function gets the counts of the multiple Debtor and SecuredParty records for each Transaction.

Qut _Parties := RECORD

© 2015 HPCC Systems®. All rights reserved
35

ECL Programmers Guide
ECL Programming Concepts

STRING Fili ngNunber ;
STRING Transacti onl D
Part yRec;

END;

Qut_Parties Get_Debtors(PartyCounts L, |INTEGER C) := TRANSFORM

SELF. Fi | i ngNunber := L. FilingNunber;

SELF. Transactionl D : = L. Transacti onl D;

SELF := L.Debtors[(];
END;

Transact Debt ors : = NORMALI ZE(PartyCounts,
LEFT. Debt or Count ,
Get _Debt or s(LEFT, COUNTER)) ;

OQUTPUT(Tr ansact Debt or s) ;

ThisNORMALIZE extracts all the Debtors into a separate recordset.

Qut _Parties Get_Parties(PartyCounts L, |INTEGER C) := TRANSFORM
SELF. Fi | i ngNunber L. Fi | i ngNumber ;
SELF. Transactionl D : = L. Transacti onl D;
SELF := L. SecuredParties[(C];

END;

Transact Parti es : = NORVALI ZE(Part yCount s,
LEFT. Part yCount ,
Cet _Parti es(LEFT, COUNTER)) ;

OQUTPUT(Tr ansact Parti es);

This NORMALIZE extracts al the SecuredParties into a separate recordset. With this, we've now broken out all the
child records into their own normalized relational structure that we can work with easily.

Piping to Third-Party Tools

One other way to work with XML dataisto use third-party toolsthat you have adapted for usein the supercomputer so
that you have the advantage of working with previously proven technology and the benefit of running that technology
in parallel on al the supercomputer nodes at once.

The technique is ssimple: just define the input file as a data stream and use the PIPE option on DATASET to process
the data in its native form. Once the processing is complete, you can OUTPUT the result in whatever form it comes
out of the third-party tool, something like this example code (non-functional):

Rec : = RECORD
STRINGL char;
END;
Ti meZones : = DATASET('ti nmezones. xnl ', Rec, Pl PE(' Thi rdPartyTool . exe'));

OUTPUT(Ti neZones, , ' ProcessedTi nezones. xm ') ;

Thekey to thistechniqueisthe STRING1 field definition. This makesthe input and output just a 1-byte-at-a-time data
stream that flows into the third-party tool and back out of your ECL code in its native format. Y ou don't even need to
know what that format is. Y ou could also use this technique with the PIPE option on OUTPUT.

© 2015 HPCC Systems®. All rights reserved
36

ECL Programmers Guide
ECL Programming Concepts

Working with BLOBSs

BLOB (Binary Large OBject) support in ECL begins with the DATA value type. This type may contain any type of
data, making it perfect for housing BLOB data.

There are essentially three issues around working with BLOB data:
1) How to get the datainto the HPCC (spraying).
2) How to work with the data, onceit isin the HPCC.

3) How to get the data back out of the HPCC (despraying).

Spraying BLOB Data

In the HPCCClientTools.PDF there is a chapter devoted to the DFUplus.exe program. This is a command line tool
with specific options that allow you to spray and despray files into BLOBs in the HPCC. In all the examples below,
well assume you have a DFUPLUS.INI file containing the standard content described in that section of the PDF.

Thekey to making aspray operation writeto BLOBsisthe use of the prefix= Filename,Filesize option. For example, the
following command line sprays all the .JPG and .BMP files from the c:\import directory of the 10.150.51.26 machine
into asingle logical file named LE::imagedb:

C:\ >df upl us action=spray srci p=10.150.51.26 srcfile=c:\inport*.jpg,c:\inmport*.bnp
dstcluster=le_thor dstname=LE::inagedb overwite=1
PREFI X=FI LENAME, FI LESI ZE nospl it =1

Working with BLOB Data

Once you've sprayed the datainto the HPCC you must define the RECORD structure and DATASET. The following
RECORD structure defines the result of the spray above:

i mgeRecord : = RECORD
STRI NG fi | enane;
DATA i nmage;
//first 4 bytes contain the |length of the i mage data
UNSI GNED8 RecPos{virtual (fil eposition)};
END;
i mgeDat a : = DATASET(' LE: : i magedb' , i mageRecor d, FLAT) ;

The key to this structure is the use of variable-length STRING and DATA vaue types. Thefilenamefield receivesthe
complete name of the original .JPG or .BMPfilethat isnow contained within theimagefield. Thefirst four bytesof the
image field contain an integer value specifying the number of bytesin the origina file that are now in the image field.

The DATA value typeisused here for the BLOB field because the JPG and BMP formats are essentially binary data.
However, if the BLOB were to contain XML data from multiple files, then it could be defined as a STRING value
type. In that case, the first four bytes of the field would still contain an integer value specifying the number of bytes
in the origina file, followed by the XML data from the file.

The addition of the RecPos field (a standard ECL “record pointer” field) allows usto create an INDEX, like this:

i mmgeKey : = | NDEX(i mageDat a, {fi | enane, f pos},' LE: :i mageKey');
BUI LDI NDEX(i mageKey) ;

Having an INDEX allows you to work with the imageDatafile in keyed JOIN or FETCH operations. Of course, you
can also perform any operation on the BLOB data files that you would do with any other filein ECL.

© 2015 HPCC Systems®. All rights reserved
37

ECL Programmers Guide
ECL Programming Concepts

Despraying BLOB Data

The DFUplus.exe program also allowsyou to despray BLOB filesfrom the HPCC, splitting them back into the separate
files they originated from. The key to making a despray operation write BLOBS to separate files is the use of the
splitprefix=Filename,Filesize option. For example, the following command line desprays al the BLOB datato the c:
\import\despray directory of the 10.150.51.26 machine from the single logical file named L E::imagedb:

C.\ >df upl us acti on=despray dsti p=10.150.51.26 dstfile=c:\inport\despray*.*
srcnane=LE: : i magedb PREFI X=FI LENAME, FI LESI ZE nosplit=1

Once this command has executed, you should have the same set of files that were originally sprayed, recreated in a
separate directory.

© 2015 HPCC Systems®. All rights reserved
38

ECL Programmers Guide
ECL Programming Concepts

Using ECL Keys (INDEX Files)

TheETL (Extract, Transform, and L oad—standard dataingest processing) operationsin ECL typically operate against
all or most of the records in any given dataset, which makes the use of keys (INDEX files) of little use. Many queries
do the same.

However, production data delivery to end-users rarely requires accessing all records in a dataset. End-users always
want “instant” access to the data they're interested in, and most often that dataiis a very small subset of the total set of
records available. Therefore, using keys (INDEXes) becomes a requirement.

Thefollowing attribute definitions used by the code examplesin thisarticle are declared in the DeclareDataM ODULE
structure attribute in the DeclareData.ECL file:

EXPORT Person : = MODULE

EXPORT Fil e := DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Peopl €' , Layout _Person, THOR);

EXPORT Fil ePl us : = DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Peopl e' ,

{Layout _Per son,
UNSI GNED8 RecPos{ VI RTUAL(fi |l eposition)}}, THOR);
END;
EXPORT Accounts : = DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Account s' ,
{Layout _Account s_Li nk,
UNSI GNED8 RecPos{ VI RTUAL(fil eposition)}}, THOR);
EXPORT Per sonAccounts : = DATASET(' ~PROGGUI DE: : EXAMPLEDATA: : Peopl eAcct s’ ,
{Layout _Conbi ned,
UNSI GNED8 RecPos{virtual (fileposition)}}, THOR);

EXPORT | DX_Per son_Per sonl D : = | NDEX(Per son. Fi | ePl us, { Per sonl D, RecPos},
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Peopl e. Personl D') ;
EXPORT | DX_Accounts_Personl D : = | NDEX(Account s, { Per sonl D, RecPos},

' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : Account s. Personl D') ;

EXPORT | DX_Account s_Personl D_Payl oad : =
I NDEX(Account s,
{Personl D},
{ Account , OpenDat e, | ndust r yCode, Acct Type,
Acct Rat e, Codel, Code2, Hi ghCredi t, Bal ance, RecPos},
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Account s. Per sonl D. Payl oad') ;

EXPORT | DX_Per sonAccounts_Personl D : =
| NDEX(Per sonAccount s, { Per sonl D, RecPos} ,
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Peopl eAccts. Personl D) ;

EXPORT | DX__Person_Last Nane_Fi rst Nane : =
| NDEX(Per son. Fi | ePl us, { Last Nane, Fi r st Nane, RecPos},
' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : Peopl e. Last Nane. Fi r st Nane') ;
EXPORT | DX__Person_Personl D_Payl oad : =
| NDEX(Per son. Fi | ePl us, { Per sonl D},
{Fi rst Nane, Last Name, M ddl el ni ti al ,
Gender, Street, City, State, Zi p, RecPos},
' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : Peopl e. Per sonl D. Payl oad') ;

Although you can use an INDEX as if it were a DATASET, there are only two operations in ECL that directly use
keys. FETCH and JOIN.

Simple FETCH

The FETCH is the simplest use of an INDEX. Its purpose is to retrieve records from a dataset by using an INDEX
to directly access only the specified records.

The example code below (contained in the IndexFetch.ECL file) illustrates the usual form:

© 2015 HPCC Systems®. All rights reserved
39

ECL Programmers Guide
ECL Programming Concepts

| MPORT $;

F1 : = FETCH($. Decl ar eDat a. Per son. Fi | ePl us,
$. Decl ar eDat a. | DX_Per son_Per sonl D(Per sonl D=1) ,
Rl GHT. RecPos) ;

QUTPUT(F1) ;

You will note that the DATASET named as the first parameter has no filter, while the INDEX named as the second
parameter does have afilter. Thisisawaysthe case with FETCH. The purpose of an INDEX in ECL isalwaysto allow
“direct” accessto individual recordsin the base dataset, therefore filtering the INDEX isaways required to define the
exact set of records to retrieve. Given that, filtering the base dataset is unnecessary.

Asyou can see, thereisno TRANSFORM functionin thiscode. For most typical usesof FETCH atransform functionis
unnecessary, althoughitiscertainly appropriateif the result datarequiresformatting, asin thisexample (also contained
in the IndexFetch.ECL file):

r : = RECORD
STRI NG Ful | Nane;
STRI NG Addr ess;
STRI NG CSZ;

END;

r Xform($. Decl areDat a. Person. Fil ePl us L) := TRANSFORM

SELF. Ful I nanme := TRIML.Firstname) + TRRM' ' + L.Mddlelnitial) + "' ' + L.Lastnane;
SELF. Addr ess = L. Street;
SELF. CSZ = TRRML.City) +', ' + L.State +"' ' + L.Zp;

END;

F2 := FETCH($. Decl ar eDat a. Person. Fi | ePl us,
$. Decl ar eDat a. | DX_Per son_Per sonl D(Per sonl D=1) ,
Rl GHT. RecPos,
Xf or m(LEFT)) ;

QUTPUT(F2) ;

EvenwithaTRANSFORM function, thiscodeisstill avery straight-forward “ go get metherecords, please” operation.

Full-keyed JOIN

AssimpleasFETCH is, using INDEXesin JOIN operationsisalittle more complex. The most obviousformisa"full-
keyed" JOIN, specified by the KEY ED option, which, nominates an INDEX into the right-hand recordset (the second
JOIN parameter). The purpose for this form is to handle situations where the left-hand recordset (named as the first
parameter to the JOIN) isafairly small dataset that needsto join to alarge, indexed dataset (the right-hand recordset).
By using the KEY ED option, the JOIN operation uses the specified INDEX to find the matching right-hand records.
This means that the join condition must use the key fieldsin the INDEX to find matching records.

This example code (contained in the IndexFullK eyedJoin.ECL file) illustrates the usual use of afull-keyed join:
| MPORT $;

rl := RECORD
$. Decl ar eDat a. Layout _Per son;
$. Decl ar eDat a. Layout _Account s;
END;

r1 Xforml($. Decl areDat a. Person. Fi |l ePl us L,
$. Decl areDat a. Accounts R) := TRANSFORM

SELF : = L;
SELF := R
END;

J1 := JA N($. Decl ar eDat a. Per son. Fi | ePl us(Personl D BETWEEN 1 AND 100),
$. Decl ar eDat a. Account s,

© 2015 HPCC Systems®. All rights reserved
40

ECL Programmers Guide
ECL Programming Concepts

LEFT. Per sonl D=RI GHT. Per sonl D,
Xf or mL(LEFT, RI GHT) ,
KEYED($. Decl ar eDat a. | DX_Account s_Per sonl D)) ;

OUTPUT(J1, ALL) ;

The right-hand Accountsfile contains five million records, and with the specified filter condition the left-hand Person
recordset contains exactly one hundred records. A standard JOIN between these two would normally require that all
fivemillion Accountsrecords be read to produce the result. However, by using the KEY ED option the INDEX’ sbhinary
tree is used to find the entries with the appropriate key field values and get the pointers to the exact set of Accounts
records required to produce the correct result. That means that the only records read from the right-hand file are those
actually contained in the result.

Half-keyed JOIN

The half-keyed JOIN is a simpler version, wherein the INDEX is the right-hand recordset in the JOIN. Just as with
the full-keyed JOIN, the join condition must use the key fieldsin the INDEX to do its work. The purpose of the half-
keyed JOIN is the same as the full-keyed version.

In fact, a full-keyed JOIN is, behind the curtains, actually the same as a half-keyed JOIN then a FETCH to retrieve
the base dataset records. Therefore, a half-keyed JOIN and a FETCH are semantically and functionally equivalent, as
shown in this example code (contained in the IndexHalfK eyedJoin.ECL file):

| MPORT $;

rl := RECORD
$. Decl ar eDat a. Layout _Per son;
$. Decl ar eDat a. Layout _Account s;
END;
r2 := RECORD
$. Decl ar eDat a. Layout _Per son;
UNSI GNED8 Acct RecPos;
END;

r2 Xforn2($. Decl areDat a. Person. Fi | ePl us L,
$. Decl ar eDat a. | DX_Account s_Personl D R) : = TRANSFORM
SELF. Acct RecPos : = R RecPos;
SELF : = L;
END;

J2 := JO N($. Decl ar eDat a. Per son. Fi | ePl us(Personl D BETWEEN 1 AND 100),
$. Decl ar eDat a. | DX_Account s_Per sonl D,
LEFT. Per sonl D=RI GHT. Per sonl D,
Xf or n2(LEFT, RI GHT)) ;

r1 XfornB($. Decl areData. Accounts L, r2 R) := TRANSFORM

SELF := L;
SELF := R
END;
F1 : = FETCH($. Decl ar eDat a. Account s,
J2,

RI GHT. Acct RecPos,
Xf or nB(LEFT, RI GHT)) ;

OUTPUT(F1, ALL) ;
This code produces the same result set as the previous example.

The advantage of using half-keyed JOINs over the full-keyed version comes in where you may need to do several
JOINs to fully perform whatever process is being run. Using the half-keyed form allows you to accomplish all the

© 2015 HPCC Systems®. All rights reserved
41

ECL Programmers Guide
ECL Programming Concepts

necessary JOINSs before you explicitly do the FETCH to retrieve the final result records, thereby making the code
more efficient.

Payload INDEXes

Thereis an extended form of INDEX that allows each entry to carry a*“ payload”—additional data not included in the
set of key fields. These additional fields may simply be additional fields from the base dataset (not required as part of
the search key), or they may contain the result of some preliminary computation (computed fields). Since the datain
an INDEX isaways compressed (using LZW compression), carrying the extra payload doesn't tax the system unduly.

A payload INDEX requires two separate RECORD structures as the second and third parameters of the INDEX dec-
laration. The second parameter RECORD structure lists the key fields on which the INDEX isbuilt (the search fields),
while the third parameter RECORD structure defines the additional payload fields.

The virtual (fileposition) record pointer field must always be the last field listed in any type of INDEX, therefore,
when you're defining a payload key it is awaysthe last field in the third parameter RECORD structure.

This example code (contained in the IndexHal fK eyedPayloadJoin.ECL fil€) once again duplicatesthe previousresults,
but does so using just the half-keyed JOIN (without the FETCH) by making use of a payload key:

| MPORT $;

rl := RECORD

$. Decl ar eDat a. Layout _Per son;
$. Decl ar eDat a. Layout _Account s;
END;

rl Xform$. Decl areDat a. Person. Fil ePlus L, $.Decl areData.| DX Accounts_Personl D_Payl oad R) :=
TRANSFORM
SELF : = L;
SELF := R
END;

J2 := JA N($. Decl ar eDat a. Per son. Fi | ePl us(Personl D BETWEEN 1 AND 100),
$. Decl ar eDat a. | DX_Account s_Per sonl D_Payl oad,
LEFT. Per sonl D=RI GHT. Per sonl D,
Xf or m{ LEFT, RI GHT)) ;

OUTPUT(J2, ALL) ;

Y ou can see that this makes for tighter code. By eliminating the FETCH operation you also eliminate the disk access
associated with it, making your process faster. The requirement, of course, is to pre-build the payload keys so that
the FETCH becomes unnecessary.

Computed Fields in Payload Keys

Thereisatrick to putting computed fields in the payload. Since a“computed field” by definition does not exist in the
dataset, the technique required for their creation and use is to build the content of the INDEX beforehand.

Thefollowing example code (contained in IndexPayloadFetch.ECL) illustrates how to accomplish this by building the
content of some computed fields (derived from related child records) in a TABLE on which the INDEX is built:

| MPORT $;

PersonFil e : = $. Decl ar eDat a. Per son. Fi | ePl us;

AcctFile := $. Decl ar eDat a. Account s;

| DXnanme : = '~$. Decl ar eDat a: : EXAMPLEDATA: : KEYS: : Per son. Per sonl D. ConpPay" ;

rl := RECORD

© 2015 HPCC Systems®. All rights reserved
42

ECL Programmers Guide
ECL Programming Concepts

Per sonFi | e. Per sonl D;
UNS|I GNED8 Acct Count : = 0;
UNSI GNED8 Hi ghCr edi t Sum : = 0;
UNS| GNED8 Bal anceSum : = 0;
Per sonFi | e. RecPos;

END;

tl := TABLE(PersonFile,rl);
stl := DI STRI BUTE(t 1, HASH32(Per sonl D)) ;

r2 := RECORD
Acct Fi | e. Personl D
UNSI GNED8 Acct Count : = COUNT(GROUP) ;
UNSI GNED8 Hi ghCredi t Sum : = SUM GROUP, Acct Fi |l e. Hi ghCredit);
UNSI GNED8 Bal anceSum : = SUM GROUP, Acct Fi | e. Bal ance) ;
END;

t2 := TABLE(AcctFile,r2, PersonlD);
st2 := DI STRI BUTE(t 2, HASH32(Personl D)) ;

rl countem(tl L, t2 R := TRANSFORM

SELF := R
SELF := L;
END;

j = JAN(st1,st2, LEFT. Per sonl D=RI GHT. Per sonl D, count en(LEFT, Rl GHT) , LOCAL) ;

Bl d : = BUI LDI NDEX(j ,
{Personl D},
{ Acct Count , Hi ghCr edi t Sum Bal anceSum RecPos},
| DXnanme, OVERWRI TE) ;

| NDEX(Per sonFi | e,
{ Per sonl D},
{ UNSI GNED8 Acct Count , UNSI GNED8 Hi ghCr edi t Sum UNSI GNED8 Bal anceSum RecPos},
| DXnane) ;

f

FETCH(Per sonFi |l e, i (Personl D BETWEEN 1 AND 100), RI GHT. RecPos) ;
Get := QUTPUT(f, ALL);
SEQUENTI AL(Bl d, Get) ;

Thefirst TABLE function getsall the key field values from the Person dataset for the INDEX and creates empty fields
to contain the computed values. Note well that the RecPos virtual (fileposition) field value isalso retrieved at this point.

