
ECL Programmers Guide
Boca Raton Documentation Team

ECL Programmers Guide

© 2016 HPCC Systems®. All rights reserved
2

ECL Programmers Guide
Boca Raton Documentation Team
Copyright © 2016 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2016 Version 6.0.0-1

ECL Programmers Guide

© 2016 HPCC Systems®. All rights reserved
3

ECL Programming Concepts ... 4
Attribute Creation ... 4
Creating Example Data .. 6
Cross-Tab Reports ... 14
Efficient Value Type Usage .. 17
Using the GROUP Function .. 22
Automated ECL ... 25
Job “Failure” .. 28
Non-Random RANDOM ... 29
Working with XML Data ... 30
Working with BLOBs ... 37
Using ECL Keys (INDEX Files) .. 39

Working With SuperFiles ... 47
SuperFile Overview ... 47
Creating and Maintaining SuperFiles .. 49
Indexing into SuperFiles ... 54
Using SuperKeys .. 56

Working With Roxie .. 59
Roxie Overview ... 59
SOAP-enabling Queries .. 62
Complex Roxie Query Techniques ... 63
SOAPCALL from Thor to Roxie ... 65
Controlling Roxie Queries .. 70
Query Libraries ... 73
Smart Stepping .. 79

Getting Things Done .. 84
Cartesian Product of Two Datasets ... 84
Records Containing Any of a Set of Words .. 86
Simple Random Samples ... 89
Hex String to Decimal String .. 91

Embedded Languages and Data stores .. 93
Code Signing, Embedded languages, and Security ... 94

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
4

ECL Programming Concepts

Attribute Creation
Similarities and Differences
The similarities come from the fundamental requirement of solving any data processing problem: First, understand
the problem.

After that, in many programming environments, you use a “top-down” approach to map out the most direct line of
logic to get your input transformed into the desired output. This is where the process diverges in ECL, because the
tool itself requires a different way of thinking about forming the solution, and the direct route is not always the fastest.
ECL requires a “bottom-up” approach to problem solving.

“Atomic” Programming
In ECL, once you understand what the end result needs to be, you ignore the direct line from problem input to end result
and instead start by breaking the issue into as many pieces as possible—the smaller the better. By creating “atomic”
bits of ECL code, you've done all the known and easy bits of the problem. This usually gets you 80% of the way to
the solution without having to do anything terribly difficult.

Once you've taken all the bits and made them as atomic as possible, you can then start combining them to go the other
20% of the way to produce your final solution. In other words, you start by doing the little bits that you know you can
easily do, then use those bits in combination to produce increasingly complex logic that builds the solution organically.

Growing Solutions
The basic Attribute building blocks in ECL are the Set, Boolean, Recordset, and Value Attribute types. Each of these
can be made as “atomic” as needed so that they may be used in combination to produce “molecules” of more complex
logic that may then be further combined to produce a complete “organism” that produces the final result.

For example, assume you have a problem that requires you to produce a set of records wherein a particular field in
your output must contain one of several specified values (say, 1, 3, 4, or 7). In many programming languages, the
pseudo-code to produce that output would look something like this:

Start at top of MyFile
Loop through MyFile records
 If MyField = 1 or MyField = 3 or MyField = 4 or MyField = 7
 Include record in output set
 Else
 Throw out record and go back to top of loop
end if and loop

While in ECL, the actual code would be:

SetValidValues := [1,3,4,7]; //Set Definition
IsValidRec := MyFile.MyField IN SetValidValues; //Boolean
ValRecsMyFile := MyFile(IsValidRec); //filtered Recordset
OUTPUT(ValRecsMyFile);

The thought process behind writing this code is:

“I know I have a set of constant values in the spec, so I can start by creating a Set attribute of the valid values...

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
5

“And now that I have a Set defined, I can use that Set to create a Boolean Attribute to test whether the field I'm
interested in contains one of the valid values...

“And now that I have a Boolean defined, I can use that Boolean as the filter condition to produce the Recordset I
need to output.”