The second TABLE function calculates the values to go into the computed fields. The values in this example are
coming from the related Accounts dataset. These computed field values will alow the final payload INDEX into the
Person dataset to produce these child recordset values without any additional code (or disk access).

The JOIN operation moves combines the result from two TABLEs into its final form. This is the data from which
the INDEX is built.

The BUILDINDEX action writes the INDEX to disk. The tricky part then is to declare the INDEX against the base
dataset (not the JOIN result). So the key to this technique is to build the INDEX against a derived/computed set of
data, then declare the INDEX against the base dataset from which that data was drawn.

To demonstrate the use of acomputed-field payload INDEX, thisexample codejust doesasimple FETCH toreturnthe
combined result containing al the fields from the Person dataset along with all the computed field values. In “normal”
use, this type of payload key would generally be used in a half-keyed JOIN operation.

© 2015 HPCC Systems®. All rights reserved
43

ECL Programmers Guide
ECL Programming Concepts

Computed Fields in Search Keys

Thereis one situation where using acomputed field as a search key is required—when the field you want to search on
isaREAL or DECIMAL datatype. Neither of these two isvalid for use as a search key. Therefore, making the search
key acomputed STRING field containing the value to search on isaway to get around this limitation.

The trick to computed fields in the payload is the same for search keys—build the content of the INDEX beforehand.
The following example code (contained in IndexREALkey.ECL) illustrates how to accomplish this by building the
content of computed search key fields on which the INDEX is built using a TABLE and PROJECT:

| MPORT $;

r : = RECORD
REALS8 Fl oat
DECI MAL8_3 Dec
$. Decl ar eDat a. per son. f

END;

t := TABLE($. Decl areDat a. person.file,r);

0.0
0. 0;
ile;

r XF(r L) := TRANSFORM

SELF.float := L.PersonlD / 1000;
SELF.dec := L. Personl D/ 1000;
SELF : = L;

END;

p := PROJECT(t, XF(LEFT));

DSname ;= ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : dat aset ' ;

| DX1nane : = ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est | DX1' ;
| DX2nane : = ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est | DX2' ;
Qut Narmel : = ' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 1' ;
Qut Nane2 : = ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 2' ;
Qut Name3 : = ' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 3" ;
Qut Nane4 : = ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 4' ;
Qut Name5 : = ' ~PROGCUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 5' ;
Qut Nane6 : = ' ~PROGGUI DE: : EXAMPLEDATA: : KEYS: : r eal keyt est out 6' ;

DSout := QUTPUT(p, , DSname, OVERVWRI TE) ;
ds : = DATASET(DSnane, r, THOR) ;

idx1l :
idx2 :

I NDEX(ds, { STRINGL3 Fl oat Str := REALFORMAT(fl oat, 13, 3)}, {ds}, | DXlname);
| NDEX(ds, { STRINGL3 DecStr := (STRI NGL3)dec}, {ds}, | DX2nan®) ;

Bl d1Qut
Bl d2Qut

BUI LD(i dx1, OVERWRI TE) ;
BUI LD(i dx2, OVERWRI TE) ;

JO N(idx1,idx2, LEFT. Fl oat Str = RI GHT. DecStr);

JO N(idx1,idx2, KEYED(LEFT. Fl oat Str = RI GHT. DecStr));

JO N(ds, i dx1, KEYED((STRI NGLO) LEFT. fl oat = RI GHT. Fl oat Str));
JA N(ds, i dx2, KEYED((STRI NG1LO) LEFT. dec = RI GHT. DecStr));

JO N(ds, i dx1, KEYED((STRI NGLO) LEFT. dec = RI GHT. Fl oat Str));
JA N(ds, i dx2, KEYED((STRI NGLO) LEFT. fl oat = RI GHT. DecStr));

oOUlh WN P
L1 T I T 1}

Joi nQut 1 :
Joi nQut 2 :
Joi nQut 3 :
Joi nQut 4 :
Joi nQut 5 :
Joi nQut 6 :

QUTPUT(j 1, , Qut Nanel, OVERWRI TE) ;
QUTPUT(j 2, , Qut Name2, OVERWRI TE) ;
QUTPUT(j 3, , Qut Nane3, OVERWRI TE) ;
OUTPUT(j 4, , Qut Name4, OVERWRI TE) ;
QUTPUT(j 5, , Qut Nane5, OVERWRI TE) ;
OUTPUT(j 6, , Qut Name6, OVERWRI TE) ;

SEQUENTI AL(DSout , Bl d1Qut, Bl d2CQut, Joi nCut 1, Joi nCut 2, Joi nCut 3, Joi nCut 4, Joi nCut 5, Joi nCut 6) ;

© 2015 HPCC Systems®. All rights reserved
44

ECL Programmers Guide
ECL Programming Concepts

This code starts with some filename definitions. The record structure adds two fields to the existing set of fields from
our base dataset: aREAL8field named “float” and aDECIMAL12_6field named “dec.” Thesewill contain our REAL
and DECIMAL datathat we want to search on. The PROJECT of the TABLE puts valuesinto these two fields (in this
case, just dividing the Personi D file by 1000 to achieve afloating point value to use that will be unique).

The IDX1 INDEX definition creates the REAL search key asa STRING13 computed field by using the REALFOR-
MAT function to right-justify the floating point valueinto a13-character STRING. Thisformatsthe value with exactly
the number of decimal places specified in the REALFORMAT function.

The IDX2 INDEX definition creates the DECIMAL search key as a STRING13 computed field by casting the DECI-
MAL datato a STRING13. Using the typecast operator simply left-justifies the value in the string. It may also drop
trailing zeros, so the number of decimal placesis not guaranteed to aways be the same.

Because of the two different methods of constructing the search key strings, the strings themselves are not equal,
although the values used to create them are the same. This means that you cannot expect to “mix and match” between
the two—you need to use each INDEX with the method used to create it. That's why the two JOIN operations that
demonstrate their usage use the same method to create the string comparison value as was used to create the INDEX.
Thisway, you are guaranteed to achieve matching values.

Using an INDEX like a DATASET

Payload keys can also be used for standard DATASET-type operations. In this type of usage, the INDEX acts as if
it were a dataset, with the advantage that it contains compressed data and a btree index. The key difference in this
type of useisthe use of KEYED and WILD in INDEX filters, which allows the INDEX read to make use of the btree
instead of doing a full-table scan.

The following example code (contained in IndexAsDataset.ECL) illustrates the use of an INDEX as if it were a
DATASET, and compares the relative performance of INDEX versus DATASET use:

| MPORT $;

Qut Rec : = RECORD
| NTEGER Seq;
QSTRI NGL5 Fi r st Name;
QSTRI N&5 Last Nane;
STRI N& St at e;

END;
IDX := $.DeclareData.|DX__Person_Last Nane_Fi r st Nane_Payl oad;
Base := $. Decl areDat a. Person. Fi | e;

Qut Rec XF1(I1DX L, INTEGER C) := TRANSFORM
SELF. Seq := C
SELF := L;

END;

Ol : = PRQJECT(| DX(KEYED(| ast nane=" COOLI NG),
KEYED(fi r st nane=' LI ZZ"),
state=' K'),
XF1(LEFT, COUNTER)) ;
QUTPUT(O1, ALL) ;

Qut Rec XF2(Base L, INTEGER C) := TRANSFORM
SELF. Seq : = G
SELF : = L;

END;

2 : = PRQJIECT(Base(| ast nane=" COOLI NG ,
firstname='LIZZ",
state=' K'),

© 2015 HPCC Systems®. All rights reserved
45

ECL Programmers Guide
ECL Programming Concepts

XF2(LEFT, COUNTER)) ;
QUTPUT(2, ALL) ;

Both PROJECT operationswill produce exactly the same result, but the first one usesan INDEX and the second usesa
DATASET. The only significant difference between the two is the use of KEY ED in the INDEX filter. Thisindicates
that the index read should use the btree to find the specific set of leaf node records to read. The DATASET version
must read all the records in the file to find the correct one, making it a much slower process.

If you check the workunit timingsin ECL Watch, you should see adifference. In thistest case, the difference may not
appear to be significant (there's not that much test data), but in your real-world applications the difference between an
index read operation and a full-table scan should prove meaningful.

© 2015 HPCC Systems®. All rights reserved
46

ECL Programmers Guide
Working With SuperFiles

Working With SuperFiles
SuperFile Overview

First, let's define some terms:

Logical File A singlelogical entity whose multiple physical parts (one on each node of the cluster) areinter-
nally managed by the Distributed File Utility (DFU).

Dataset A Logical File declared asa DATASET.

SuperFile A managed list of sub-files (Logical Files) treated as a single logical entity. The sub-files do

not need DATASET declarations (although they may have). A SuperFile must be declared as a
DATASET for usein ECL, and istreated in ECL code just like any other Dataset. The complex-
ities of managing the multiple sub-files are left up to the DFU (just as it manages the physical
parts of each sub-file).

Each sub-filein a Super Filemust havethesamestructuretype(THOR, CSV, or XML) and thesamefield layout.
A sub-file may itself be a SuperFile, allowing you to build multi-level hierarchies that allow easy maintenance. The
functions that build and maintain SuperFiles are all in the File standard library (see the Sandard Library Reference).

The major advantage of using SuperFilesis the easy maintenance of the set of sub-files. This means that updating the
actual data a query reads can be as simple as adding a new sub-file to an existing SuperFile.

SuperFile Existence Functions

The following functions govern SuperFile creation, deletion, and existence detection:

Cr eat eSuper Fi |l e()
Del et eSuper Fi | e()
Super Fi | eExi sts()

You must first create a SuperFile using the CreateSuperFile() function before you can perform any other SuperFile
operations on that file. The SuperFileExists() function tells you if a SuperFile with the specified name exists, and
DeleteSuperFile() removes a SuperFile from the system.

SuperFile Inquiry Functions

The following functions provide information about a given SuperFile:

Get Super Fi | eSubCount ()
Get Super Fi | eSubNarme()

Fi ndSuper Fi | eSubNane()
Super Fi | eCont ent s()

Logi cal Fi | eSuper Oawner s()

The GetSuperFileSubCount() function allows you to determine the number of sub-files in a given SuperFile. The
GetSuperFileSubName() function returns the name of the sub-file at a given position in thelist of sub-files. The Find-
SuperFileSubName() function returnsthe ordinal position of agiven sub-fileinthelist of sub-files. The SuperFileCon-
tents() function returns arecordset of logical sub-file names contained in the SuperFile. The L ogical FileSuperOwners
function returns alist of al the SuperFiles that contain a specified sub-file.

SuperFile Maintenance Functions

The following functions allow you to maintain the list of sub-filesthat comprise a SuperFile:

© 2015 HPCC Systems®. All rights reserved
47

ECL Programmers Guide
Working With SuperFiles

AddSuper Fi |l e()
RenpveSuper Fi | e()
Cl ear Super Fi |l e()
SwapSuper Fi | e()
Repl aceSuper Fi |l e()

The AddSuperFile() function adds a sub-file to the SuperFile. The RemoveSuperFile() function deletes asub-file from
the SuperFile. The ClearSuperFile() function deletes all sub-files from the SuperFile. The SwapSuperFile() function
moves swaps all sub-files between two SuperFiles. The ReplaceSuperFile() function replaces one sub-file in the Su-
perFile with another.

All of these functions must be called within a transaction frame to ensure there are no problems with SuperFile usage.

SuperFile Transactions

The SuperFile Maintenance functions (only) must be called within atransaction frame if there is a possibility another
process may try to use the superfile during sub-file maintenance. The transaction frame locks out all other operations
for the duration of the transaction. This way, maintenance work can be accomplished without causing problems with
any query that might use the SuperFile. This means two things:

1) The SEQUENTIAL action must be used to ensure sequential execution of the function calls within the transaction
frame.

2) The StartSuperFileTransaction() and FinishSuperFileTransaction() functionsare used to “lock” the SuperFileduring
maintenance, and always surround the SuperFile Maintenance function calls within the SEQUENTIAL action.

Any function other than the Maintenance Functions listed above that might be present inside a transaction
frame might appear to be part of the transaction, but are not. This can lead to confusion if you, for example,
include a call to ClearSuperFile() (which is valid for use within the transaction frame) and follow it with a call to
DeleteSuperFile() (whichisnot valid for use within the transaction frame) then you will get an error, because the del ete
operation will occur outside the transaction frame, and before the ClearSuperFile() function hasachanceto doitswork.

Other Useful Functions

The following functions, while not specifically designed for SuperFile use, are generally useful in creating and main-
taining SuperFiles:

Renot eDi rect ory()
Ext er nal Logi cal Fi | ename()
Logi cal Fi | eLi st ()
Logi cal Fi | eSuper Omer s()

Use of these functions will be described in the subseguent set of SuperFile articles.

© 2015 HPCC Systems®. All rights reserved
48

ECL Programmers Guide
Working With SuperFiles

Creating and Maintaining SuperFiles

Creating Data

First, we need to create some logical filesto put into a SuperFile.

The following filenames for the new sub-files are declared in the DeclareData MODULE structure:

EXPORT
EXPORT
EXPORT
EXPORT
EXPORT
EXPORT
EXPORT

BaseFil e :
SubFi l el :
SubFi |l e2 :
SubFi | e3 :
SubFi |l e4 :
SubFi | e5 :
SubFi | e6 :

' ~PROGGUI DE: : SUPERFI LE: : Base' ;

' ~PROGCGUI DE: : SUPERFI LE: : Peopl el' ;
' ~PROGCUI DE: : SUPERFI LE: : Peopl e2' ;
' ~PROGCGUI DE: : SUPERFI LE: : Peopl e3' ;
' ~PROGCUI DE: : SUPERFI LE: : Peopl e4' ;
' ~PROGCGUI DE: : SUPERFI LE: : Peopl e5' ;
' ~PROGCGUI DE: : SUPERFI LE: : Peopl e6' ;

The following code (in SuperFilel.ECL) creates the files that we'll use to build SuperFiles:

| MPORT $;

| MPORT St d;

sl := $. Decl areDat a.
s2 := $. Decl ar eDat a.
s3 : = $. Decl areDat a.
s4 := $. Decl ar eDat a.
s5 : = $. Decl ar eDat a.
s6 : = $. Decl ar eDat a.

Per son.
Per son.
Per son.
Per son.
Per son.
Per son.

File(firstnane[1]
Fil e(firstnane[1]
File(firstnane[1]
Fil e(firstnane[1]
File(firstnane[1]
Fil e(firstnane[1]

Rec : = $. Decl ar eDat a. Layout _Per son;

='A);

BETWEEN '
BETWEEN
BETWEEN '
BETWEEN '
BETWEEN '

I F(~Std. File.Fil eExi sts($. Decl ar eDat a. SubFi | e1),

QUTPUT(s1

IF(~Std.File
OUTPUT(s2

I F(~Std.File
QUTPUT(s3

IF(~Std.File

,»$. Decl areDat a. SubFi | el));

QUTPUT(s4, , $. Decl ar eDat a. SubFi | e4));

I F(~Std.File
QUTPUT(s5

I F(~Std.File
OUTPUT(s6

This code takes data from the ProgGuide.Person.File dataset (created by the codein GenData.ECL and declared in the
ProgGuide MODULE structure attribute in the Default module) and writes six separate discrete samples to their own

. Fi | eExi st s($. Decl ar eDat a. SubFi | e2),
,»$. Decl ar eDat a. SubFi | €2));

. Fi |l eExi st s($. Decl ar eDat a. SubFi | e3),
,,»$. Decl ar eDat a. SubFi | €3));

. Fi | eExi st s($. Decl ar eDat a. SubFi | e4),
. Fi | eExi st s($. Decl ar eDat a. SubFi | €5),
,,»$. Decl ar eDat a. SubFi | €5)) ;

. Fi | eExi st s($. Decl ar eDat a. SubFi | €6) ,
,»$. Decl ar eDat a. SubFi | €6)) ;

nwaoaxQm

AND '
AND '
AND '
AND '
AND '

NTZ<Q

logical files, but only if they do not already exist. We'll use these logical files to build some SuperFiles.

A Simple Example

WEe'll start with a simple example of how to create and use a SuperFile. This dataset declaration is in the ProgGuide
MODULE structure (contained in the Default module). This declares the SuperFile asa DATASET that can be refer-

enced in ECL code:

EXPORT SuperFilel :

DATASET(BaseFi | e, Layout _Per son, FLAT) ;

© 2015 HPCC Systems®. All rights reserved

49

ECL Programmers Guide
Working With SuperFiles

Then we'll create and add sub-files to a SuperFile (this code is contained in SuperFile2.ECL):

| MPORT $;
| MPORT St d;

SEQUENTI AL(
Std. Fil e. Creat eSuper Fi | e($. Decl ar eDat a. BaseFi |),
Std. File. Start SuperFil eTransacti on(),
Std. Fil e. AddSuper Fi | e($. Decl ar eDat a. BaseFi | e, $. Decl ar eDat a. SubFi | el),
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. BaseFi | e, $. Decl ar eDat a. SubFi | e2),
Std. Fil e. Fi ni shSuperFi |l eTransaction());

If the workunit failed with a “logical name progguide::superfile::base already exists’ error message, then open the
SuperFileRestart.ECL file and run it, then re-try the above code. Once you've successfully executed this code in a
builder window, you've created the SuperFile and added two sub-filesinto it.

The SuperFilel DATASET declaration attribute makes the SuperFile available for use just as any other DATASET
would be—thisis the key to using SuperFiles. That means the following types of actions can be executed against the
SuperFile, just as with any other dataset:

| MPORT $;
COUNT($. Decl ar eDat a. Super Fi | el(Personl D <> 0));
QUTPUT($. Decl ar eDat a. Super Fi | el) ;

Given the logical files previously built, the results of the COUNT should be 317,000. Thefilter condition will always
betrue, sothe COUNT returned will be the total number of recordsin the SuperFile. The (Personl D <> 0) record filter
is necessary so that the actual COUNT is performed each time and the result is not a shortcut value stored internally
by the ECL Agent. Of course, the OUTPUT produces the first 100 records in the SuperFile.

Nesting SuperFiles

Nesting SuperFiles (a SuperFile containing a sub-file that is itself another SuperFile) is a technique that allows new
data coming in on a periodic basis (every day, or every hour, or) to be “instantly” available to the system. Since
the ECL code that refers to a SuperFile always references the DATASET declaration, the only change necessary to
make new data available to queriesisto add the new data as a sub-file. Since adding a new sub-file always takes place
within a SuperFile transaction, any queries are locked out while the update isin progress.

Implicit in this technique is also the periodic roll up and consolidation of the new data into composite files. Thisis
necessary because the practical limit to the number of physical files you should combineinto a SuperFile is about one
hundred (100), since every time you reference the SuperFile every sub-file must be physically opened and read from
disk, and the more sub-files there are the more operating system resources are used just to get at the data.

Therefore, you need to periodically run a process that physically combines all the incremental logica files and com-
bines them into a single logical file that replaces them all. Periodic SuperFile data consolidation is a simple process
of using OUTPUT to write the complete contents of the SuperFile to a new, single logical file. Once al dataisin a
singlefile, a SuperFile transaction can clear the old set of sub-filesthen add in the new “base” logical file.

Nested SuperFile Example

Here is an example of how to nest SuperFiles. This example assumes you have new data coming every day. It also
assumes you want to roll up the new data daily and weekly. The following filenamesfor the new sub-files are declared
in the DeclareData MODULE structure attribute:

EXPORT Al | Peopl e : = ' ~PROGGUI DE: : SUPERFI LE: : Al | Peopl e ;
EXPORT Weekl yFile :="'~PROGGUI DE: : SUPERFI LE: : ekl y' ;
EXPORT Dai |l yFile := ' ~PROGGUI DE: : SUPERFI LE: : Dai | y' ;

© 2015 HPCC Systems®. All rights reserved
50

ECL Programmers Guide
Working With SuperFiles

Creating three more SuperFiles has to be done just once, then you need to add the sub-files to them (this code is
contained in SuperFile3.ECL):

| MPORT $;
| MPORT St d;

SEQUENTI AL(
Std. Fil e. Creat eSuper Fi | e($. Decl ar eDat a. Al | Peopl €),
Std. Fil e. Creat eSuper Fi | e($. Decl ar eDat a. Weekl yFi | e),
Std. Fil e. Creat eSuperFi | e($. Decl areDat a. Dai | yFi |l e),
Std. File. Start SuperFi |l eTransacti on(),
Std. Fi | e. AddSuper Fi | e($. Decl areDat a. Al | Peopl e, $. Decl ar eDat a. BaseFi | €),
Std. Fil e. AddSuper Fi | e($. Decl areDat a. Al | Peopl e, $. Decl ar eDat a. Wekl yFi | e),
Std. Fi | e. AddSuper Fi | e($. Decl areDat a. Al | Peopl e, $. Decl ar eDat a. Dai | yFi | e),
Std. Fil e. Fi ni shSuperFil eTransaction());

Now the AllPeople SuperFile contains the BaseFile, WeeklyFile, and DailyFile Superfiles as sub-files, creating a
hierarchy of SuperFiles, only one of which yet contains any actual data. The Base SuperFile contains all the currently
known data, as of the time of the build of the logical files. The Weekly and Daily SuperFiles will contain the interim
data updates as they come in the door, precluding the need to rebuild the entire database every time a new set of data
comesin.

One important caveat to this scheme is that a given actual logica file (real data file) should be contained in exactly
one of the nested SuperFiles at atime, otherwise you would have duplicate records in the base SuperFile. Therefore,
you have to be careful how you maintain your hierarchy so as not to alow the same logical file to be referenced by
more than one of the nested SuperFiles at once, outside of a transaction frame.

Asyou get new logical filesin during the day, you can add them to the Daily SuperFile like this (this codeis contained
in SuperFile4.ECL):

| MPORT $;
| MPORT St d;

SEQUENTI AL (
Std. File. Start SuperFil eTransacti on(),

Std. Fi |l e. AddSuper Fi | e($. Decl areDat a. Dai | yFi | e, $. Decl ar eDat a. SubFi | e3),
Std. Fil e. Fi ni shSuperFil eTransaction());

This appends the ProgGuide.SubFile3 logical file to the list of sub-files in the DailyFile SuperFile. This means that
the very next query using the SuperFilel dataset will be using the very latest up-to-the-minute data.

This dataset declaration is in the DeclareData MODULE structure (contained in the Default module). This declares
the nested SuperFile asa DATASET that can be referenced in ECL code:

EXPORT SuperFil e2 : = DATASET(Al | Peopl e, Layout _Per son, FLAT) ;

Execute the following action:

I MPORT Pr ogr anmer sGui de AS PG
COUNT(PG Decl ar eDat a. Super Fi | e2(Personl D <> 0));

The result of the COUNT should now be 451,000.

Edit the code from SuperFile4.ECL to add in ProgGuide.SubFile4, like this:

| MPORT $;
| MPORT Std;

SEQUENTI AL(
Std. File. Start SuperFil eTransacti on(),
Std. Fi | e. AddSuper Fi | e($. Decl areDat a. Dai | yFi | e, $. Decl ar eDat a. SubFi | e4),
Std. Fil e. Fi ni shSuperFi |l eTransaction());

© 2015 HPCC Systems®. All rights reserved
51

ECL Programmers Guide
Working With SuperFiles

Re-running the above COUNT action should now result in 620,000.

Once a day, you can roll al the sub-files up into the WeeklyFile and clear out the DailyFile for the next day's data
ingest processing, like this (this code is contained in SuperFile5.ECL):

| MPORT $;
| MPORT St d;

SEQUENTI AL(
Std. File. Start SuperFil eTransacti on(),
Std. Fil e. AddSuper Fi | e($. Decl ar eDat a. Weekl yFi | e, $. Decl areDat a. Dai | yFi | e, , TRUE) ,
Std. Fil e. O ear Super Fi | e($. Decl areDat a. Dai | yFi |l e),
Std. Fil e. Fi ni shSuperFil eTransaction());

This moves the references to all the sub-files from the DailyFile to the WeeklyFile (the fourth parameter to the Ad-
dSuperFile function being TRUE copies the references from one SuperFile to another), then clears out the DailyFile.

Data Consolidation

Since the practical limit to the number of logical files you should combine into a SuperFile is about a hundred, you'll
need to periodically run a process that physically combines all the incremental logical files and combines them into
asinglelogical file that replaces them all, like this:

| MPORT $;
| MPORT St d;

QUTPUT($. Decl ar eDat a. Super Fi | €2, , ' ~$. Decl ar eDat a: : SUPERFI LE: : Peopl e14' , OVERWRI TE) ;
Thiswill write anew file containing all the records from all the sub-filesin the SuperFile.

Once you've donethat, you'll need to clear all the component SuperFiles and add the new al-the-data-there-isdatafile
into the BaseFile, like this (this code is contained in SuperFile6.ECL):

| MPORT $;
| MPORT St d;
SEQUENTI AL(
Std. File. Start SuperFil eTransacti on(),
Std. Fil e. d ear Super Fi | e($. Decl ar eDat a. BaseFi | e),
Std. Fi | e. O ear Super Fi | e($. Decl ar eDat a. Weekl yFi | e),
Std. Fil e. d ear SuperFil e($. Decl areDat a. Dai |l yFi |l e),
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. BaseFi | e, ' ~$. Decl ar eDat a: : SUPERFI LE: : Peopl e14'),
Std. Fi |l e. Fi ni shSuperFi | eTransaction());

This action clears out the Base SuperFile, adds the reference to the new all-inclusive logical file, then clears al the
incremental SuperFiles.

Re-running the above COUNT action should still result in 620,000.

Once again, edit the code from SuperFiled.ECL to add ProgGuide.SubFile5 and ProgGuide.SubFile6 to the DailyFile,
likethis:

| MPORT $;
| MPORT St d;

SEQUENTI AL(
Fi | eServi ces. St art Super Fi | eTransacti on(),
Fi | eServi ces. AddSuper Fi | e($. Decl ar eDat a. Dai | yFi | e, $. Decl ar eDat a. SubFi | e5),
Fi | eServi ces. AddSuper Fi | e($. Decl ar eDat a. Dai | yFi | e, $. Decl ar eDat a. SubFi | €6) ,
Fi | eServi ces. Fi ni shSuper Fi | eTransacti on());

Once you've done that, re-running the above COUNT action should now result in 1,000,000.

© 2015 HPCC Systems®. All rights reserved
52

ECL Programmers Guide
Working With SuperFiles

Getting SuperFile Components

This macro (in the DeclareData MODULE structure attribute) demonstrates one technique to list the component sub-
files of a SuperFile:

EXPORT MAC Li st SFsubfil es(SuperFile) := MACRO

#UNI QUENAVE(SeedRec)
vSeedRec% : = DATASET([{''}], {STRI NG nane});

#UNI QUENAME(Xf or m)
TYPEOF(%BeedRec% 9Xf or nP4 ¥SeedRec% L, | NTEGER C) : =
TRANSFORM
SELF. nanme : =
Fi | eServi ces. Get Super Fi | eSubNane(SuperFil e, C) ;
END;

OUTPUT(NORVAL| ZE(¥SeedRec %

Fi | eServi ces. Get Super Fi | eSubCount (SuperFi |l e),
%Xf or P4 LEFT, COUNTER))) ;

ENDVACRO,

The interesting technique here is the use of NORMALIZE to call the TRANSFORM function iteratively until all
sub-files in the SuperFile are listed. You can call this macro in a builder window like this (this code is contained in
SuperFile7.ECL):

| MPORT $;
| MPORT St d;

$. Decl areDat a. MAC_Li st SFsubf i | es($. Decl ar eDat a. Al | Peopl €e) ;

Thiswill return alist of all the sub-filesin the specified SuperFile. However, thistype of codeis no longer necessary,
since the default mode of the SuperFileContents() function now returns exactly the same result, like this:

| MPORT $;
| MPORT St d;
QUTPUT(St d. Fi | e. Super Fi | eCont ent s($. Decl areDat a. Al | Peopl e)) ;

The SuperFileContents() function has an advantage over the macro—it has an option to return the sub-files from any
nested SuperFile (which the macro can't do). That form looks like this:

| MPORT $;
| MPORT St d;
QUTPUT(St d. Fi | e. Super Fi | eCont ent s($. Decl ar eDat a. Al | Peopl e, TRUE)) ;

© 2015 HPCC Systems®. All rights reserved
53

ECL Programmers Guide
Working With SuperFiles

Indexing into SuperFiles

SuperFiles vs. SuperKeys

A SuperFile may contain INDEX filesinstead of DATASET files, making it a SuperKey. All the same crestion and
mai ntenance processesand principlesapply asdescribed previously inthe Creating and Maintaining SuperFilesarticle.

However, a Super Key may not contain INDEX sub-filesthat directly referencethe sub-files of a Super Fileusing
the {virtual(fileposition)} “record pointer” mechanism (used by FETCH and full-keyed JOIN operations). Thisis
because the { virtual (fileposition)} field is avirtual (exists only when the file is read from disk) field containing the
relative byte position of each record within the single logical entity.

Thefollowing attribute definitions used by the code examplesin thisarticle are declared in the DeclareDataM ODUL E
structure attribute:

EXPORT i lnane :
EXPORT i 2nane :
EXPORT i 3nane :
EXPORT SFnane :
EXPORT SKname

' ~PROGGUI DE: : SUPERKEY: : | DX1' ;
' ~PROGGUI DE: : SUPERKEY: : | DX2' ;
' ~PROGGUI DE: : SUPERKEY: : | DX3' ;
' ~PROGGUI DE: : SUPERKEY: : SF1'

' ~PROGGUI DE: : SUPERKEY: : SK1'

EXPORT dsl : = DATASET(SubFi | el, { Layout _ Person UNSI GNED8 RecPos {VI RTUAL(fi |l eposition)}}, THOR);
EXPORT ds2 : = DATASET(SubFil e2, { Layout _Per son, UNSI GNED8 RecPos {VI RTUAL(fi |l eposition)}}, THOR);
EXPORT i1 : = | NDEX(ds1, { personi d, RecPos}, i 1nane) ;

EXPORT i 2 : = | NDEX(ds2, { per soni d, RecPos}, i 2nane) ;

EXPORT sf 1l : = DATASET(SFnane, { Layout Per son, UNSI GNED8 RecPos {VI RTUAL(fi |l eposition)}}, THOR);
EXPORT skl := | NDEX(sf 1, {personi d, RecPos}, SKnane) ;

EXPORT sk2 := | NDEX(sf 1, { per soni d, RecPos}, i 3nane);

There is a Problem

The easiest way to illustrate the problem isto run the following code (this code is contained in IndexSuperFilel.ECL)
that uses two of the sub-files from the Creating and Maintaining SuperFiles article.

| MPORT $;

QUTPUT($. Decl ar eDat a. ds1) ;
QUTPUT($. Decl ar eDat a. ds2) ;

Y ou will notice that the RecPos values returned for both of these datasets are exactly the same (0, 89, 178 ...), whichis
to be expected sincethey both have the sasmefixed-length RECORD structure. The problem liesin using that field when
building separate INDEXes for the two datasets. It works perfectly as separate INDEXes into separate DATASETS.

For example, you can use this code to build and test the separate INDEXes (contained in IndexSuperFile2.ECL):
| MPORT $;

Bl d := PARALLEL(BUI LDI NDEX($. Decl ar eDat a. i 1, OVERWRI TE) , BUI LDI NDEX($. Decl ar eDat a. i 2, OVERWRI TE)) ;

F1 := FETCH($. Decl ar eDat a. ds1,
$. Decl areDat a. i 1(per soni d=$. Decl ar eDat a. ds1[1] . per soni d),
Rl GHT. RecPos) ;

F2 := FETCH($. Decl ar eDat a. ds2,

$. Decl ar eDat a. i 2(per soni d=$. Decl ar eDat a. ds2[1] . per soni d),
Rl GHT. RecPos) ;

Get := PARALLEL(QUTPUT(F1), OUTPUT(F2));
SEQUENTI AL(BI d, Get) ;

© 2015 HPCC Systems®. All rights reserved
54

ECL Programmers Guide
Working With SuperFiles

Asyou can see, two different recordsarereturned by thetwo FETCH operations. However, when you create a SuperFile
and a SuperKey and then try using them to do the same two FETCHes again, they both return the same record, as
shown by this code (contained in IndexSuperFile3.ECL):

| MPORT $;
| MPORT St d;

Bl dSF : = SEQUENTI AL(
Std. Fi |l e. Creat eSuper Fi | e($. Decl ar eDat a. SFnane) ,
Std. Fil e. Creat eSuper Fi | e($. Decl ar eDat a. SKnane) ,
Std. File. Start SuperFil eTransacti on(),
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. SFnane, $. Decl ar eDat a. SubFi | el) ,
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. SFnane, $. Decl ar eDat a. SubFi | e2),
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. SKnane, $. Decl ar eDat a. i 1nane),
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. SKnane, $. Decl ar eDat a. i 2nane) ,
Std. Fil e. Fi ni shSuperFi | eTransaction());

F1 := FETCH($. Decl areDat a. sf 1,
$. Decl ar eDat a. sk1(per soni d=$. Decl ar eDat a. ds1[1] . per soni d),
Rl GHT. RecPos) ;

FETCH($. Decl ar eDat a. sf 1,
$. Decl ar eDat a. sk1(per soni d=$. Decl ar eDat a. ds2[1] . per soni d),
Rl GHT. RecPos) ;

Get := PARALLEL(OUTPUT(F1), OUTPUT(F2));

SEQUENTI AL(Bl dSF, Get) ;

F2

Once you combine the DATASETS into a SuperFile and combine the INDEXes into a SuperKey, you then have
multiple entries in the SuperKey, with different key field values, that all point to the same physica record in the
SuperFile, because the record pointer values are the same.

And the Solution Is ...

The way around this problem is to create a single INDEX into the SuperFile, as shown by this code (contained in
IndexSuperFiled.ECL):

| MPORT $;

F1

FETCH($. Decl ar eDat a. sf 1,
$. Decl ar eDat a. sk2(per soni d=$. Decl ar eDat a. ds1[1] . per soni d),
Rl GHT. RecPos) ;

F2 := FETCH($. Decl areDat a. sf 1,
$. Decl ar eDat a. sk2(per soni d=$. Decl ar eDat a. ds2[1] . per soni d),
Rl GHT. RecPos) ;

Get := PARALLEL(QUTPUT(F1), QUTPUT(F2));

SEQUENTI AL(BUI LDI NDEX($. Decl ar eDat a. sk2, OVERWRI TE) , Get) ;

When you use asingle INDEX instead of a SuperKey, the FETCH operations once again retrieve the correct records.

© 2015 HPCC Systems®. All rights reserved
55

ECL Programmers Guide
Working With SuperFiles

Using SuperKeys

A SuperFile whose sub-files are INDEXes (not DATASETS) is a SuperKey. As described previoudly in the Indexing
Into SuperFiles article, there is a problem with using a SuperK ey to try to index into a SuperFile. So what good are
SuperKeys?

Inthe Using ECL Keys (INDEX Files) article, the technique of creating and using INDEXesthat contain payload fields
was demonstrated. By putting the payload fields in the INDEX itself, there becomes no need to directly access the
base dataset from which the INDEX was built. Thus, the problem becomes moot.

SuperKeys are built with payload keys. And, since the primary operation for a payload key is the half-keyed JOIN,
that also becomes the primary SuperKey operational use.

Both SuperFiles and SuperKeys may be used in Thor or Roxie operations.