The process starts with creating the Set Attribute “atom,” then using it to build the Boolean “molecule,” then using
the Boolean to grow the “organism”—the final solution.

“Ugly” ECL is Possible, Too
Of course, that particular set of ECL could have been written like this (following a more top down thinking process):

OUTPUT(MyFile(MyField IN [1,3,4,7]));

The end result, in this case, would be the same.

However, the overall usefulness of this code is drastically reduced because, in the first form, all the “atomic” bits
are available for re-use elsewhere when similar problems come along. In this second form, they are not. And in all
programming styles, code re-use is considered to be a good thing.

Easy Optimization
Most importantly, by breaking your ECL code into its smallest possible components, you allow ECL’s optimizing
compiler to do the best job possible of determining how to accomplish your desired result. This leads to another
dichotomy between ECL and other programming languages: usually, the less code you write, the more “elegant” the
solution; but in ECL, the more code you write, the better and more elegant the solution is generated for you. Remember,
your Attributes are just definitions telling the compiler what to do, not how to do it. The more you break down the
problem into its component pieces, the more leeway you give the optimizer to produce the fastest, most efficient
executable code.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
6

Creating Example Data
Getting Code Files
All the example code for the Programmer's Guide is available for download from the HPCC Systems website from
the same page that the PDF is available (click here). To make this code available for use in the ECL IDE, you simply:

1. Download the ECL_Code_Files.ZIP file.

2. In the ECL IDE, highlight your "My Files" folder, right-click and select "Insert Folder" from the popup menu.

3. Name your new folder "ProgrammersGuide" (please note -- spaces are NOT allowed in your ECL repository folder
names).

4. In the ECL IDE, highlight your "ProgrammersGuide" folder, right-click and select "Locate File in Explorer" from
the popup menu.

5. Extract all the files from the ECL_Code_Files.ZIP file into your new folder.

Generating Files
The code that generates the example data used by all the Programmer's Guide articles is contained in a file named
Gendata.ECL. You simply need to open that file in the ECL IDE (select File > Open from the menu, select the
Gendata.ECL file, and it will open in a Builder window) then press the Submit button to generate the data files. The
process takes a couple of minutes to run. Here is the code, fully explained.

Some Constants
IMPORT std;

P_Mult1 := 1000;
P_Mult2 := 1000;
TotalParents := P_Mult1 * P_Mult2;
TotalChildren := 5000000;

These constants define the numbers used to generate 1,000,000 parent records and 5,000,000 child records. By defining
these once as attributes the code could be easily made to generate a smaller number of parent records (such as 10,000
by changing both multipliers from 1000 to 100). However, the code as written is designed for a maximum of 1,000,000
parent records and would have to be changed in several places to accommodate generating more. The number of child
records can be changed either direction without any other changes to the code (although if pushed too far upward
you may encounter runtime errors regarding the maximum variable record length for the nested child dataset). For
the purposes of demonstrating the techniques in these Programmer's Guide articles, 1,000,000 parent and 5,000,000
child records are more than sufficient.

The RECORD Structures
Layout_Person := RECORD
 UNSIGNED3 PersonID;
 STRING15 FirstName;
 STRING25 LastName;
 STRING1 MiddleInitial;
 STRING1 Gender;
 STRING42 Street;
 STRING20 City;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
7

 STRING2 State;
 STRING5 Zip;
END;

Layout_Accounts := RECORD
 STRING20 Account;
 STRING8 OpenDate;
 STRING2 IndustryCode;
 STRING1 AcctType;
 STRING1 AcctRate;
 UNSIGNED1 Code1;
 UNSIGNED1 Code2;
 UNSIGNED4 HighCredit;
 UNSIGNED4 Balance;
END;

Layout_Accounts_Link := RECORD
 UNSIGNED3 PersonID;
 Layout_Accounts;
END;

Layout_Combined := RECORD,MAXLENGTH(1000)
 Layout_Person;
 DATASET(Layout_Accounts) Accounts;
END;

These RECORD structures define the field layouts for three datasets: a parent file (Layout_Person), a child file
(Layout_Accounts_Link), and a parent with nested child dataset (Layout_Combined). These are used to generate three
separate data files. The Layout_Accounts_Link and Layout_Accounts structures are separate because the child records
in the nested structure will not contain the linking field to the parent, whereas the separate child file must contain
the link.