Thefollowing attribute definitions used by the code examplesin thisarticle are declared in the DeclareDataM ODUL E
structure attribute:

EXPORT SubKeyl :
EXPORT SubKey2 :
EXPORT SubKey3 :
EXPORT SubKey4 :
EXPORT Subl DX1 :
EXPORT Subl DX2 :

' ~PROGGUI DE: : SUPERKEY: : Account s1';

' ~PROGGUI DE: : SUPERKEY: : Account s2' ;

' ~PROGGUI DE: : SUPERKEY: : Account s3' ;

' ~PROGGUI DE: : SUPERKEY: : Account s4' ;

' ~PROGGUI DE: : SUPERKEY: : KEY: : Acct sl DX1' ;

' ~PROGGUI DE: : SUPERKEY: : KEY: : Acct sl DX2' ;

EXPORT Subl DX3 : = ' ~PROGGUI DE: : SUPERKEY: : KEY: : Acct sl DX3' ;

EXPORT Subl DX4 : = ' ~PROGGUI DE: : SUPERKEY: : KEY: : Acct sl DXx4' ;

EXPORT Acct SKnane : =
' ~PROGGUI DE: : SUPERKEY: : KEY: : Acct sSK' ;

EXPORT Acct SK : = | NDEX(Account s, { Per sonl D},

Building SuperKeys

Before you can create a SuperKey, you must first have some INDEXes to use. The following code (contained in
SuperKey1.ECL) builds four separate payload keys from the Account dataset:

| MPORT $;

| MPORT Std;

sl := $. Decl areDat a. Account s(Account[1] = '1");

s2 := $. Decl areDat a. Account s(Account[1] = '2");

s3 : = $. Decl areDat a. Account s(Account[1] = '3");

s4 := $. Decl areDat a. Account s(Account[1] IN['4','5',"6","'7','8","9'])

Rec := $. Decl areDat a. Layout _Account s_Li nk;
RecPl us : = {Rec, UNSI GNED8 RecPos{virtual (fileposition)}};

dl : = DATASET($. Decl ar eDat a. SubKey1, RecPl us, THOR) ;
d2 : = DATASET($. Decl ar eDat a. SubKey2, RecPl us, THOR) ;
d3 : = DATASET($. Decl ar eDat a. SubKey3, RecPl us, THOR) ;
d4 : = DATASET($. Decl ar eDat a. SubKey4, RecPl us, THOR) ;
il := | NDEX(d1, {Personl D},

{ Account, OpenDat e, | ndust r yCode, Acct Type, Acct Rat e,
Codel, Code2, Hi ghCr edi t, Bal ance, RecPos},
$. Decl ar eDat a. Subl DX1) ;
i2 := | NDEX(d2, {Personl D},
{ Account, OpenDat e, | ndust r yCode, Acct Type, Acct Rat e,
Codel, Code2, Hi ghCredi t, Bal ance, RecPos},
$. Decl ar eDat a. Subl DX2) ;
i3 := | NDEX(d3, {Personl D},
{ Account, OpenDat e, | ndust r yCode, Acct Type, Acct Rat e,

© 2015 HPCC Systems®. All rights reserved
56

ECL Programmers Guide
Working With SuperFiles

Codel, Code2, Hi ghCredi t, Bal ance, RecPos},
$. Decl ar eDat a. Subl DX3) ;
i4 := | NDEX(d4, {Personl D},
{ Account, OpenDat e, | ndust r yCode, Acct Type, Acct Rat e,
Codel, Code2, Hi ghCredi t, Bal ance, RecPos},
$. Decl ar eDat a. Subl DX4) ;

Bl dDat : = PARALLEL(
| F(~Std. File.Fil eExi sts($. Decl ar eDat a. SubKey1),
QUTPUT(s1,
{Per sonl D, Account , OpenDat e, | ndust r yCode, Acct Type,
Acct Rat e, Codel, Code2, Hi ghCredi t, Bal ance},
$. Decl ar eDat a. SubKey1)),

| F(~Std. File.Fil eExi sts($. Decl ar eDat a. SubKey?2) ,
QUTPUT(s2,
{Personl D, Account , OpenDat e, | ndust r yCode, Acct Type,
Acct Rat e, Codel, Code2, H ghCredi t, Bal ance},
$. Decl ar eDat a. SubKey?2)),

| F(~Std. File.Fil eExi sts($. Decl ar eDat a. SubKey3),
QUTPUT(s3,
{Per sonl D, Account , OpenDat e, | ndust r yCode, Acct Type,
Acct Rat e, Codel, Code2, H ghCredi t, Bal ance},
$. Decl ar eDat a. SubKey3)),

| F(~Std. File.Fil eExi sts($. Decl ar eDat a. SubKey4) ,
QUTPUT(s4,
{Per sonl D, Account , OpenDat e, | ndust r yCode, Acct Type,
Acct Rat e, Codel, Code2, H ghCredi t, Bal ance},
$. Decl ar eDat a. SubKey4)));

Bl dl DX : = PARALLEL(
| F(~Std. Fi |l e. Fi | eExi sts($. Decl ar eDat a. Subl DX1) ,
BUI LDI NDEX(i 1)),

| F(~Std. File.Fil eExi sts($. Decl ar eDat a. Subl DX2) ,
BUI LDl NDEX(i 2)),

| F(~Std. Fil e. Fil eExi st s($. Decl ar eDat a. Subl DX3) ,
BUI LDl NDEX(i 3)),

| F(~Std. File.Fil eExi sts($. Decl ar eDat a. Subl Dx4) ,
BUI LDI NDEX(i 4)));

SEQUENTI AL(Bl dDat , Bl dI DX) ;

This code sequentially builds logical files by taking sub-sets of records from the Accounts dataset and writing those
recordsto files on disk. Once thelogical files physically exist, then the BUILDINDEX actions write the payload keys

to disk.

Oneinteresting twist to this codeisthe use of the Std.File.FileExists function to detect whether these files have already
been created. The code in the next section also uses the Std.File.SuperFileExists function to detect whether the Super-
File has already been created, and create it only if it hasn't been. Thistechnique allows the example codein thisarticle

to run correctly whether another user has already gone through the examples or not.

Creating a SuperKey

Creating a SuperKey is exactly the same process as creating a SuperFile. The following code (contained in

SuperKey2.ECL) creates a SuperKey and adds the first two payload keysto it:

| MPORT $;

© 2015 HPCC Systems®. All rights reserved
57

ECL Programmers Guide
Working With SuperFiles

| MPORT St d;

SEQUENTI AL(
| F(~Std. Fi | e. Super Fi | eExi st s($. Decl ar eDat a. Acct SKnane) ,
Std. Fil e. Creat eSuper Fi | e($. Decl ar eDat a. Acct SKnane)),
Std. File. Start SuperFi |l eTransacti on(),
Std. Fi | e. O ear Super Fi | e($. Decl ar eDat a. Acct SKnane) ,
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. Acct SKnane, $. Decl ar eDat a. Subl DX1) ,
Std. Fi | e. AddSuper Fi | e($. Decl ar eDat a. Acct SKnane, $. Decl ar eDat a. Subl DX2) ,
Std. Fi |l e. Fi ni shSuperFi | eTransaction());

Using a SuperKey

Once you have a SuperKey ready for use, you can useit in half-keyed JOINs, as demonstrated in this code (contained
in SuperKey3.ECL):

| MPORT $;

rl := RECORD
$. Decl ar eDat a. Layout _Per son;
$. Decl ar eDat a. Layout _Account s;
END;

r1 Xform($. Decl areData. Person. Fil ePlus L, $.DeclarebData.AcctSK R) : = TRANSFORM
SELF :
SELF :

END;

L;
R

J3 := JAO N($. Decl areDat a. Per son. Fi | ePl us(Personl D BETWEEN 1 AND 100),
$. Decl ar eDat a. Acct SK,
LEFT. Per sonl D=RI GHT. Per sonl D,
Xf or m(LEFT, RI GHT)) ;

QUTPUT(J3, ALL) ;
Maintaining SuperKeys

A SuperKey issimply a SuperFile whose component sub-files are payload keys. Therefore, building and maintaining
a SuperKey is exactly the same process as described aready in the Creating and Maintaining SuperFiles article.
The only significant difference is the manner in which you create the component sub-files, which process is aready
described in the Using ECL Keys (INDEX Files) article.

© 2015 HPCC Systems®. All rights reserved
58

ECL Programmers Guide
Working With Roxie

Working With Roxie

Roxie Overview

Let's start with some definitions:

Thor AnHPCC cluster specifically designed to perform massive datamanipulation (ETL) processes.
Thisis aback-office data preparation tool and hot meant for end-user production-level queries.
See the HPCC operational manuals for complete documentation.

Roxie An HPCC cluster specifically designed to service standard queries, providing athroughput rate
of athousand-plus responses per second (actual responserate for any given query is, of course,
dependent on its complexity). Thisis a production-level tool designed for mission-critical ap-
plication. See the HPCC operational manuals for complete documentation.

hThor An R&D platform designed for iterative, interactive development and testing of Roxie queries.
Thisis not a separate cluster, but a“ piggyback” implementation of ECL Agent and Thor. See
the HPCC operational manuals for complete documentation.

Thor

Thor clusters are used to do al the “heavy lifting” data preparation work to process raw data into standard formats.
Once that process is complete, end-users can query that standardized data to glean real information. However, end-
users typically want to see their results “immediately or sooner”—and usually more than one end-user wants their
result at the same time. The Thor platform only works on one query at atime, which makes it impractical for use by
end-users, and that iswhy the Roxie platform was created.

Roxie

Roxie clusters can handle thousands of simultaneous end-users and provide them all with the perception of “immedi-
ately or sooner” results. It does this by only allowing end-users to run standard, pre-compiled queries that have been
developed specifically for end-user use on the Roxie cluster. Typicaly, these queries use indexes and thus, provide
extremely fast performance. However, the Roxie cluster is impractical for use as a development tool, since al its
gueries must be pre-compiled and the data they use must have been previously deployed. Therefore, theiterative query
development and testing process is performed using Doxie.

hThor

hThor is not a separate cluster on its own; it is an instance of ECL Agent (which operates on a single server) that
emulates the operation of a Roxie cluster. Just as with Thor queries, hThor queries are compiled each time they are
run. hThor queries access data directly from an associated Thor cluster's disk drives without interfering with any Thor
operations. This makes it an appropriate tool for developing queries that are destined for use on a Roxie cluster.

How to Structure Roxie Queries

To begin developing queries for use on Roxie clusters you must start by deciding what data to query and how to index
that data so that end-users see their result in minimum time. The process of putting the data into its most useful form
and indexing it is accomplished on a Thor cluster. The previous articles on indexing and superfiles should guide you
in the right direction for that.

Once the data is ready to use, you can then write the query. Queries for Roxie clusters always contain at least one
action—usually asimple OUTPUT to return the result set.

© 2015 HPCC Systems®. All rights reserved
59

ECL Programmers Guide
Working With Roxie

Roxie queries use either a SOAP (Simple Object Access Protocol) or JSON (JavaScript Object Notation) interface
to “passin” data values. The values passed through the interface wind up in definitions with the STORED workflow
service. Your ECL code then can use those definitions to determine the passed values and return the appropriate result
to the end-user.

Hereisasimple example of the structure of a Roxie query (contained in RoxieOverview1l.ECL):
| MPORT $;
EXPORT Roxi eOvervi ewl : = FUNCTI ON

STRI NG30 | nane_val ue :
STRI N&O f nane_val ue :

: STORED(' Last Nane');
: STORED(' FirstNane');

IDX := $.Decl arebData. | DX Person_Last Nane_Fi r st Nane;
Base : = $. Decl areDat a. Per son. Fi | ePl us;
Fetched : = | F(fnane_val ue ="'

FETCH(Base, | DX(Last Name=| nane_val ue), RI GHT. RecPos),
FETCH(Base, | DX(Last Nanme=| name_val ue, FirstName=f name_val ue), Rl GHT. RecPos));

RETURN OUTPUT(CHOOSEN(Fet ched, 2000)) ;
END;

Notice that the FUNCTION does not receive any parameters. |nstead, the Iname_vaue and fname_value definitions
both have the STORED workflow service that supply storage names. The SOAP/JSON interface uses the storage
names to pass in values, because the STORED option opens up a storage space in the workunit where the interface
can place the values to pass to the service.

This code uses FETCH because it is the simplest example of using an INDEX in ECL. More typically, Roxie queries
use half-keyed JOIN operations with payload keys (the Complex Roxie Queries article addresses thisissue). Note that
the OUTPUT contains a CHOOSEN as a simple example of how to ensure you limit the maximum amount of data
that can be returned from the query to some “reasonable” amount—it doesn't make much sense to have a Roxie query
that could possibly return 10 billion records to an end-user's PC (anybody actually needing that much data should be
working in Thor, not Roxie).

Testing Queries

Once you have written your query you naturally need to test it. That's where hThor comes into play. hThor is an
interactivetest system that you can use before deploying your queriesto Roxie. The easiest way to describe the process
isto walk through it using this simple example query.

1. Open the Samples\ProgrammersGuide\RoxieOverview1.ECL file
Now you're ready to publish this query to hThor.

2. Select "hthor" on the Target drop list

3. Click the down arrow on the Submit button and select Compile
4. Open the compiled workunit and select the ECL Watch tab

5. Press the Publish button

Open the ECL Watch web page (not using the ECL IDE — open it in Internet Explorer). The IP for ECL Watchisthe
same as the IP you used to configure the ECL I DE to access the environment you're working in. The Port is 8010.

6. Click on System Servers (it'sin the Topology section)

© 2015 HPCC Systems®. All rights reserved
60

ECL Programmers Guide
Working With Roxie

7. Find the ESP Servers section
8. Click on the ESP server's name link to display itslist of services and their ports
9. Note the port number beside the wsecl Service Type (thisis usually 8002, but it could be set to something else)

Once you've know the IP and port for your wsecl service (the service that makes hthor "pretend" to be a Roxie), you
can go there and run the query.

10. The easy way is to right-click on the wsecl link and open it in a new tab or window (or you can Edit Internet
Explorer's address bar to point to the correct |P:port

11. Pressthe Enter key

A login dialog may appear—your login ID and password are the same as the ones you use for the ECL IDE. After
you've logged in, you'll see atreelist of QuerySets on the | eft.

12. Click on the hthor branch
A list of all the Queries published to your hthor appears in the tree. In this case, there's only the one.

13. Click on the RoxieOverview1.1 branch

A web page containing two entry controls and a Submit button appears.

14. Typein any last name from the set of last names that were used by the code in GenData.ECL to generate the data
filesfor this Programmer's Guide

COOLING is agood example to use. Note that, since this is an extremely simple example, you'll need to typeitin
ALL CAPS, otherwise the FETCH will fail to find any matching records (thisis only dueto the ssimplicity of thisECL
code and not any inherent lack in the system).

15. Press the Submit button

Queries are pre-compiled when you Publish, so after a second you should see an XML result with 1,000 recordsin it.

Deploying Queries to Roxie

Once you've done enough testing on hThor to be sure the query does what you expect it to do, the only step then
required isto deploy it to Roxie and test it there, too (just to be completely certain that everything operates the way it
should). Once you've tested it on Roxie, you can inform the users that the query is available for their use.

The Roxie deployment process is done the same way we just did for hThor, except the Target drop list has to be set
to Roxie.

Once you've deployed the query, you can test it the same way you tested it on hThor, except the new service will
appear under your Roxie in thetree list.

© 2015 HPCC Systems®. All rights reserved
61

ECL Programmers Guide
Working With Roxie

SOAP-enabling Queries

Queries destined for usein Roxie are SOAP-enabled first. The required ECL code to accomplish thisisthe STORED
workflow service. Roxie queries may be contained in the FUNCTION structure or may simply be an executable query.

The ECL Key to SOAP

The ECL code requirement for SOAP-enabled input parameters is the use of the STORED workflow service. Each
SOAP parameter name must be the STORED name for an ECL definition. The STORED workflow service creates a
data storage space in the workunit that the SOAP interface uses to populate the “passed” data. The ECL code simply
uses those STORED definitions to determine whether data was passed from that “parameter” and what that data is.
The data type of the passed SOAP parameter isimplied by the STORED definition.

For the following code example, you must create two definitions with STORED names duplicating the SOAP para-
meter name, like this:

STRING3O | nane_value :="'"' : STORED('LastNane');

STRI NGO fnane_value :="'"' : STORED('FirstName');

These default to blank and the STORED workflow service opens a space in the workunit to store the value. The
Enterprise Service Platform (ESP) handles the SOAP interface chores by plugging in the appropriate values into the
storage space created by STORED. Therefore, the ECL code only needsto use the definitions (in this case, Lhame and
Fname) to accomplish the query. This makes the ECL side of the equation very simple.

Putting It All Together

Once you understand the requirements, a SOA P-enabled query would look likethis (contained in SOA Penabling.ECL):
| MPORT Pr ogr ammer sGui de. Decl areDat a AS ProgCui de;
EXPORT SQAPenabl i ng() := FUNCTI ON

STRI NG30 | nane_val ue : : STORED(' Last Nane');
STRI NG30 fnanme_val ue : : STORED ' Fi rst Nane');

I DX := ProgCuide.| DX _Person_Last Nane_Fir st Nane;
Base : = ProgCui de. Person. Fil ePl us;
Fetched : = | F(fnane_val ue = "'

FETCH(Base, | DX(Last Narme=I nane_val ue), Rl GHT. RecPos),
FETCH(Base, | DX(Last Nane=| nane_val ue,
Fi r st Name=f nane_val ue), Rl GHT. RecPos)) ;
RETURN OUTPUT(CHOOSEN(Fet ched, 2000)) ;
END;

© 2015 HPCC Systems®. All rights reserved
62

ECL Programmers Guide
Working With Roxie

Complex Roxie Query Techniques

The ECL coding techniques used in Roxie queries can be quite complex, making use of multiple keys, payload keys,
half-keyed JOINSs, the KEY DIFF function, and various other ECL language features. All these techniques share a
single focus, though—to maximize the performance of the query so its result is delivered as efficiently as possible,
thereby maximizing the total transaction throughput rate possible for the Roxie that services the query.

Key Selection Based on Input

It all starts with the architecture of your data and the keys you build from it. Typically, a single dataset would have
multiple indexes into it so as to provide multiple access methods into the data. Therefore, one of the key techniques
used in Roxie queriesisto detect which of the set of possible values have been passed to the query, and based on those
values, choose the correct INDEX to use.

The basis for detecting which values have been passed to the query is determined by the STORED attributes defined
to receive the passed values. The SOAP Interface automatically populates these attributes with whatever values have
been passed to the query. That means the query code need simply interrogate those parameters for the presence of
values other than their defaults.

This example demonstrates the technique:

| MPORT $;

EXPORT Peopl eSear chServi ce() := FUNCTI ON
STRI NG30 | nane_value :="'"' : STORED(' LastNane');
STRING30 fnanme_value :=""' : STORED('FirstNanme');
IDX := $.1DX__Person_Last Nane_First Nane;
Base : = $. Person. Fil ePl us;
Fetched : = | F(fname_value = "'

FETCH(Base, | DX(Last Nane=Il nane_val ue), Rl GHT. RecPos) ,
FETCH(Base, | DX(Last Nane=| nane_val ue, Fi r st Nane=f nane_val ue), Rl GHT. RecPos)) ;
RETURN OUTPUT(CHOOSEN(Fet ched, 2000)) ;
END;

This query is written assuming that the LastName parameter will always be passed, so the IF needs only to detect
whether a FirstName was also entered by the user. If so, then the filter on the index parameter to the FETCH needs to
include that value, otherwise the FETCH just needsto filter the index with the LastName value.

There are several ways this code could have been written. Here's an alternative:

| MPORT $;

EXPORT Peopl eSear chServi ce() := FUNCTI ON
STRING30 | nane_value :=""' : STORED(' LastNane');
STRI NG30 fname_value :="'"' : STORED('FirstNane');
IDX := $.1DX__Person_Last Nane_Fi rst Nane;
Base := $. Person. Fil ePl us;
I ndxFilter := |IF(fname_value = "'

| DX. Last Nane=I nane_val ue,
| DX. Last Name=| nane_val ue AND | DX. Fi r st Nane=f nane_val ue) ;
Fet ched : = FETCH(Base, | DX(| ndxFi I ter), Rl GHT. RecPos) ;
RETURN OQUTPUT(CHOOSEN(Fet ched, 2000)) ;
END;

Inthisexample, the IF simply buildsthe correct filter expression for the FETCH to use. Using thisform makesthe code
easier to read and maintain by separating out the multiple possible forms of thefilter logic from the function that usesit.

© 2015 HPCC Systems®. All rights reserved
63

ECL Programmers Guide
Working With Roxie

Keyed Joins

Although the FETCH function was specifically designed for indexed access to data, in practice the half-keyed JOIN
operation ismore commonly used in Roxie queries. A major reason for thisisthe flexibility that is possible with JOIN.