Starting Point Data
//define data for record generation:
 //100 possible middle initials, 52 letters and 48 blanks
SetMiddleInitials := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' +
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ';

 //1000 First names
SET OF STRING14 SetFnames := [
 'TIMTOHY ','ALCIAN ','CHAMENE ',
 ...];

 //1000 Last names
SET OF STRING16 SetLnames := [
 'BIALES ','COOLING ','CROTHALL ',
 ...];

These sets define the data that will be used to generate the records. By providing 1,000 first and last names, this code
can generate 1,000,000 unique names.

 //2400 street addresses to choose from
SET OF STRING31 SetStreets := [
 '1 SANDHURST DR ','1 SPENCER LN ',
 ...];

 //Matched sets of 9540 City,State, Zips
SET OF STRING15 SetCity := [
 'ABBEVILLE ','ABBOTTSTOWN ','ABELL ',
 ...];

SET OF STRING2 SetStates := [

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
8

 'LA','PA','MD','NC','MD','TX','TX','IL','MA','LA','WI','NJ',
 ...];

SET OF STRING5 SetZips := [
 '70510','17301','20606','28315','21005','79311','79604',
 ...];

Having 2400 street addresses and 9540 (valid) city, state, zip combinations provides plenty of opportunity to generate
a reasonable mix of addresses.

Generating Parent Records
BlankSet := DATASET([{0,'','','','','','','','',[]}],
 Layout_Combined);
CountCSZ := 9540;

Here is the beginning of the data generation code. The BlankSet is a single empty “seed” record, used to start the
process. The CountCSZ attribute simply defines the maximum number of city, state, zip combinations that are available
for use in subsequent calculations that will determine which to use in a given record.

Layout_Combined CreateRecs(Layout_Combined L,
 INTEGER C,
 INTEGER W) := TRANSFORM
 SELF.FirstName := IF(W=1,SetFnames[C],L.FirstName);
 SELF.LastName := IF(W=2,SetLnames[C],L.LastName);
 SELF := L;
END;

base_fn := NORMALIZE(BlankSet,P_Mult1,CreateRecs(LEFT,COUNTER,1));

base_fln := NORMALIZE(base_fn ,P_Mult2,CreateRecs(LEFT,COUNTER,2));

The purpose of this code is to generate 1,000,000 unique first/last name records as a starting point. The NORMALIZE
operation is unique in that its second parameter defines the number of times to call the TRANSFORM function for
each input record. This makes it uniquely suited to generating the kind of “bogus” data we need.

We're doing two NORMALIZE operations here. The first generates 1,000 records with unique first names from the
single blank record in the BlankSet inline DATASET. Then the second takes the 1,000 records from the first NOR-
MALIZE and creates 1,000 new records with unique last names for each input record, resulting in 1,000,000 unique
first/last name records.

One interesting “trick” here is the use of a single TRANSFORM function for both of the NORMALIZE operations.
Defining the TRANSFORM to receive one “extra” (third) parameter than it normally takes is what allows this. This
parameter simply flags which NORMALIZE pass the TRANSFORM is doing.

Layout_Combined PopulateRecs(Layout_Combined L,
 Layout_Combined R,
 INTEGER HashVal) := TRANSFORM
 CSZ_Rec := (HashVal % CountCSZ) + 1;
 SELF.PersonID := IF(L.PersonID = 0,
 Thorlib.Node() + 1,
 L.PersonID + CLUSTERSIZE);
 SELF.MiddleInitial := SetMiddleInitials[(HashVal % 100) + 1];
 SELF.Gender := CHOOSE((HashVal % 2) + 1,'F','M');
 SELF.Street := SetStreets[(HashVal % 2400) + 1];
 SELF.City := SetCity[CSZ_Rec];
 SELF.State := SetStates[CSZ_Rec];
 SELF.Zip := SetZips[CSZ_Rec];
 SELF := R;
END;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
9

base_fln_dist := DISTRIBUTE(base_fln,HASH32(FirstName,LastName));

base_people := ITERATE(base_fln_dist,
 PopulateRecs(LEFT,
 RIGHT,
 HASHCRC(RIGHT.FirstName,RIGHT.LastName)),
 LOCAL);

base_people_dist := DISTRIBUTE(base_people,HASH32(PersonID));

Once the two NORMALIZE operations have done their work, the next task is to populate the rest of the fields. Since
one of those fields is the PersonID, which is the unique identifier field for the record, the fastest way to populate it is
with ITERATE using the LOCAL option. Using the Thorlib.Node() function and CLUSTERSIZE compiler directive,
you can uniquely number each record in parallel on each node with ITERATE. You may end up with a few holes in
the numbering towards the end, but since the only requirement here is uniqueness and not contiguity, those holes are
irrelevant. Since the first two NORMALIZE operations took place on a single node (look at the data skews shown in
the ECL Watch graph), the first thing to do is DISTRIBUTE the records so each node has a proportional chunk of the
data to work with. Then the ITERATE can do its work on each chunk of records in parallel.

To introduce an element of randomity to the data choices, the ITERATE passes a hash value to the TRANSFORM
function as an “extra” third parameter. This is the same technique used previously, but passing calculated values instead
of constants.

The CSZ_Rec attribute definition illustrates the use of local attribute definitions inside TRANSFORM functions.
Defining the expression once, then using it multiple times as needed to produce a valid city, state, zip combination.
The rest of the fields are populated by data selected using the passed in hash value in their expressions. The modulus
division operator (%—produces the remainder of the division) is used to ensure that a value is calculated that is in the
valid range of the number of elements for the given set of data from which the field is populated.

Generating Child Records
BlankKids := DATASET([{0,'','','','','',0,0,0,0}],
 Layout_Accounts_Link);

SetLinks := SET(base_people,PersonID);

SetIndustryCodes := ['BB','DC','ON','FM','FP','FF','FC','FA','FZ',
 'CG','FS','OC','ZZ','HZ','UT','HF','CS','DM',
 'JA','FY','HT','UE','DZ','AT'];

SetAcctRates := ['1','0','9','*','Z','5','B','2',
 '3','4','A','7','8','E','C'];

SetDateYears := ['1987','1988','1989','1990','1991','1992','1993',
 '1994','1995','1996','1997','1998','1999','2000',
 '2001','2002','2003','2004','2005','2006'];

SetMonthDays := [31,28,31,30,31,30,31,31,30,31,30,31];

SetNarrs := [229,158,2,0,66,233,123,214,169,248,67,127,168,
 65,208,114,73,218,238,57,125,113,88,
 247,244,121,54,220,98,97];

Once again, we start by defining a “seed” record for the process as an inline DATASET and several sets of appropriate
data for the specific fields. The SET function builds a set of valid PersonID values to use to create the links between
the parent and child records.

Layout_Accounts_Link CreateKids(Layout_Accounts_Link L,
 INTEGER C) := TRANSFORM
 CSZ_IDX := C % CountCSZ + 1;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
10