The advantages of using keyed JOIN operations in any query is fully discussed in the Using ECL Keys (INDEX
Files) article. These advantages really benefit Roxie queries tremendously. Because of the nature of Roxie, the best
advantage from keyed JOINs comes from the use of half-keyed JOINsthat utilize payload keys (eliminating the need
for additional FETCH operations).

Limiting Output

One major consideration for developing a Roxie query is the amount of data that may possibly be returned from the
guery. Since JOIN operations can possibly result in huge datasets, care should be taken to limit the number of records
any given query may return to a number that is“reasonable” for that specific type of query. Here are some techniques
to help accomplish that goal:

* The CHOOSEN and LIMIT functions should be used to limit index reads to some maximum number.
* Keyed JOINs should use the ATMOST, KEEP, or LIMIT option.
* When a nested child dataset is defined, it should have a MAXCOUNT option defined on the child

DATASET field in the RECORD structure, and the code that builds the nested child dataset should
use CHOOSEN with avalue that exactly matches the MAXCOUNT.

All of these techniques will help to ensure that, when the end-user expects to get around ten results, that they don't
end up with ten million.

© 2015 HPCC Systems®. All rights reserved
64

ECL Programmers Guide
Working With Roxie

SOAPCALL from Thor to Roxie

Once you have your SOAP-enabled queries tested and deployed to Roxie, you need to be able to use them. Many
Roxie queries can be launched through some specially-designed user interface that allow end-users to enter search
criteriaand get results, one at atime. However, sometimes you need to retrieve data in a batch mode, where the same
guery is run once against each record from a dataset. That makes Thor a candidate to be the requesting platform, by
using SOAPCALL.

One Record Input, Record Set Return

This example code (contained in Soapcall 1.ECL) callsthe service previously deployed in the Roxie Overview article
(you will need to change the I P attribute in this code to the appropriate | P and port for the Roxie to which it has been
deployed):

| MPORT $;

Qut Recl : = $. Decl areDat a. Layout _Per son;
Roxiel P := "http://127.0.0. 1: 8002/ WEc| / soap/ quer y/ r oxi e/ r oxi eovervi ewl. 1" ;
svec = ' Roxi eOverviewl. 1';

| nput Rec : = RECORD
STRI NG30 Last Nane
STRI NG30 First Nane :
END;
/11 rec in, recordset out
ManyRecl : = SOAPCALL(Roxi el P,
svc,
I nput Rec,
DATASET(Qut Recl)) ;

' KLYDE' ;

OUTPUT(ManyRec1) ;

This example shows how you would make a SOAPCALL to the service passing it asingle set of parametersto retrieve
only those records that relate to the set of passed parameters. The service receives asingle set of input dataand returns
only those records that meet that criteria. The expected result from this query is a returned set of the 1000 records
whose LastName field contains “KLYDE.”

Record Set Input, Record Set Return

This next example code (contained in Soapcall2.ECL) also calls the same service as the previous example (remember,
you will need to change the IP attribute in this code to the appropriate IP and port for the Roxie to which it has been
deployed):

| MPORT $;

Qut Recl : = $. Decl areDat a. Layout _Per son;

Roxiel P := "http://127.0.0. 1: 8002/ WEc| / soap/ quer y/ r oxi e/ r oxi eovervi ewl. 1" ;
svec = ' Roxi eOverviewl. 1';

//recordset in, recordset out

I nRec : = RECORD
STRI NG30 Last Nane { XPATH(' Last Nange')};
STRI NG30 Fi r st Narme{ XPATH(' Fi r st Narre')} ;

END;

| nput Dat aset : = DATASET([{' TRAYLOR ,' Cl SSY' },

{' KLYDE' ,"' CLYDE'},

{"SMTH , ' DAR },

{' BOAEN , ' PERCI VAL' },

{' ROWNEY' , ' GEORGE' }], I nrec);

© 2015 HPCC Systems®. All rights reserved
65

ECL Programmers Guide
Working With Roxie

ManyRec2 : = SOAPCALL(| nput Dat aset
Roxi el P,
svc,
I nrec,
TRANSFORM LEFT) ,
DATASET(Qut Rec1) ,
ONFAI L(SKIP));
OQUTPUT(ManyRec?2) ;

This example passes a dataset containing multiple sets of parameters on which the service will operate, returning a
single recordset of all records returned by each set of parameters. In thisform, the TRANSFORM function allows the
SOAPCALL to operatelike aPROJECT to produce the input records that provide the input parametersfor the service.

The service operates on each record in the input dataset in turn, combining the results from each into a single return
result set. The ONFAIL option indicates that if there is any type of error, then the record should simply by skipped.
The expected result from this query is areturned set of three records for the only three records that match the input
criteria (CISSY TRAYLOR, CLYDE KLYDE, and PERCIVAL BOWEN).

Performance Considerations: PARALLEL

The form of the first example takes a single row asitsinput. When a single URL is specified, SOAPCALL sends the
request to that one URL and waits for aresponse. If multiple URLs are specified, SOAPCALL sends arequest to the
first URL in thelist, waits for a response, sends a request to the second URL, and on down the list. The PARALLEL
option controls concurrency, so if PARALLEL (n) is specified, requests are sent concurrently from each Thor node,
with up to n requestsin flight at once from each node.

The form of the second example takes a dataset as its input. When a single URL specified, the default behaviour is
to send two requests with the first and second rows concurrently, wait for a response, send the third rows, and so on
down the dataset, with up to two requestsin flight at once. If PARALLEL (n) is specified, it sends n requests with the
first n rows concurrently from each Thor node, and so on, with up to n requestsin flight at once from each node.

In an idea world you would specify a PARALLEL value that multiplies out to at least the number of Roxie URLS,
so that every available host can work simultaneously. Also, if you're using a dataset as input, you might want to try
a value several times the number of URLS. However, this could cause network contention (timeouts and dropped
connections) if set too high.

Y ou should add the PARALLEL option to the code from both previous examples to see what effect differing values
may havein your environment.

Performance Considerations: MERGE

The MERGE option controls the number of rows per request for the form that takes a dataset (M ERGE does not apply
to the forms of SOAPCALL that take a single row as input). If MERGE(m) is specified, each request contains up to
mrows, rather than asingle row.

If the concurrency (PARALLEL option setting) is less than or equa to the number of URLS then each URL will
normally only see one request at atime (assuming all hosts operate at about the same speed). In that case, you might
choose avaue of MERGE as high as the host and the network can take: too high a value and a massive request might
kill or swamp the service, but too low a value needlessly increases overhead by sending many small requestsin place
of fewer larger ones. If the concurrency is greater than the number of URLs then each URL will see several requests
at atime and these considerations still apply.

Assuming that the host processes a single request serially, there is one additional consideration. Y ou should ensure
that the MERGE value is smaller than the number of rows in the dataset so as to ensure that you are making use of
the parallélization on the hosts. If the value of MERGE is greater than or equal to the number of input rows, then you
send the entire input dataset in one request and the host processes the rows serially.

© 2015 HPCC Systems®. All rights reserved
66

ECL Programmers Guide
Working With Roxie

Y ou should add the MERGE option to the code from the second example to see what effect differing values may have
in your environment.

A Real World Example

A customer asked for help with a problem—how to compare two strings and determine if the first contains every
word in the second, in any order, when there are an indeterminate number of words in each string. This is a fairly
straight-forward problem in ECL. Using JOIN and ROLLUP would be one approach, or nested child dataset queries
(not supported in Thor at the time of the request for help, though they may be by the time you read this). All the
following code is contained in the Soapcall3.ECL file.

The first need was to create a function that would extract all the discrete words from a string. This is the kind of job
that the PARSE function excels at, so that's exactly what this code does:

Par seWr ds(STRI NG Li nel n) := FUNCTI ON
PATTERN Ltrs := PATTERN(' [A-Za-z]');

PATTERN Char := Ltrs | "-' | "\
TOKEN Word : = Char +;
ds ;= DATASET([{Lineln}],{STRING |ine});
RETURN PARSE(ds, | i ne, Word, { STRING Pword : = MATCHTEXT(Word)});
END;

This FUNCTION (contained in Soapcall3.ECL) receives an input string and produces a record set result of all the
words contained in that string. It definesa PATTERN attribute (Char) of allowable charactersin aword as the set of
all upper and lower case letters (defined by the Ltrs PATTERN), the hyphen, and the apostrophe. Any other character
than these will be ignored.

Next, it defines a Word as one or more allowable Char pattern characters. This pattern is defined asa TOKEN so that
only the full word match is returned and not al the possible aternative matches (i.e. returning just SOAP, instead of
SOAP, SOA, SO, and S—all the possible alternative matches that a PATTERN would generate).

Theonerecord in-line DATASET attribute (ds) createstheinput “file” for the PARSE function to work on, producing
the result record set of al the discrete words from the input string.

Next, we need a Roxie query to compare the two strings (also contained in Soapcal|3.ECL):

EXPORT Soapcal | 3() : = FUNCTI ON

STRI NG Ul D "' STORED(' Ul Dstr');
STRI NG Leftln : STORED(' LeftInStr');
STRING Rightln : : STORED(' RightInStr');
BOOLEAN TokenMat ch : = FUNCTI ON

P1 : = ParseWrds(Leftln);

P2 := ParseWrds(Rightln);

Set Srch : = SET(P1, Pword);

Proj Res : = PRQIECT(P2,
TRANSFORM { BOOLEAN Fnd},
SELF. Fnd : = LEFT. Pword I N Set Srch));

Al Res := DEDUP(SORT(ProjRes, Fnd)) ;

RETURN COUNT(Al I Res) = 1 AND Al l Res[1].Fnd = TRUE;
END;
RETURN QUTPUT(DATASET([{ Ul D, TokenMat ch}], { STRI NG Ul D, BOOLEAN res}));

END;

There are three pieces of data this query expects to receive: a string containing an identifier for the comparison (for
context purposesin the result), and the two strings whose words to compare.

The FUNCTION passes the input strings to the ParseWords function to create two recordsets of words from those
strings. The SET function then re-defines the first recordset asa SET so the the IN operator may be used.

© 2015 HPCC Systems®. All rights reserved
67

ECL Programmers Guide
Working With Roxie

The PROJECT operation does all the real work. It passes each word in turn from the second input string to itsinline
TRANSFORM function, which produces a Boolean result for that word—TRUE or FALSE, isit present in the set of
words from the first input string or not?

To determineif all the words in the second string were contained in the first, the SORT/DEDUP sorts all the resulting
Boolean values then removes all the duplicate entries. There will only be one or two records left: either a TRUE and
aFALSE, or asingle TRUE or FALSE record.

The RETURN expression detects which of the three scenarios has occurred. Two records |eft indicates some, but not
all, of the words were present. One record indicates either al or none of the words were present, and if the value of
that record is TRUE, then all words were present and the FUNCTION returns TRUE. All other cases return FALSE.

The OUTPUT usesaone-record inline DATASET to format theresult. Theidentifier that was passed in is passed back
along with the Boolean result of the compare. Theidentifier becomesimportant when the query iscalled multipletimes
in Roxie to process through a dataset of stringsto compare in a batch mode because the results may not be returned in
the same order as the input records. If it were only ever used interactively, thisidentifier would not be necessary.

Once you've saved the query to the Repository, you can test it with hThor and/or deploy it to Roxie (hThor will work
for testing, but Roxie is much faster for production). Either way, you can use SOAPCALL to access it like this (the
only difference would be the IP and port you target for the query (contained in Soapcall4.ECL)):

Roxi el P :
svc

= "http://127.0.0. 1: 8002/ WsEcl / soap/ query/roxi e/ soapcal | 3.1'; //Roxie
= 'soapcal 13.1";
I nRec : = RECORD
STRI NG Ul Dst r { XPATH(' Ul Dstr')};
STRI NG Left|nStr{XPATH(' LeftInStr')};
STRING Ri ght I nStr{ XPATH(' Ri ghtInStr')};
END;
I nDS : = DATASET([
,"the quick brown fox junped over the |azy red dog', ' quick fox red dog'},
,'the quick brown fox junped over the lazy red dog', ' quick fox black dog'},
,'george of the jungle lives here','fox black dog'},
,'fred and wilma flintstone','fred flintstone'},
,'yomanma coneonah','brake chill'}],InRec);

P e Rt Ran Ran]
akwnNR

RS : = SOAPCALL(I nDS,
Roxi el P,
svc,
| nRec,
TRANSFORM LEFT) ,
DATASET({ STRI NG Ul Dval { XPATH(' ui d')}, BOOLEAN Conpar eResul t { XPATH('res')}}));

OUTPUT(RS) ;

Of course, you must first change the I P and port in this code to the correct values for your environment. You
can find the proper |P and port to use by looking at the System Servers page of your ECL Watch. To target Doxie (aka
ECL Agent or hthor), use the | P of your Thor's ESP Server and the port for its wsecl service. To target Roxie, use the
IP of your Roxie's ESP Server and the port for its wsecl service. It's possible that both ESP servers could be on the
same box. If so, then the difference will only bein the port assignment for each.

The key to this SOAPCALL query isthe InRec RECORD structure with its XPATH definitions. These must exactly
match the part names and the STORED names of the query's parameter receiving attributes (NB that these are case
sensitive, since XPATH is XML and XML is always case sensitive). Thisiswhat maps the input data fields through
the SOAP interface to the query's attributes.

This SOAPCALL receives a recordset as input and produces a recordset as its result, making it very similar to the
second example above. One small change from that previous example of thistypeisthe use of the shorthand TRANS-
FORM instead of an inline TRANSFORM function. Also, note that the XPATH for the first field in the DATASET

© 2015 HPCC Systems®. All rights reserved
68

ECL Programmers Guide
Working With Roxie

parameter'sinline RECORD structure contains|lower case“uid” whileitisobviously referencing the query's OUTPUT
field named “UID”—the XML returned from the SOAP service uses lower case tag names for the returned datafields.

When you run thisyou'll get a TRUE result for records one and four, and FALSE for all others.

© 2015 HPCC Systems®. All rights reserved
69

ECL Programmers Guide
Working With Roxie

Controlling Roxie Queries

There are several ECL functions that are designed specifically to help optimize queries for execution on Roxie. These
include PRELOAD, ALLNODES, THISNODE, LOCAL, and NOLOCAL. Understanding how all these functions
work together can make a big difference in the performance of your Roxie queries.

How Graphs Execute

Writing efficient queries for Roxie or Thor can require an understanding of how the different clusters operate. This
brings up three questions:

How does the graph execute, on a single node, or on all nodesin parallel?

How are datasets accessed by each node executing the graph, only the parts that are local to the node, or all parts
on al nodes?

Does an operation coordinate with the same operation on other nodes, or does each node operate independently?

Here's how queries “normally” execute on each type of cluster:

Thor Graphs execute on multiple slave nodes in parallel.
Index/disk reads are done locally by each slave node.
All other disk access (FETCH, keyed JOIN, etc.) are effectively accessed across al nodes.

Coordination with operations on other nodes is controlled by the presence or absence of the LO-
CAL option on the operation.

No support for child queries (this may change in future releases).
hthor Graphs execute on the single ECL Agent node.

All parts of the dataset/index are accessed by directly accessing the disk drive of the node with
the data—no other interaction with the other nodes.

Child queries aways execute on same node as parent.
Roxie Graphs execute on asingle (farmer) node.

All parts of the dataset/index are accessed by directly accessing the disk drive of the node with
the data—no other interaction with the other nodes.

Child queries might execute on asingle slave node instead of afarmer node.

ALLNODES vs. THISNODE

In Roxie, graphs execute on a single farmer node unless the ALLNODES() function is used. ALLNODES() causes
the portion of the query it encloses to execute on all slave nodesin parallel. The results are calculated independently
on each node then merged together, without ordering the records. It is generally used to do some complex remote
processing which only requires local index access, substantially reducing the network traffic between the nodes.

By default, everything within the ALLNODES() will be executed on all the nodes, but sometimes the ALLNODES()
guery requires some input or arguments that shouldn't be executed on al the nodes—for example, the previous best
guess at the results, or some information controlling the parallel query. The THISNODE() function can be used to
surround element that are to be evaluated by the current node instead.

A typical usage would look like this:

best Sear chResul ts : = ALLNODES(doRenot eSear ch(THI SNODE(sear chWor ds) , THI SNODE(pr evi ousResul ts)))

© 2015 HPCC Systems®. All rights reserved
70

ECL Programmers Guide
Working With Roxie

Where'searchWords and 'previousResults' are effectively cal cul ated on the current node, and then passed as parameters
to each instance of the doRemoteSearch() executing in parallel on all nodes.

LOCAL vs. NOLOCAL

TheLOCAL option available on many functions (like JOIN, SORT, etc.) andthe LOCAL () and NOLOCAL () functions
control whether the graphs running on a particular node access al parts of afile/index or only those associated with
the particular node (LOCAL). Often within an ALLNODES() context you only want to access local index parts from
a single node because each node is independently processing its associated parts. Specifying that an index read or a
keyed JOIN is LOCAL meansthat only the local part is used on each node. A local read of asingle part INDEX will
only be evaluated on the first slave node (or the farmer node if not within an ALLNODES)

Local evaluation can be specified in two ways:

1) Asadataset operation:

LOCAL(M/l ndex) (nmyFi el d = sear chFi el d)

2) As an option on the operation:

JON(... ,LOCAL)
FETCH(... , LOCAL)

The LOCAL (dataset) function causes every operation on the dataset to access the file/lkey locally. For example,

LOCAL(JO N(i ndex1, index2,...))
will read index1 and index2 locally. Thisruleisrecursively applied until you reach one of the following:
Use of the NOLOCAL () function

A non-local attribute—the operation stays non-local, but children are till marked as local as nec-
essary

A GLOBAL() or THISNODE() or workflow operation—since they will be evaluated in a different
context

Use of the ALLNODES() function (asin anested child query)
Note that:
JOIN(x, LOCAL (index1)...) is treated the same as JOIN(X, index1, ..., local).

LOCAL is aso supported as an option on an INDEX, but the LOCAL () function is preferred, because it generally
depends on the context an index is used in whether or not access to it should be local or not.

A non-locd attributeis supported everywhere that a LOCAL attribute is allowed - to override an enclosing LOCAL ()
function.

The use of LOCAL to indicate that dataset/key accessislocal does not conflict with its use to control coordination of
an operation with other nodes, because there is no operation that potentially co-ordinates with other nodes and also
accesses indexes or datasets.

NOROOT Indexes

The ALLNODES() function is particularly useful if there is more than one index co-distributed on a particular value
so that all information that relates to a particular key field value is associated with the same node. However generally

© 2015 HPCC Systems®. All rights reserved
71

ECL Programmers Guide
Working With Roxie

indexes are globally sorted. Adding a NOROOT option to a BUILD action or INDEX declaration indicates that
the index is not globally sorted, and thereis no root index to indicate which part of the index will contain a
particular entry.