 HashVal := HASH32(SetCity[CSZ_IDX],SetStates[CSZ_IDX],SetZips[CSZ_IDX]);
 DateMonth := HashVal % 12 + 1;
 SELF.PersonID := CHOOSE(TRUNCATE(C / TotalParents) + 1,
 IF(C % 2 = 0,
 SetLinks[C % TotalParents + 1],
 SetLinks[TotalParents - (C % TotalParents)]),
 IF(C % 3 <> 0,
 SetLinks[C % TotalParents + 1],
 SetLinks[TotalParents - (C % TotalParents)]),
 IF(C % 5 = 0,
 SetLinks[C % TotalParents + 1],
 SetLinks[TotalParents - (C % TotalParents)]),
 IF(C % 7 <> 0,
 SetLinks[C % TotalParents + 1],
 SetLinks[TotalParents - (C % TotalParents)]),
 SetLinks[C % TotalParents + 1]);
 SELF.Account := (STRING)HashVal;
 SELF.OpenDate := SetDateYears[DateMonth] + INTFORMAT(DateMonth,2,1) +
 INTFORMAT(HashVal % SetMonthDays[DateMonth]+1,2,1);
 SELF.IndustryCode := SetIndustrycodes[HashVal % 24 + 1];
 SELF.AcctType := CHOOSE(HashVal%5+1,'O','R','I','9',' ');
 SELF.AcctRate := SetAcctRates[HashVal % 15 + 1];
 SELF.Code1 := SetNarrs[HashVal % 15 + 1];
 SELF.Code2 := SetNarrs[HashVal % 15 + 16];
 SELF.HighCredit := HashVal % 50000;
 SELF.Balance := TRUNCATE((HashVal % 50000) * ((HashVal % 100 + 1) / 100));
END;

base_kids := NORMALIZE(BlankKids,
 TotalChildren,
 CreateKids(LEFT,COUNTER));
base_kids_dist := DISTRIBUTE(base_kids,HASH32(PersonID));

This process is similar to the one used for the parent records. This time, instead of passing in a hash value, a local
attribute does that work inside the TRANSFORM. Just as before, the hash value is used to select the actual data to
go in each field of the record.

The interesting bit here is the expression to determine the PersonID field value. Since we're generating 5,000,000 child
records it would be very simple to just give each parent five children. However, real-world data rarely looks like that.
Therefore, the CHOOSE function is used to select a different method for each set of a million child records. The first
million uses the first IF expression, and the second million uses the second, and so on... This creates a varying number
of children for each parent, ranging from one to nine.

Create the Nested Child Dataset Records
Layout_Combined AddKids(Layout_Combined L, base_kids R) := TRANSFORM
 SELF.Accounts := L.Accounts +
 ROW({R.Account,R.OpenDate,R.IndustryCode,
 R.AcctType,R.AcctRate,R.Code1,
 R.Code2,R.HighCredit,R.Balance},
 Layout_Accounts);
 SELF := L;
END;
base_combined := DENORMALIZE(base_people_dist,
 base_kids_dist,
 LEFT.PersonID = RIGHT.PersonID,
 AddKids(LEFT, RIGHT));

Now that we have separate recordsets of parent and child records, the next step is to combine them into a single dataset
with each parent's child data nested within the same physical record as the parent. The reason for nesting the child data
this way is to allow easy parent-child queries in the Data Refinery and Rapid data Delivery Engine without requiring
the use of separate JOIN steps to make the links between the parent and child records.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
11

To build the nested child dataset requires the DENORMALIZE operation. This operation finds the links between
the parent records and their associated children, calling the TRANSFORM function as many times as there are child
records for each parent. The interesting technique here is the use of the ROW function to construct each additional
nested child record. This is done to eliminate the linking field (PersonID) from each child record stored in the combined
dataset, since it is the same value as contained in the parent record's PersonID field.

Write Files to Disk
O1 := OUTPUT(PROJECT(base_people_dist,Layout_Person),,'~PROGGUIDE::EXAMPLEDATA::People',OVERWRITE);

O2 := OUTPUT(base_kids_dist,,'~PROGGUIDE::EXAMPLEDATA::Accounts',OVERWRITE);

O3 := OUTPUT(base_combined,,'~PROGGUIDE::EXAMPLEDATA::PeopleAccts',OVERWRITE);

P1 := PARALLEL(O1,O2,O3);

These OUTPUT attribute definitions will write the datasets to disk. They are written as attribute definitions because
they will be used in a SEQUENTIAL action. The PARALLEL action attribute simply indicates that all these disk
writes can occur “simultaneously” if the optimizer decides it can do that.

The first OUTPUT uses a PROJECT to produce the parent records as a separate file because the data was originally
generated into a RECORD structure that contains the nested child DATASET field (Accounts) in preparation for
creating the third file. The PROJECT eliminates that empty Accounts field from the output for this dataset.

D1 := DATASET('~PROGGUIDE::EXAMPLEDATA::People',
 {Layout_Person,UNSIGNED8 RecPos{virtual(fileposition)}}, THOR);

D2 := DATASET('~PROGGUIDE::EXAMPLEDATA::Accounts',
 {Layout_Accounts_Link,UNSIGNED8 RecPos{virtual(fileposition)}},THOR);

D3 := DATASET('~PROGGUIDE::EXAMPLEDATA::PeopleAccts',
 {,MAXLENGTH(1000) Layout_Combined,UNSIGNED8 RecPos{virtual(fileposition)}},THOR);

These DATASET declarations are needed to be able to build indexes. The UNSIGNED8 RecPos fields are the virtual
fields (they only exist at runtime and not on disk) that are the internal record pointers. They're declared here to be able
to reference them in the subsequent INDEX declarations.

I1 := INDEX(D1,{PersonID,RecPos},'~PROGGUIDE::EXAMPLEDATA::KEYS::People.PersonID');

I2 := INDEX(D2,{PersonID,RecPos},'~PROGGUIDE::EXAMPLEDATA::KEYS::Accounts.PersonID');

I3 := INDEX(D3,{PersonID,RecPos},'~PROGGUIDE::EXAMPLEDATA::KEYS::PeopleAccts.PersonID');

B1 := BUILD(I1,OVERWRITE);
B2 := BUILD(I2,OVERWRITE);
B3 := BUILD(I3,OVERWRITE);

P2 := PARALLEL(B1,B2,B3);

These INDEX declarations allow the BUILD actions to use the single-parameter form. Once again, the PARALLEL
action attribute indicates the index build may be done all at the same time.

SEQUENTIAL(P1,P2);

This SEQUENTIAL action simply says, “write all the data files to disk, and then build the indexes.”

Defining the Files
Once the datasets and indexes have been written to disk you must declare the files in order to use them in the example
ECL code in the rest of the articles. These declarations are contained in the DeclareData.ECL file. To make them

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
12

available to the rest of the example code you simply need to IMPORT it. Therefore, at the beginning of each example
you will find this line of code:

IMPORT $;

This IMPORTs all the files in the ProgrammersGuide folder (including the DeclareData MODULE structure defin-
ition). Referencing anything from DeclareData is done by prepending $.DeclareData to the name of the EXPORT
definition you need to use, like this:

MyFile := $.DeclareData.Person.File; //rename $DeclareData.Person.File to MyFile to make
 //subsequent code simpler

Here is some of the code contained in the DeclareData.ECL file:

EXPORT DeclareData := MODULE

 EXPORT Layout_Person := RECORD
 UNSIGNED3 PersonID;
 STRING15 FirstName;
 STRING25 LastName;
 STRING1 MiddleInitial;
 STRING1 Gender;
 STRING42 Street;
 STRING20 City;
 STRING2 State;
 STRING5 Zip;
 END;

 EXPORT Layout_Accounts := RECORD
 STRING20 Account;
 STRING8 OpenDate;
 STRING2 IndustryCode;
 STRING1 AcctType;
 STRING1 AcctRate;
 UNSIGNED1 Code1;
 UNSIGNED1 Code2;
 UNSIGNED4 HighCredit;
 UNSIGNED4 Balance;
 END;

 EXPORT Layout_Accounts_Link := RECORD
 UNSIGNED3 PersonID;
 Layout_Accounts;
 END;

 SHARED Layout_Combined := RECORD,MAXLENGTH(1000)
 Layout_Person;
 DATASET(Layout_Accounts) Accounts;
 END;

 EXPORT Person := MODULE
 EXPORT File := DATASET('~PROGGUIDE::EXAMPLEDATA::People',Layout_Person, THOR);
 EXPORT FilePlus := DATASET('~PROGGUIDE::EXAMPLEDATA::People',
 {Layout_Person,UNSIGNED8 RecPos{virtual(fileposition)}}, THOR);
 END;
 EXPORT Accounts := DATASET('~PROGGUIDE::EXAMPLEDATA::Accounts',
 {Layout_Accounts_Link,
 UNSIGNED8 RecPos{virtual(fileposition)}},
 THOR);
 EXPORT PersonAccounts:= DATASET('~PROGGUIDE::EXAMPLEDATA::PeopleAccts',
 {Layout_Combined,
 UNSIGNED8 RecPos{virtual(fileposition)}},
 THOR);