© 2015 HPCC Systems®. All rights reserved
72

ECL Programmers Guide
Working With Roxie

Query Libraries

A Query Library is a set of attributes, packaged together in a self contained unit, which allows the code to be shared
between different workunits. This reduces the time required to deploy a set of attributes, and can reduce the memory
footprint for the set of queries within Roxie that use the library. It is also possible to update a query library without
having to re-deploy all the queriesthat useit.

Query libraries are not supported in Thor, but may be in the future.

A Query Library is defined by two structures—an INTERFACE to define the parameters to pass, and a MODULE
that implements the INTERFACE.

Library INTERFACE Definition

To create aQuery Library, the first requirement is a definition of itsinput parameters with an INTERFACE structure
that receives the parameters:

NamesRec : = RECORD
| NTEGER1 Nanel D;
STRI N&20 FNane;
STRI N0 LNane;

END;

Fi | terLiblfacel(DATASET(nanesRec) ds, STRI NG search) := | NTERFACE
EXPORT DATASET(nanesRec) natches;
EXPORT DATASET(nanmesRec) ot hers;

END;

This example defines the INTERFACE for a library that takes two inputs—a DATASET (with the specified layout
format) and a STRING—and which gives you the ability to output two DATASET results.

For most library queriesit may be preferable to also use a separate INTERFACE to define the input parameters. Using
an INTERFACE makes the passed parameters clearer and makesit easier to keep the interface and implementationin
sync. This example defines the same library interface as above:

NamesRec : = RECORD
| NTEGERL Nanel D;
STRI N&0 FNane;
STRI N&0 LNane;
END;

IFilterArgs : = | NTERFACE // defi nes passed paraneters
EXPORT DATASET(nanesRec) ds;
EXPORT STRI NG sear ch;

END;

FilterLiblface2(lFilterArgs args) := | NTERFACE
EXPORT DATASET(nanesRec) matches;
EXPORT DATASET(nanesRec) ot hers;

END;

Library MODULE Definitions

A query library isa MODULE structure definition that implements a particular library INTERFACE definition. The
parameters passed to the MODUL E must exactly match the parametersfor thelibrary INTERFACE definition, and the
MODULE must contain compatible EXPORT attribute definitions for each of the results specified in the library IN-
TERFACE. The LIBRARY option onthe MODULE definition specifiesthelibrary INTERFACE being implemented.
This exampl e defines an implementation for the INTERFACEs above:

© 2015 HPCC Systems®. All rights reserved
73

ECL Programmers Guide
Working With Roxie

Fi | t er DsLi b1(DATASET(nanesRec) ds,
STRI NG search) := MODULE, LI BRARY(Fi | terLiblfacel)
EXPORT nat ches : = ds(Lnane = search);
EXPORT ot hers := ds(Lnanme != search);
END;

and for the variety that takes an INTERFACE as its single parameter:

FilterDsLi b2(1FilterArgs args) := MODULE, LI BRARY(FilterlLiblface2)
EXPORT matches : = args.ds(Lname = args. search);
EXPORT ot hers := args.ds(Lnane != args.search);

END;

Building an External library

A query library may be either internal or external. An interna library would be primarily used in hthor queries for
testing and debugging before deploying to Roxie. Although you can use internal query libraries in Roxie queries, the
advantages come from using the external version.

An external query library is created by the BUILD action, which compiles the query library into its own workunit.
The name of the library is the job name associated with the workunit. Therefore, the #WORKUNIT would normally
be used to give the workunit a meaningful job name, asin this example:

#WORKUNI T(' name' , ' Ppass. Fi | terDsLi b');
BUI LD(Fi | t er DsLi b1);

This code builds the library for the INTERFACE parameter version of the code above:

#WORKUNI T(' nan®' , ' I pass. FilterDsLib');
BU LD(Fi | t er DsLi b2) ;

The system maintains a catal og of the latest versions of each query library that is updated whenever alibrary is built.
Hthor uses this to resolve query libraries when running a query (as will Thor, when it eventually supports query
libraries). Roxie uses the query aliasing mechanism in the same way.

Using a Query Library

The syntax for using a query library is dlightly different depending on whether the library is internal or external.
However, both methods use the LIBRARY function.

The LIBRARY function returns a MODULE implementation with the proper parameters passed for the instance in
which you want to use it, which may be used to access the EXPORT attributes from the library.

Internal Libraries

Aninternal library generatesthelibrary code as a separate unit, but then includesthat unit within the query workunit. It
doesn't have the advantage of reducing compiletime or memory usage in Roxie, but it doesretain the library structure,
which means that changes to the code cannot affect anyone else using the system. That makes internal libraries a
perfect testing method.

The syntax for using an internal query library simply passes the library MODULE attribute's name inside an INTER-
NAL function call in the first parameter to the LIBRARY function, asin this example (for the version that does not
take an INTERFACE as its parameter):

NanesTabl e : = DATASET([{1,'Doc','Holliday'},
{2,'Liz'," ' Taylor'},
{3,'M"',"' Nobody"'},

© 2015 HPCC Systems®. All rights reserved
74

ECL Programmers Guide
Working With Roxie

{4,"' Anywhere',"'but here'}],
NamesRec) ;
libl := LI BRARY(I NTERNAL(FilterDsLibl), FilterlLiblfacel(NamesTable, 'Holliday'));

In this case, result is a MODULE with two EXPORTed attributes—matches and others—that can be used just like
any other MODULE, asin this example:

OQUTPUT(| i bl. mat ches) ;
QUTPUT(| i bl. ot hers);

and the code changes to this for the variety that takes an INTERFACE:

NanesTabl e : = DATASET([{1,'Doc','Holliday'},
{2,'Liz'," ' Taylor'},
{3,'M"',"' Nobody'},
{4,' Anywhere',"'but here'}],
NanmesRec) ;
SearchArgs : = MODULE(I FilterArgs)
EXPORT DATASET(nanesRec) ds := NanesTabl e;
EXPORT STRI NG search := 'Hol |liday';
END;
I'i b3 := LI BRARY(I NTERNAL(Fi | t er DsLi b2), Fi | t er Li bl f ace2(Sear chArgs));
QUTPUT(| i b3. mat ches) ;
QUTPUT(| i b3. ot hers);

External Libraries

Oncethelibrary isimplemented asan external library (using the BUILD actionto createthelibrary isdonein aseparate
workunit) the LIBRARY function no longer requiresthe use of theINTERNAL function to specify thelibrary. Instead,
it takes a string constant containing the name of the workunit created by BUILD asitsfirst parameter, like this:

NanesTabl e : = DATASET([{1,'Doc','Holliday'},

{2,'Liz'," ' Taylor'},

{3,'M", "' Nobody'},

{4,"' Anywhere','but here'}],

NanesRec) ;

lib2 := LI BRARY(' Ppass. FilterDsLib', FilterlLiblfacel(NanmesTable, 'Holliday'));
QUTPUT(| i b2. mat ches) ;
QUTPUT(| i b2. ot hers);

Or, for the INTERFACE version:

NanmesTabl e : = DATASET([{1,'Doc','Holliday'},
{2,'Liz'," Taylor'},
{3,'M"',"' Nobody"},
{4,' Anywhere', ' but here'}],
NanmesRec) ;

SearchArgs := MODULE(I FilterArgs)
EXPORT DATASET(nanesRec) ds := NanmesTabl e;
EXPORT STRI NG search := 'Hol liday';

END;

lib4 := LIBRARY(' | pass. FilterDsLib', FilterLiblface2(SearchArgs));
QUTPUT(| i b4. mat ches) ;
OQUTPUT(| i b4. ot hers);

A couple of words of warning about using external libraries: If you are developing an attribute inside a library that is
shared by other people, then you need to make sure that your development changes don't invalidate other queries. This
means you heed to use a different library name while developing. The simplest method is probably to use a different
attribute for the library implementation while you are developing. Another way to avoid this is to devel op/test with
internal librariesand only build and implement the external library when you are ready to put the query into production.

© 2015 HPCC Systems®. All rights reserved
75

ECL Programmers Guide
Working With Roxie

If libraries are nested then it gets more complicated. If you areworking on alibraryC, which iscalled from alibraryA,
whichisthen called from aquery, then youwill need to use different library namesfor libraryC and libraryA. Otherwise
you will either not call your modified codein libraryC, or everyone using libraryA will call your modified code. Y ou
may prefer to makelibraryA and libraryC internal instead, but you won't gain from the reduced compile time associated
with external libraries.

Also remember your changes are occurring in the library, not in the query. It's not uncommon to wonder why changes
to the ECL aren't having any effect, and then realize that you've been rebuilding/deploying the wrong item.

Query Library Tips

Y ou can make your code cleaner by making the LIBRARY call afunction attribute, like this:

Fi | t er Dat aset (DATASET(namesRecor d) ds,
STRI NG search) := LIBRARY(' Ppass. FilterDsLib',FilterLiblfacel(ds, search));

The use of the library then becomes:

Fi | t er Dat aset (nyNanes, 'Holliday');

The library name (specified as the first parameter to the LIBRARY function) does not have to be a constant value,
but it must not change while the query isrunning. This means you can conditionally select between different versions
of alibrary.

For example, it islikely that you will want separate libraries for handling FCRA and non-FCRA data, since combining
the two could generate inefficient or un-processable code. The code for selecting between the two implementations
would look like this:

Li bToUse : = | F(i sFCRA, ' speci al . | ookupFRCA' , ' speci al . | ookupNoFCRA) ;
M/Resul ts : = LI BRARY(Li bToUse, |nterfaceConmonToBot h(args));

Restrictions

The system will report an error if you attempt to use an implementation of aquery library that has adifferent INTER-
FACE from the one specified in the LIBRARY function.

There is one particularly notable restriction on the ECL that can be included within a library: they cannot include
workflow services such as INDEPENDENT, PERSIST, SUCCESS, and especially, STORED. STORED attributes
don't make senseinside aquery library because aquery library should beindependent of both the queriesthat useit, and
other query libraries. Instead of using STORED attributes (like SOA P-enabled Roxie queries use) to pass parametersto
the library queries, the parameters must be explicitly passed into the query library—either asan individual parameter,
or as part of an INTERFACE definition that provides the arguments. The query that uses the query library can use
stored variables, and then map those stored variables to the parameters expected by the query libraries.

Query libraries can currently only EXPORT datasets, datarows, and single-valued expressions. In particular they can-
not EXPORT actions (like OUTPUT), TRANSFORM structures, or other MODULE structures.

Notes on the implementation

There are a couple of items that may be worth noting about the implementation. In Roxie, before executing the query,
all library graphs are expanded into the query graph. Any datasets that are supplied as parametersto the library (or a
dataset inside an interface parameter) are directly connected to the place they are used in the query library, and only
results that are used are evaluated. This means that using a query library should have very little overhead compared
with including the ECL code directly in the query. NOTE: Datasets inside row parameters aren't streamed, so passing
aROW containing a dataset as a parameter to the library is not as efficient as using an INTERFACE.

© 2015 HPCC Systems®. All rights reserved
76

ECL Programmers Guide
Working With Roxie

The implementation in hthor is not as efficient. Dataset parameters are fully evaluated, and passed to the library as a
complete unit block and all results are evaluated. Thor does not yet support query libraries.

The other item of note isthat if libraryA uses libraryC, and libraryB also uses libraryC with the same parameters, the
calls from different libraries will not be commoned up. However if an attribute exported from an instance of libraryC
ispassedto libraryA and libraryB, then the callsto libraryC will be commoned up. The way attributes currently tend to
be structured in the repository, e.g., calculating get_Dids() and passing that into other attributes meansthisisunlikely
to cause any issuesin practice.

Suggested Structure

Before writing a lot of libraries, it is worth spending some time working out how the attributes for a library are
structured, so al the librariesin the system are consistent. Here are some guidelines to use during your query library
design phase:

Naming Conventions

| would also suggest coming up with a consistent naming convention before developing lots of libraries. In particu-
lar, you need a convention for the names of the library arguments, library definition, implementing module, library
implementation and the attribute that wraps the use of the library. (E.g., something like IXArgs, Xinterface, DoX,
Xlibrary, and X()).

Use an INTERFACE to define parameters

This mechanism (example shown below) provides documentation for the parameters required by a service. It means
the code inside the implementation will access them as args.xxx or options.xxx, so it will be clear when parameters
are being accessed. It a'so makes some of the following suggestions simpler.

Hide the LIBRARY

Making the LIBRARY function call afunctional attribute (example aso shown below) means you can easily modify
all uses of alibrary if you are developing a new version. Similarly you can easily switch to use an interna library
instead by changing just the one line of code.

Use MODULE Inheritance

Use aMODULE structure (without the LIBRARY option) that implementsthe library's INTERFACE, and a separate
MODULE derived from the first to implement the LIBRARY using that service module. By hiding the LIBRARY
and using a separate MODUL E implementation you can easily remove the library all together. Also, using a separate
implementation from the library definitions means you can easily generate multiple variants of the same library from
the same definition.

NanmesRec := RECORD
I NTEGER1 Nanel D;
STRING0 FNane;
STRI N&0 LNane;
END;
NanesTabl e : = DATASET([{1,'Doc','Holliday'},
{2,'Liz'," ' Taylor'},
{3,'M", "' Nobody'},
{4,' Anywhere',"'but here'}],
NamesRec) ;

[/ define an | NTERFACE for the passed paraneters
IFilterArgs : = | NTERFACE
EXPORT DATASET(nanesRec) ds;

© 2015 HPCC Systems®. All rights reserved
77

ECL Programmers Guide
Working With Roxie

EXPORT STRI NG sear ch;
END;

//then define an | NTERFACE for the query library
FilterLiblface2(lFilterArgs args) := | NTERFACE
EXPORT DATASET(nanesRec) natches;
EXPORT DATASET(nanesRec) ot hers;
END;

/1i npl ement the | NTERFACE

FilterDsLi b(IFilterArgs args) := MODULE
EXPORT matches := args.ds(Lnane = args. search);
EXPORT ot hers := args.ds(Lnanme != args.search);
END;

//then derive that MODULE to inpl ement the LIBRARY
FilterDsLi b2(IFilterArgs args) := MODULE(FilterDsLib(args)), LI BRARY(FilterLiblface2)
END;

/I make the LIBRARY call a function
FilterDs(IFilterArgs args) := LIBRARY(INTERNAL(FilterDsLib2), FilterlLiblface2(args));
/leasily nodified to elimnate the LI BRARY, if desired
/Il FilterDs(IFilterArgs args) := FilterDsLi b2(args));
//define the paraneters to pass as the interface
SearchArgs := MODULE(I FilterArgs)
EXPORT DATASET(nanesRec) ds := NanmesTabl e;
EXPORT STRI NG search := 'Hol liday';
END;

//use the LIBRARY, passing the paraneters
OUTPUT(Fi | t er Ds(Sear chAr gs) . mat ches) ;
OQUTPUT(Fi | t er Ds(Sear chAr gs) . ot hers) ;

© 2015 HPCC Systems®. All rights reserved
78

ECL Programmers Guide
Working With Roxie

Smart Stepping

Overview

Smart Stepping is a set of indexing techniques that, taken together, comprise a method of doing n-ary join/merge-join
operations, where n is defined as two or more datasets. Smart Stepping enables the supercomputer to efficiently join
records from multiple filtered data sources, including subsets of the same dataset. It is particularly efficient when the
matches are sparse and uncorrelated. Smart Stepping also supports matching records from M-of-N datasets.

Before the advent of Smart Stepping, finding the intersection of records from multiple datasets was performed by
extracting the potential matches from one dataset, and then joining that candidate set to each of the other datasets
in turn. The joins would use various mechanisms including index lookups, or reading the potential matches from a
dataset, and then joining them. This means that the only way to join multiple datasets required that at |east one dataset
beread in its entirety and then joined to the others. This could be very inefficient if the programmer didn't take care to
select the most efficient order in which to read the datasets. Unfortunately, it is often impossible to know beforehand
which order would be the best. It is aso often impossible to order the joins so that the two least frequent terms are
joined. It was also particularly difficult to efficiently implement the M-of-N join varieties.

With Smart Stepping technology, these multiple dataset joins become asingle efficient operation instead of a series of
multiple operations. Smart Stepping can only be used in the context where the join condition is primarily an equality
test between columnsin the input datasets and the input datasets must have output sorted by those columns.

Smart Stepping al so provides an efficient way of streaming information from adataset, sorted by any trailing sort order.
Previoudly if you had a sorted dataset (often an index) which was required to be filtered by some leading components,
and then have the resulting rows sorted by the trailing components, you would have had to achieve it by reading the
entire filtered result, and then post sorting that result.

Smart Stepping can use significant amounts of temporary storage if used inappropriately. Therefore, care should be
taken to use it properly.

Trailing Field Sorts

The STEPPED function provides the ahility to sort by trailing key component fieldsin a much more efficient manner
than sorting after filtering (the only previous method of accomplishing this). The stepped trailing key fields allowsthe
sorted rows to be returned without reading the entire dataset.

Prior to the advent of Smart Stepping, a sorted dataset or index could efficiently produce filtered rows, or rows sorted
in the same order as the original sort order, but it could not efficiently produce rows sorted by a trailing sort order
of the index (whether filtered or not). The filtering then post-sorting method required that all rows be read from the
dataset before any sorted rows could be retrieved. Smart Stepping allows the sorted data to be read immediately (and
therefore partially).

The easiest way to see the effect is with this example (contained in SmartSteppingl.ECL—this code must be runin
hthor or Roxie, not Thor):

| MPORT $;

IDX := $. Decl areData. | DX _Person_State City_Zi p_Last Nane_Fir st Nanme_Payl oad;
Filter := IDX State = 'LA" AND IDX. City = ' ABBEVILLE';

[/filter by the |eading index el enents

//and sort the output by a trailing el ement

QUTPUT(SORT(I DX(Fi Il ter), FirstNanme), ALL); //the old way

OUTPUT(STEPPED(| DX(Fil ter), First Nane), ALL); //Smart Steppi ng

The previous method of accomplishing this meant producing the filtered result set, then using SORT to achieve the
desired sort order. The new method looksvery similar, using STEPPED instead of SORT, and both OUTPUTs produce
the same result, but the efficiency of the methods by which those results are achieved is very different.

© 2015 HPCC Systems®. All rights reserved
79

ECL Programmers Guide
Working With Roxie

Once you've successfully run this code and gotten your result, take alook at the Graphs page.

Notice that the first OUTPUT's sub-graph contains three activities: the index read, the sort, and the output. But the
second OUTPUT's sub-graph only contains two activities: the index read and the output. All of the Smart Stepping
work to produce the result is done by the index read. If you then go to the ECL Watch page for the workunit and ook
at the timings you should see that the second OUTPUT's graph1-1 timeis significantly less than the first's graph1-2:

Thus demonstrating the type of performance advantage Smart Stepping can have over previous methods. Of course,
the real performance advantage shows up when you ask for only the first n records, as in this example (contained in
SmartSteppingla.ECL):

| MPORT $;

IDX : = $. Decl areData. | DX __Person_State_City_Zi p_Last Nane_Fi r st Nanme_Payl oad;
Filter := IDX State = 'LA" AND IDX. City = ' ABBEVILLE';

OUTPUT(CHOOSEN(SORT(I DX(Fil ter), First Nane),5)); //the old way

OUTPUT(CHOOSEN(STEPPED(| DX(Fi | ter), FirstName), 5)); //Smart Stepping

After running this code, check thetimings onthe ECL watch page. Y ou should again see quite aperformance difference
between the two methods, even with this little amount of data

N-ary JOINSs

The primary purpose of Smart Stepping is to enable n-ary merge/join operations to be accomplished as efficiently as
possible. To that end the concept of a set of datasets (or indexes) has been added to the language. This alows JOIN
to be extended to operate on multiple datasets, not just two.