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
13

 EXPORT IDX_Person_PersonID :=
 INDEX(Person,
 {PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::People.PersonID');

 EXPORT IDX_Accounts_PersonID :=
 INDEX(Accounts,
 {PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::Accounts.PersonID');

 EXPORT IDX_PersonAccounts_PersonID :=
 INDEX(PersonAccounts,
 {PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::PeopleAccts.PersonID');

END;

By using a MODULE structure as a container, all the DATASET and INDEX declarations are in a single attribute
editor window. This makes maintenance and update simple while allowing complete access to them all.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
14

Cross-Tab Reports
Cross-Tab reports are a very useful way of discovering statistical information about the data that you work with.
They can be easily produced using the TABLE function and the aggregate functions (COUNT, SUM, MIN, MAX,
AVE, VARIANCE, COVARIANCE, CORRELATION). The resulting recordset contains a single record for each
unique value of the “group by” fields specified in the TABLE function, along with the statistics you generate with
the aggregate functions.

The TABLE function's “group by” parameters are used and duplicated as the first set of fields in the RECORD structure,
followed by any number of aggregate function calls, all using the GROUP keyword as the replacement for the recordset
required by the first parameter of each of the aggregate functions. The GROUP keyword specifies performing the
aggregate operation on the group and is the key to creating a Cross-Tab report. This creates an output table containing
a single row for each unique value of the “group by” parameters.

A Simple CrossTab
The example code below (contained in the CrossTab.ECL file) produces an output of State/CountAccts with counts
from the nested child dataset created by the GenData.ECL code (see the Creating Example Data article):

IMPORT $;
Person := $.DeclareData.PersonAccounts;

CountAccts := COUNT(Person.Accounts);

MyReportFormat1 := RECORD
 State := Person.State;
 A1 := CountAccts;
 GroupCount := COUNT(GROUP);
END;

RepTable1 := TABLE(Person,MyReportFormat1,State,CountAccts);
OUTPUT(RepTable1);

/* The result set would look something like this:
 State A1 GroupCount
 AK 1 7
 AK 2 3
 AL 1 42
 AL 2 54
 AR 1 103
 AR 2 89
 AR 3 2 */

Slight modifications allow some more sophisticated statistics to be produced, such as:

MyReportFormat2 := RECORD
 State{cardinality(56)} := Person.State;
 A1 := CountAccts;
 GroupCount := COUNT(GROUP);
 MaleCount := COUNT(GROUP,Person.Gender = 'M');
 FemaleCount := COUNT(GROUP,Person.Gender = 'F');
 END;

RepTable2 := TABLE(Person,MyReportFormat2,State,CountAccts);

OUTPUT(RepTable2);

This adds a breakdown of how many men and women there are in each category, by using the optional second parameter
to COUNT (available only for use in RECORD structures where its first parameter is the GROUP keyword).

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
15

The addition of the {cardinality(56)} to the State definition is a hint to the optimizer that there are exactly 56 values
possible in that field, allowing it to select the best algorithm to produce the output as quickly as possible.

The possibilities are endless for the type of statistics you can generate against any set of data.

A More Complex Example
As a slightly more complex example, the following code produces a Cross-Tab result table with the average balance
on a bankcard trade, average high credit on a bankcard trade, and the average total balance on bankcards, tabulated
by state and sex.

This code demonstrates using separate aggregate attributes as the value parameters to the aggregate function in the
CrossTab.