For example, given this data (contained in the SmartStepping2.ECL file)

Rec : = RECORD, MAXLENGTH(4096)
STRINGL Letter;
UNS| GNED1 DS;
UNS|I GNED1 Mat ches : =

1

UNS|I GNED1 Last Match : = 1;

SET OF UNSI GNED1 Mat chDSs : = [1];
END;
dsl := DATASET([{'A ,1},{'B ,1},{'C,1},{'D,1},{'E,1}], Rec);
ds2 := DATASET([{' A ,2},{'B ,2},{'H,2},{'1',2},{'J",2}], Rec);
ds3 := DATASET([{'B' ,3},{'C,3},{'M,3},{'N,3},{' 0, 3}],Rec);
ds4 := DATASET([{' A ,4},{'B ,4},{'R ,4},{'S ,4},{'T",4}], Rec);
ds5 := DATASET([{'B' ,5},{'V .5}, {'W,5},{"'X,5},{"Y,5}],Rec);

Todoaninnerjoinonall five datasets using Smart Stepping the codeisthis (also contained in the SmartStepping2.ECL
file):

SetDS : = [ds1, ds2, ds3, ds4, ds5] ;

Rec XF(Rec L, DATASET(Rec) Matches) := TRANSFORM
SELF. Mat ches : = COUNT(Mat ches) ;
SELF. Last Mat ch : = MAX(Mat ches, DS) ;
SELF. Mat chDSs : = SET(Mat ches, DS) ;
SELF := L;
END;
j1:

JO N(Set DS, STEPPED(LEFT. Let t er =Rl GHT. Let t er), XF(LEFT, ROAB(LEFT)), SORTED(Letter));

(11

QUTPUT(j 1) ;
Without using Smart Stepping the code is this (also contained in the SmartStepping2.ECL file):

Rec XF1(Rec L,Rec R integer MatchSet) := TRANSFORM
SELF. Mat ches : = L. Matches + 1;

© 2015 HPCC Systems®. All rights reserved
80

ECL Programmers Guide
Working With Roxie

SELF. Last Match : = MatchSet;
SELF. Mat chDSs : = L. MatchDSs + [MatchSet] ;

SELF : = L;
END;
j2 := JAO N dsi,ds2, LEFT. Letter=RI GHT. Letter, XF1(LEFT, Rl GHT, 2))
j3 :=JAN j2,ds3, LEFT.Letter=RICHT. Letter, XF1(LEFT, RI GHT, 3));
j4 := JON(j3,ds4, LEFT.Letter=RICGHT. Letter, XF1(LEFT, RI GHT, 4));
j5 := JON(j4,ds5, LEFT.Letter=RICGHT. Letter, XF1(LEFT, RI GHT, 5))
@2 := QUTPUT(SORT(j 5, Letter));

Both of these examples produce the same one-record output, but without Smart Stepping you need four separate JOINS
to accomplish the goal, and in “real world” code you might need a separate TRANSFORM for each, depending on
what result you were trying to produce.

In addition to the standard inner join between all the datasets, the Smart Stepping form of JOIN also supports the same
type of LEFT OUTER and LEFT ONLY joins as the standard JOIN operation. However, this form also supports M
of N joins (MOFN), where matching records must appear in a specified minimum number of the datasets, and may
optionally specify amaximum in which they appear, asin these examples (al so contained in the SmartStepping2.ECL
file):

j6 := JON(SetDS,
STEPPED(LEFT. Letter =Rl GHT. Letter),
XF(LEFT, ROANS(LEFT)),
SORTED(Letter),
LEFT OUTER);
j7 1= JOAN SetDs,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)),
SORTED(Letter),
LEFT O\LY);
j8 := JAON(SetDS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROANS(LEFT)),
SORTED(Letter),
MOEN(3)) ;
j9 1= JAON(SetDs,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)),
SORTED(Letter),
MOEN(3, 4)) ;
QUTPUT(] 6) ;
QUTPUT(j 7);
QUTPUT(j 8);
QUTPUT(j 9) ;

RRRB

The RANGE functionisalso availableto limit which datasetsin the set of datasetswill be processed, asin thisexample
(also contained in the SmartStepping2.ECL file):

j10 := JO N(RANCE(SetDsS, [1,3,5]),
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)),
SORTED(Letter));

Or := QUTPUT(j 10);

SEQUENTI AL(C1, @2, G8, A4, OB, 06, O7) ;

This feature can be useful in situations where you may not have al the information to select from al the datasetsin
the set.

This next example demonstrates the most probable use for thistechnology in the real world—finding the set of parent
records where related child records exist that fit a specified set of filter criteria. That's exactly what this example
(contained in the SmartStepping3.ECL file) does:

© 2015 HPCC Systems®. All rights reserved
81

ECL Programmers Guide
Working With Roxie

Li nkRec : = RECORD
UNSI GNED1 Li nk;

END;

DS Rec : = RECORD(Li nkRec)
STRI NGLO Narre;
STRI NGLO Addr ess;

END;

Chi | d1_Rec : = RECORD(Li nkRec)
UNSI GNED1 Nbr ;

END;

Chi | d2_Rec : = RECORD(Li nkRec)
STRI NG1O Car ;

END;

Chi | d3_Rec := RECORD(Li nkRec)
UNSI GNED4 Sal ary;

END;

Chi | d4_Rec : = RECORD(Li nkRec)
STRI NGLO Doni ci | e;

END;

Using this form of RECORD structure inheritance makes it very simple to define the linkage between the parent and
child files. Note also that all these files have different formats.

ds := DATASET([{1,'Fred','123 Main'},{2,' George','456 High'},
{3,"'Charlie'," 789 Bank'}, {4, ' Danielle','?246 Front'},
{5,'Emly',"'613 Boca'},{6,' Gscar','942 Frank'},
{7," Felix',"' 777 John'}, {8,' Adel e',"' 543 Bank'},
{9, "' Johan',"'123 Front'}, {10, Ludwi g',"'212 Front'}],
DS Rec);

Childl := DATASET([{1,5},{2, 8},{3, 11}, {4, 14}, {5, 17},

{6, 20}, {7, 23},{8, 26}, {9, 29}, {10, 32}], Chi | d1_Rec);

Chil d2 := DATASET([{1,'Ford'},{2, ' Ford'},{3,' Chevy'},
{4, Lexus'}, {5, ' Lexus'}, {6,'Kia'},
{7,"Mercury'}, {8, Jeep'},{9, ' Lexus'},
{9,"'Ferrari'}, {10,"' Ford'}],

Chi | d2_Rec) ;

Chil d3 : = DATASET([{1, 10000}, {2, 20000}, { 3, 155000}, { 4, 800000} ,
{5, 250000}, {6, 75000}, { 7, 200000} , { 8, 15000},
{9, 80000}, { 10, 25000}] ,

Chi | d3_Rec) ;

Chil d4 :

DATASET([{1,"' House'}, {2, House'},{3,' House'}, {4, Apt'},
{5 'Apt'},{6,"Apt'},{7," Apt"}, {8, " House'},
{9," Apt'}, {10, House'}],
Chi | d4_Rec);

Tbl Rec : = RECORD(Li nkRec), MAXLENGTH(4096)
UNSI GNED1 DS;
UNSI GNED1 Mat ches : = 0;
UNSI GNEDL Last Match : = 0;
SET OF UNSI GNED1 MatchDSs : = [];

END;

Filterl := Childl. Nor %2 = 0;

Filter2 := Child2.Car IN['Ford',"'Chevy', ' 'Jeep'];

Filter3 := Child3.Salary < 100000;

Filterd4 := Child4.Donmicile = 'House';

t1 := PRQIECT(Chil d1(Filter1), TRANSFORM Thl Rec, SELF. DS: =1, SELF: =LEFT)) ;
t2 := PROJECT(Chil d2(Filter2), TRANSFORM Thl Rec, SELF. DS: =2, SELF: =LEFT)) ;
t3 := PRQIECT(Chil d3(Filter3), TRANSFORM Thl Rec, SELF. DS: =3, SELF: =LEFT)) ;

© 2015 HPCC Systems®. All rights reserved
82

ECL Programmers Guide
Working With Roxie

t4 := PRQIECT(Chil d4(Filter4), TRANSFORM Tbl Rec, SELF. DS: =4, SELF: =LEFT)) ;

The PROJECT operation is a simple way to transform the results for all these different format files into a single
standard layout that can be used by the Smart Stepping JOIN operation.

SetDS := [t1,t2,t3,t4];

Tbl Rec XF(Tbl Rec L, DATASET(Tbl Rec) Mat ches) := TRANSFORM
SELF. Mat ches : = COUNT(Mat ches) ;
SELF. Last Mat ch : = MAX(Mat ches, DS) ;
SELF. Mat chDSs : = SET(Mat ches, DS) ;
SELF : = L;
END;

j1 := JON(SetDS, STEPPED(LEFT. Li nk=RI GHT. Li nk) , XF(LEFT, ROWS(LEFT)), SORTED(Li nk)) ;
OUTPUT(j 1) ;

QUTPUT(ds(link IN SET(j1,1ink)));

The first OUTPUT simply displays the same kind of result as the previous example. The second OUTPUT produces
the “real-world” result set of the base dataset records that match the filter criteriafor each of the child datasets.

© 2015 HPCC Systems®. All rights reserved
83

ECL Programmers Guide
Getting Things Done

Getting Things Done

Cartesian Product of Two Datasets

A Cartesian Product is the product of two non-empty setsin terms of ordered pairs. As an example, if we take the set
of values, A, B and C, and a second set of values, 1, 2, and 3, the Cartesian Product of these two sets would be the
set of ordered pairs, Al, A2, A3, B1, B2, B3, C1, C2, C3.

The ECL code to produce this kind of result from any two input datasets would look like this (contained in
Cartesian.ECL):

QutFilel :='~PROGGUI DE: : QUT: : CP1' ;
rec : = RECORD

STRINGL Letter;
END;

Indsl : = DATASET([{'A}.{'B}, {'C}.{'D},{"E},
{FYL{GHL{HE}{ 1"} {I],
{K}y{L}{M}{'N}{"O},
{PL{Q{R}{'S}HL{ T}
U {vi{whL{X}{"Y},
rec);

Inds2 := DATASET([{'A},{'B},{'C},{'D},{'E},
{FrL{GH{H}{I"'}.{"J)}
kL {Lrr{M}L{"N}{"O},
{Pr{Q}{'R}Y{'S}{ T}
U {vi{wh{XE Y,
rec);

Cnt I nDS2 : = COUNT(I nds2);

SetInDS2 : = SET(inds2,letter);
outrec : = RECORD

STRI NGL LeftlLetter;

STRINGL Ri ghtLetter;
END;

outrec CartProd(rec L, INTEGER C) := TRANSFORM
SELF. LeftLetter := L. Letter;
SELF. Ri ght Letter := Setl|nDS2[(] ;

END;

//Run the small datasets
CP1 : = NORMALI ZE(| nds1, Cnt | nDS2, Cart Prod(LEFT, COUNTER)) ;
OQUTPUT(CP1, , Qut Fi | e1, OVERVRI TE) ;

The core structure of this code is the NORMALIZE that will produce the Cartesian Product. The two input datasets
each have twenty-five records, so the number of result records will be six hundred twenty-five (twenty-five squared).

Each record in the LEFT input dataset to the NORMALIZE will execute the TRANSFORM once for each entry in the
SET of values. Making the valuesa SET isthe key to allowing NORMALIZE to perform this operation, otherwise you
would need to do a JOIN where the join condition is the keyword TRUE to accomplish this task. However, in testing
thiswith sizable datasets (as in the next instance of this code below), the NORMALIZE version was about 25% faster
than using JOIN. If there is more than one field, then multiple SETs may be defined and the process stays the same.

This next example does the same operation as above, but first generates two sizeable datasets to work with (also
contained in Cartesian.ECL):

InFilel :="'~PROGGUI DE: :IN: :CP1';

© 2015 HPCC Systems®. All rights reserved
84

ECL Programmers Guide
Getting Things Done

InFile2 := ' ~PROGGUIDE: : I N: : CP2' ;
QutFile2 :="'~PROGGU DE: : QUT: : CP2' ;

/lgenerate data files
rec BuildFile(rec L, INTEGER C) := TRANSFORM

SELF. Letter := Inds2[C]. Letter;
END;
GenCP1 : = NORMALI ZE(I nDS1, Cnt | nDS2, Bui | dFi | e(LEFT, COUNTER)) ;
GenCP2 : = NORMALI ZE(GenCP1, Cnt | nDS2, Bui | dFi | e(LEFT, COUNTER)) ;
GenCP3 : = NORMALI ZE(GenCP2, Cnt | nDS2, Bui | dFi | e(LEFT, COUNTER)) ;
Qutl : = OUTPUT(DI STRI BUTE(GenCP3, RANDOM)), , | nFi | e1, OVERWRI TE) ;
Qut2 : = OUTPUT(DI STRI BUTE(GenCP2, RANDOM)) , , | nFi | 2, OVERWRI TE) ;

/'l Use the generated datasets in a cartesian join:

dsl : = DATASET(InFilel,rec,thor);
ds2 : = DATASET(InFile2,rec,thor);

Cnt DS2
Set DS2

COUNT(ds2) ;
SET(ds2, letter);

cP2 NORMALI ZE(ds1, Cnt DS2, Car t Pr od(LEFT, COUNTER)) ;
Qut3 := OUTPUT(CP2,, Qut Fi | e2, OVERARI TE) ;
SEQUENTI AL(Qut 1, Qut 2, Qut 3)

Using NORMALIZE inthis case to generate the datasetsis the same type of usage previously described in the Creating
Example Data article. After that, the process to achieve the Cartesian Product is exactly the same as the previous
example.

Here's an example of how this same operation can be done using JOIN (also contained in Cartesian.ECL):

/1 outrec joinEmrec L, rec R) := TRANSFORM
/| SELF. LeftLetter := L.Letter;
/1 SELF.RightLetter := R Letter;

/| END,

/] ds4 := JAN(dsl, ds2, TRUE, joinEMLEFT, RIGHT), ALL);
/1 OUTPUT(ds4);

© 2015 HPCC Systems®. All rights reserved
85

ECL Programmers Guide
Getting Things Done

Records Containing Any of a Set of
Words

Part of the data cleanup problem is the possible presence of profanity or cartoon character names in the data. This can
become an issue whenever you are working with data that originated from direct input by end-usersto awebsite. The
following code (contained in the BadWordSearch.ECL file) will detect the presence of any of a set of “bad” words
inagivenfield:

| MPORT st d;

Set BadWords := ['JUNK' , ' GARBAGE', 'CRUD |;
BadWor dDS : = DATASET(Set BadWbr ds, { STRI NG1O wor d}) ;

SearchDS : = DATASET([{1,' FRED ,' FLI NTSTONE },
{2,' GEORGE' , ' KRUEGER },
{3, CRUDOLA ,' BAR },
{4," JUNKER , ' KNI GHT" },
{5, ' GARBAGEGUY' , ' MANG A' },
{6, ' FREDDY' , ' KRUEGER },
{7,"TIM, " TINY'},
{8,"JOHN , ' JONES' },
{9," MKE ,' JETSON }],
{ UNSI GNED6 | D, STRI NG10 firstnane, STRI NGLO | ast nane});

outrec : = RECORD
Sear chDS. | D;
Sear chDS. fi r st nane;
BOOLEAN FoundWeér d;
END;

{ BOOLEAN Found} Fi ndWord(BadWrdDS L, STRI NGLO inword) := TRANSFORM
SELF. Found : = Std. Str. Fi nd(i nword, TRIM L. word), 1) >0;
END;

outrec CheckWords(SearchDS L) : = TRANSFORM
SELF. FoundWsrd : = EXI STS(PRQJECT(BadWor dDS, Fi ndWor d(LEFT, L. fi r st nane)) (Found=TRUE)) ;
SELF := L;

END;

result := PROIECT(Sear chDS, CheckWor ds(LEFT)) ;

OUTPUT(r esul t (FoundWsr d=TRUE)) ;
QUTPUT(r esul t (FoundWor d=FALSE)) ;

This code is a simple PROJECT of each record that you want to search. The result will be a record set containing
the record 1D field, the firsthame search field, and a BOOLEAN FoundWord flag field indicating whether any “bad”
word was found.

The search itself is done by a nested PROJECT of the field to be searched against the DATASET of “bad” words.
Using the EXISTS function to detect if any records are returned from that PROJECT where the returned Found field
is TRUE sets the FoundwWord flag field value.

The Std.Str.Find function simply detects the presence anywhere within the search string of any of the “bad” words.
The OUTPUT of the set of records where the FoundWord is TRUE allows post-processing to evaluate whether the
record is worth keeping or garbage (probably requiring human intervention).

The above code is a specific example of this technique, but it would be much more useful to have a MACRO that
accomplishes this task, something like this one (also contained in the BadWordSearch.ECL file):

© 2015 HPCC Systems®. All rights reserved
86

ECL Programmers Guide
Getting Things Done

MAC_Fi ndBadWor ds(BadWor dSet , | nFil e, | Df | d, SeekFl d, ResAttr, Mat chType=1) : = MACRO
#UNI QUENANE(BadWor dDS)
YBadWor dDS% : = DATASET(BadWor dSet , { STRI NG wor d{ MAXLENGTH(50) } }) ;

#UNI QUENAME(out r ec)
%out rec% : = RECORD
InFile.lDfI d;
I nFi | e. SeekFl d;
BOOLEAN FoundWrd : = FALSE;
UNSI GNED2 FoundPos : = O0;
END;

#UNI QUENAME(ChkThl)
UChkTbl % : = TABLE(I nFil e, Y%outrec® ;

#UNI QUENAVE(Fi ndWor d)
{ BOOLEAN Found, UNSI GNED2 FoundPos} %-i ndWor d% ¥BadWor dDS% L, | NTEGER C, STRI NG i nwor d) : = TRANSFORM
#| F(Mat chType=1) //"contai ns" search

SELF. Found := Std. Str. Fi nd(i nword, TRIM L. word), 1) > O;

#END

#| F(Mat chType=2) //"exact match" search
SELF. Found := inword = L.word;

#END

#| F(Mat chType=3) //"starts wi th" search
SELF. Found := Std. Str. Find(i nword, TRIM L. word), 1) = 1;
#END
SELF. FoundPos : = | F(SELF. FOUND=TRUE, C, 0) ;
END;
#UNI QUENAME(CheckWor ds)
Yout r ec% ¥CheckWor ds% #ChkTbl % L) : = TRANSFORM
Wor dDS : = PROJECT(¥BadWor dDS% %-i ndWor d% LEFT, COUNTER, L. SeekFl d)) ;
SELF. FoundWord : = EXI STS(Wor dDS(Found=TRUE)) ;
SELF. FoundPos : = Wor dDS(Found=TRUE) [1] . FoundPos;
SELF := L;
END;
ResAttr := PROJECT(%ChkTbl % %CheckWor ds% LEFT)) ;
ENDVACRO,

This MACRO does a hit more than the previous example. It begins by passing in:
* The set of wordsto find

* Thefileto search

* The unique identifier field for the search record

* Thefield to searchin

* The attribute name of the resulting recordset

* The type of matching to do (defaulting to 1)

Passing in the set of wordsto seek allowsthe MACRO to operate against any given set of strings. Specifying the result
attribute name allows easy post-processing of the data.

Where this MACRO starts going beyond the previous example is in the MatchType parameter, which allows the
MACRO to use the Template Language #lF function to generate three different kinds of searches from the same
codebase: a“contains’ search (the default), an exact match, and a*“ starts with” search.

It also has an expanded output RECORD structure that includes a FoundPos field to contain the pointer to the first
entry in the passed in set that matched. This allows post processing to detect positional matches within the set so that
“matched pairs’ of words can be detected, asin this example (also contained in the BadWordSearch.ECL file):

© 2015 HPCC Systems®. All rights reserved
87

ECL Programmers Guide
Getting Things Done

Set Cart oonFirst Names : = [' GEORGE' ,' FRED , ' FREDDY'];
Set Cart oonLast Nanes : = [' JETSON , ' FLI NTSTONE' , ' KRUEGER] ;

MAC_Fi ndBadWor ds(Set Car t oonFi r st Nanmes, Sear chDS, | D, fi r st nane, Res1, 2)
MAC_Fi ndBadWor ds(Set Cart oonLast Nanes, Sear chDS, | D, | ast nane, Res2, 2)

Cartoons : = JO N(Res1(FoundWr d=TRUE) ,
Res2(FoundWor d=TRUE) ,
LEFT. | D=RI GHT. | D AND LEFT. FoundPos=RI GHT. FoundPos) ;

MAC_Fi ndBadWor ds(Set BadWor ds, Sear chDS, | D, fi r st nane, Res3, 3)
MAC_Fi ndBadWor ds(Set BadWor ds, Sear chDS, | D, | ast nane, Res4)
Set BadCGuys := SET(Cartoons, | D) +

SET(Res3(FoundWor d=TRUE) , | D) +

SET(Res4(FoundWor d=TRUE) , | D) ;

GoodGuys : = SearchDS(ID NOT I N Set BadCGuys) ;
BadGuys : = SearchDS(ID I N Set BadGuys) ;
OUTPUT(BadGuys, NAVED(' BadGuys'));

OUTPUT(GoodGuys, NAMED(' GoodGuys')) ;

Notice that the position of the cartoon character names in their separate sets defines a single character name to search
for in multiple passes. Calling the MACRO twice, searching for the first and last names separately, allows you to
post-process their results with a simple inner JOIN where the same record was found in each and, most importantly,
the positional values of the matches are the same. This prevents “GEORGE KRUEGER" from being mis-labelled a

cartoon character name.

© 2015 HPCC Systems®. All rights reserved
88

ECL Programmers Guide
Getting Things Done

Simple Random Samples

There is a statistical concept caled a “ Simple Random Sample” in which a statistically “random” (different from
simply using the RANDOM() function) sample of recordsis generated from any dataset. The a gorithm implemented
in the following code example was provided by a customer.

This code is implemented as a MACRO to allow multiple samples to be produced in the same workunit (contained
in the SimpleRandomSamples.ECL file):

Si npl eRandontanpl e(I nFi |l e, U D_Fi el d, Sanpl eSi ze, Resul t) : = MACRO
//build a table of the U Ds
#UNI QUENAME(Layout _Pl us_Recl D)
% .ayout Pl us_Recl D% : = RECORD
UNSI GNED8 Recl D : = 0;
InFile.U D Field;
END;
#UNI QUENAME(| nTbl)
% nTbl % : = TABLE(| nFi |l e, %4.ayout Pl us_Recl D% ;

//then assign unique record IDs to the table entries

#UNI QUENAME(| DRecs)

% ayout Pl us_Recl D% % DRecs% %4.ayout Pl us_Recl D% L, |INTEGER C) : =
TRANSFORM
SELF. RecI D : = C;
SELF : = L;

END;

#UNI QUENAME(Ul D_Recs)

%I D_Recs% : = PROJECT(% nThl % % DRecs% LEFT, COUNTER)) ;

// di scover the nunber of records
#UNI QUENAMVE(Whol eSet)
%ol eSet % : = COUNT(I nFile) : GLOBAL;

//then generate the unique record IDs to include in the sanple
#UNI QUENAME(Bl ankSet)
98l ankSet % : = DATASET([{0}], { UNSI GNED8 seq});
#UNI QUENAME(Sel ect Em)
TYPEOF(%8Bl ankSet %) %Sel ect EnP4 9Bl ankSet % L, | NTEGER c) : = TRANSFORM
SELF. seq : = ROUNDUP(%Mol eSet % * (((RANDOM) 9%4.00000) +1)/ 100000)) ;
END;
#UNI QUENAVE(sel ect ed)
Ysel ect ed% : = NORMALI ZE(9Bl ankSet % Sanpl eSi ze,
%sel ect En?g LEFT, COUNTER)) ;

//then filter the original dataset by the selected U Ds
#UNI QUENAME(Set Sel ect edRecs)
%Set Sel ect edRecs% : = SET(%J D_Recs% Recl D I N SET(¥%sel ect ed% seq)),
U D Field);
result :=infile(UD_Field IN %et Sel ect edRecs%) ;
ENDVACRG,

This MACRO takes four parameters:

* The name of the file to sample * The name of the unique identifier field in that file * The size of the sample to
generate * The name of the attribute for the result, so that it may be post-processed

Theagorithm itself isfairly smple. Wefirst create a TABLE of uniquely numbered unique identifier fields. Then we
use NORMALIZE to produce arecordset of the candidate records. Which candidate is chosen each timethe TRANS-
FORM functioniscalled is determined by generating a“random” value between zero and one, using modulus division
by one hundred thousand on the return from the RANDOM() function, then multiplying that result by the number of
records to sample from, rounding up to the next larger integer. This determines the position of the field identifier to

© 2015 HPCC Systems®. All rights reserved
89

ECL Programmers Guide
Getting Things Done

use. Once the set of positions within the TABLE is determined, they are used to define the SET of unique fields to
usein thefinal result.

This algorithm is designed to produce a sample “with replacement” so that it is possible to have a smaller number of
records returned than the sample size requested. To produce exactly the size sample you need (that is, a “without re-
placement” sample), you can request alarger sample size (say, 10% larger) then usethe CHOOSEN functionto retrieve
only the actual number of recordsrequired, asin thisexampl e (al so contained in the SimpleRandomSamples.ECL file).

SoneFile := DATASET([{'Al"},{'B1"},{'CLl"},{'D1"},{"E1'},
{"FL'} "G}, {"HL'}, {1117}, {" 01"},
(KUY (LU} MUY {UNL') oL),
{"PU'}, {"QU}, {"RU}, {"SI'}, {" T1'},
(UL} (VI WG XL YL
{"A2'}, {"B2'}, {"C2'}, {"D2'},{"E2'},
{'F2}, ("G} {"H). {12}, ()2},
{"K2} L2} w2 (T Q')
{'P2} ('@} ("R} {'S2'} {'T2'},
{"W'}, v} v (X {1 v2),
{"A3'},{'B3'}, {"C3} {' D8} { E},
{"F3'},{"G}, {"H},{"13},{" 33},
{'K3'}, {13}, {"MB"}, {"Na"}, {" C®B'},
{'P3'},{" @}, {"R3"},{"S3'},{" T3},
{1Us'}, {3}, {"We'}, {1 X3}, {"¥3'},
{"A'}, (B4}, {"Ca"}, {"D4'}, {"E4'},
{'FA}, (G} {HA) {14} (104,
{'Ka'}, {"La} ("M} (TN {1 O),
(P&} (" Q} {RA} ('S4} (T4},
(U, {var), {we g {xan) ey
], {STRIN& Letter});

ds : = DI STRI BUTE(SoneFi | e, HASH(l etter[2]));

Si npl eRandonfanpl e(ds, Letter, 6, resl) //ask for 6
Si npl eRandonfsanpl e(ds, Letter, 6, res2)

Si npl eRandonfanpl e(ds, Letter, 6, res3)

OUTPUT(CHOOSEN(res1,5)); //actually need 5
OUTPUT(CHOOSEN(r es3, 5)) ;

© 2015 HPCC Systems®. All rights reserved
90

ECL Programmers Guide
Getting Things Done

Hex String to Decimal String

An email request came to me to suggest a way to convert a string containing Hexadecimal values to a string
containing the decimal equivalent of that value. The problem was that this code needed to run in Roxie and the
StringLib.String2Data plug-in library function was not available for use in Roxie queries at that time. Therefore, an
all-ECL solution was needed.

This example function (contained in the Hex2Decimal .ECL file) provides that functionality, while at the same time
demonstrating practical usage of BIG ENDIAN integers and type transfer.

HexSt r 2Deci mal (STRI NG Hexl n) := FUNCTI ON

//type re-definitions to make code nore readabl e bel ow

BE1 : = Bl G_ENDI AN UNSI GNED1;
BE2 : = Bl G_ENDI AN UNSI GNED2;
BE3 : = Bl G_ENDI AN UNSI GNEDS;
BE4 : = Bl G_ENDI AN UNSI GNED4;
BE5 : = Bl G_ENDI AN UNSI GNEDS5;
BE6 : = Bl G_ENDI AN UNSI GNED®G;
BE7 : = Bl G_ENDI AN UNSI GNED7;
BE8 : = Bl G_ENDI AN UNSI GNEDS;

Tri mHex := TRI M Hexl n, ALL) ;
HexLen : = LENGTH(Tri nmHex) ;
UseHex := I F(HexLen %2 = 1,'0","'") + TrinHex;

//a sub-function to translate two hex chars to a packed hex fornat
STRINGL Str2Dat a(STRING2 Hex) := FUNCTI ON
UNSI GNED1 N1 : =
CASE(Hex[1],
'0' =>00x, ' 1' =>10x, ' 2' =>20x, ' 3' =>30x,
'4' =>40x, ' 5' =>50x, ' 6' =>60x, ' 7' =>70x,
' 8' =>80x, ' 9' =>90x, ' A' =>0A0x, ' B' =>0B0x,
' C =>0Q0x, ' D' =>0D0x, ' E =>0EO0x, ' F' =>0F0x, 00x) ;
UNSI GNED1 N2 : =
CASE(Hex[2],
'0' =>00x, ' 1' =>01x, ' 2' =>02x, ' 3' =>03x,
'4' =>04x, ' 5' =>05x, ' 6' =>06x, ' 7' =>07X,
'8' =>08x, ' 9' =>09x, ' A' =>0Ax, ' B' =>0BXx,
' C =>0Cx, ' D' =>0Dx, ' E' =>0Ex, ' F' =>0Fx, 00x) ;
RETURN (>STRI NGL<) (N1 | N2);
END;

UseHexLen : = LENGTH(TRI M UseHex)) ;

I nHex2 : = Str2Dat a(UseHex[1..2]);

I nHex4 := InHex2 + Str2Data(UseHex[3..4]);

I nHex6 := InHex4 + Str2Data(UseHex[5..6]);

I NnHex8 : = I nHex6 + Str2Data(UseHex[7..8]);

I nHex10 : = | nHex8 + Str2Dat a(UseHex[9..10]);;

| nHex12 : = I nHex10 + Str2Data(UseHex[11..12]);
| nHex14 : = I nHex12 + Str2Dat a(UseHex[13..14]);
I NnHex16 : = I nHex14 + Str2Dat a(UseHex[15..16]);

RETURN CASE(UseHexLen,

2 => (STRI NG (>BE1<) | nHex2,

4 => (STRI NG (>BE2<) | nHex4,

6 => (STRI NG (>BE3<) | nHex6,

8 => (STRI NG (>BE4<) | nHex8,
10 => (STRI NG) (>BE5<) | nHex10,
12 => (STRI NG) (>BE6<) | nHex12,
14 => (STRI NG) (>BE7<) | nHex 14,
16 => (STRI NG) (>BE8<) | nHex16,
' ERROR) ;

© 2015 HPCC Systems®. All rights reserved
91

ECL Programmers Guide
Getting Things Done

END;

This HexStr2Decimal FUNCTION takes a variable-length STRING parameter containing the hexadecimal value to
evaluate. It begins by re-defining the eight possible sizes of unsigned BIG ENDIAN integers. This re-definition is
purely for cosmetic purposes—to make the subsequent code more readable.

The next three attributes detect whether an even or odd number of hexadecimal characters has been passed. If an odd
number is passed, then a“0” character is prepended to the passed value to ensure the hex values are placed in the
correct nibbles.

The Str2Data FUNCTION takes atwo-character STRING parameter and trand ates each character into the appropriate
hexadecimal value for each nibble of the resulting 1-character STRING that it returns. The first character defines the
first nibble and the second defines the second. These two values are ORed together (using the bitwise | operator) then
the result is type transferred to a one-character string, using the shorthand syntax— (>STRING1<) —so that the bit
pattern remains untouched. The RETURN result from this FUNCTION isa STRING1 because each succeeding two-
character portion of the HexStr2Decimal FUNCTION's input parameter will pass through the Str2Data FUNCTION
and be concatenated with all the preceding resullts.

The UseHexLen attribute determines the appropriate size of BIG ENDIAN integer to use to translate the hex into
decimal, while the InHex2 through InHex16 attributes define the final packed-hexadecimal value to evaluate. The
CASE function then uses that UseHexLen to determine which InHex attribute to use for the number of bytes of hex
value passed in. Only even numbers of hex characters are allowed (meaning the call to the function would need to add
aleading zero to any odd-numbered hex valuesto translate) and the maximum number of characters allowed is sixteen
(representing an eight-byte packed hexadecimal value to trandlate).

In al cases, the result from the InHex attribute is type-transferred to the appropriately sized BIG ENDIAN integer.
The standard type cast to STRING then performs the actual value translation from the hexadecimal to decimal.

The following calls return the indicated results:

OUTPUT(HexSt r 2Deci mal (' 0101')); /1 257
OUTPUT(HexSt r 2Deci mal (' FF')) ; /1 255

OUTPUT(HexSt r 2Deci mal (' FFFF')); /1 65535

OUTPUT(HexSt r 2Deci mal (' FFFFFF')) ; /1 16777215

QUTPUT(HexSt r 2Deci mal (' FFFFFFFF')) ; /] 4294967295
OUTPUT(HexSt r 2Deci mal (* FFFFFFFFFF')) ; /1 1099511627775
OQUTPUT(HexSt r 2Deci mal (' FFFFFFFFFFFF')) ; [l 281474976710655
OUTPUT(HexSt r 2Deci mal (' FFFFFFFFFFFFFF')) ; /] 72057594037927935

OUTPUT(HexSt r 2Deci mal (' FFFFFFFFFFFFFFFF')); /] 18446744073709551615
OUTPUT(HexSt r 2Deci mal (' FFFFFFFFFFFFFFFFFF)); // ERROR

© 2015 HPCC Systems®. All rights reserved
92

	ECL Programmers Guide
	Table of Contents
	ECL Programming Concepts
	Attribute Creation
	Similarities and Differences
	“Atomic” Programming
	Growing Solutions
	“Ugly” ECL is Possible, Too
	Easy Optimization

	Creating Example Data
	Getting Code Files
	Generating Files
	Some Constants
	The RECORD Structures
	Starting Point Data
	Generating Parent Records
	Generating Child Records
	Create the Nested Child Dataset Records
	Write Files to Disk
	Defining the Files

	Cross-Tab Reports
	A Simple CrossTab
	A More Complex Example
	A Statistical Example

	Efficient Value Type Usage
	Numeric Data Type Selection
	Integer Data
	Floating Point Data

	String Data Type Selection
	STRING vs. VARSTRING
	STRING vs. QSTRING
	Fixed Length vs. Variable Length Strings

	User-Defined Data Types
	RECORD Structure
	TYPE Structure
	TypeDef Attributes

	Using the GROUP Function
	GROUP vs. SORT
	Performance Considerations

	Automated ECL
	Using Text Files

	Job “Failure”
	Non-Random RANDOM
	Working with XML Data
	Simple XML Data Handling
	Complex XML Data Handling
	Input with Complex XML Formats
	Piping to Third-Party Tools

	Working with BLOBs
	Spraying BLOB Data
	Working with BLOB Data
	Despraying BLOB Data

	Using ECL Keys (INDEX Files)
	Simple FETCH
	Full-keyed JOIN
	Half-keyed JOIN
	Payload INDEXes
	Computed Fields in Payload Keys
	Computed Fields in Search Keys
	Using an INDEX like a DATASET

	Working With SuperFiles
	SuperFile Overview
	SuperFile Existence Functions
	SuperFile Inquiry Functions
	SuperFile Maintenance Functions
	SuperFile Transactions
	Other Useful Functions

	Creating and Maintaining SuperFiles
	Creating Data
	A Simple Example
	Nesting SuperFiles
	Nested SuperFile Example
	Data Consolidation
	Getting SuperFile Components

	Indexing into SuperFiles
	SuperFiles vs. SuperKeys
	There is a Problem
	And the Solution Is ...

	Using SuperKeys
	Building SuperKeys
	Creating a SuperKey
	Using a SuperKey
	Maintaining SuperKeys

	Working With Roxie
	Roxie Overview
	Thor
	Roxie
	hThor
	How to Structure Roxie Queries
	Testing Queries
	Deploying Queries to Roxie

	SOAP-enabling Queries
	The ECL Key to SOAP
	Putting It All Together

	Complex Roxie Query Techniques
	Key Selection Based on Input
	Keyed Joins
	Limiting Output

	SOAPCALL from Thor to Roxie
	One Record Input, Record Set Return
	Record Set Input, Record Set Return
	Performance Considerations: PARALLEL
	Performance Considerations: MERGE
	A Real World Example

	Controlling Roxie Queries
	How Graphs Execute
	ALLNODES vs. THISNODE
	LOCAL vs. NOLOCAL
	NOROOT Indexes

	Query Libraries
	Library INTERFACE Definition
	Library MODULE Definitions
	Building an External library
	Using a Query Library
	Internal Libraries
	External Libraries

	Query Library Tips
	Restrictions
	Notes on the implementation
	Suggested Structure
	Naming Conventions
	Use an INTERFACE to define parameters
	Hide the LIBRARY
	Use MODULE Inheritance

	Smart Stepping
	Overview
	Trailing Field Sorts
	N-ary JOINs

	Getting Things Done
	Cartesian Product of Two Datasets
	Records Containing Any of a Set of Words
	Simple Random Samples
	Hex String to Decimal String