IsValidType(STRING1 PassedType) := PassedType IN ['O', 'R', 'I'];

IsRevolv := Person.Accounts.AcctType = 'R' OR
 (~IsValidType(Person.Accounts.AcctType) AND
 Person.Accounts.Account[1] IN ['4', '5', '6']);

SetBankIndCodes := ['BB', 'ON', 'FS', 'FC'];

IsBank := Person.Accounts.IndustryCode IN SetBankIndCodes;

IsBankCard := IsBank AND IsRevolv;

AvgBal := AVE(Person.Accounts(isBankCard),Balance);
TotBal := SUM(Person.Accounts(isBankCard),Balance);
AvgHC := AVE(Person.Accounts(isBankCard),HighCredit);

R1 := RECORD
 person.state;
 person.gender;
 Number := COUNT(GROUP);
 AverageBal := AVE(GROUP,AvgBal);
 AverageTotalBal := AVE(GROUP,TotBal);
 AverageHC := AVE(GROUP,AvgHC);
END;

T1 := TABLE(person, R1, state, gender);

OUTPUT(T1);

A Statistical Example
The following example demonstrates the VARIANCE, COVARIANCE and CORRELATION functions to analyze
grid points. It also shows the technique of putting the CrossTab into a MACRO, calling the MACRO to generate the
specific result for a given dataset.

pointRec := { REAL x, REAL y };

analyze(ds) := MACRO
 #uniquename(rec)
 %rec% := RECORD
 c := COUNT(GROUP),
 sx := SUM(GROUP, ds.x),
 sy := SUM(GROUP, ds.y),
 sxx := SUM(GROUP, ds.x * ds.x),
 sxy := SUM(GROUP, ds.x * ds.y),
 syy := SUM(GROUP, ds.y * ds.y),
 varx := VARIANCE(GROUP, ds.x);

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
16

 vary := VARIANCE(GROUP, ds.y);
 varxy := COVARIANCE(GROUP, ds.x, ds.y);
 rc := CORRELATION(GROUP, ds.x, ds.y) ;
 END;
 #uniquename(stats)
 %stats% := TABLE(ds,%rec%);

 OUTPUT(%stats%);
 OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,
 rc - (varxy/SQRT(varx*vary)) });
 OUTPUT(%stats%, { 'bestFit: y='+(STRING)((sy-sx*varxy/varx)/c)+' + '+(STRING)(varxy/varx)+'x' });
ENDMACRO;

ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);
ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);

analyze(ds1);
analyze(ds2);
analyze(ds3);

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
17

Efficient Value Type Usage
Architecting data structures is an art that can make a big difference in ultimate performance and data storage require-
ments. Despite the extensive resources available in the clusters, saving a byte here and a couple of bytes there can be
important -- even in a Big Data massively parallel processing system, resources are not infinite.

Numeric Data Type Selection
Selecting the right type to use for numeric data depends on whether the values are integers or contain fractional portions
(floating point data).

Integer Data

When working with integer data, you should always specify the exact size of INTEGERn or UNSIGNEDn that is
required to hold the largest number possible for that particular field. This will improve execution performance and
compiler efficiency because the default integer data type is INTEGER8 (also the default for Attributes with integer
expressions).

The following table defines the largest values for each given type:

Type Signed Unsigned
INTEGER1 -128 to 127 0 to 255
INTEGER2 -32,768 to 32,767 0 to 65,535
INTEGER3 -8,388,608 to 8,388,607 0 to 16,777,215
INTEGER4 -2,147,483,648 0 to 4,294,967,295
 to 2,147,483,647
INTEGER5 -549,755,813,888 0 to 1,099,511,627,775
 to 549,755,813,887
INTEGER6 -140,737,488,355,328 0 to 281,474,976,710,655
 to 140,737,488,355,327
INTEGER7 36,028,797,018,963,968 0 to 72,057,594,037,927,935
 to 36,028,797,018,963,967
INTEGER8 -9,223,372,036,854,775,808 0 to 18,446,744,073,709,551,615
 to 9,223,372,036,854,775,807

For example, if you have data coming in from the “outside world” where a 4-byte integer field contains values that
range from zero (0) to ninety-nine (99), then it makes sense to move that data into an UNSIGNED1 field. This saves
three bytes per record, which, if the dataset is fairly large one (say, 10 billion records), can translate into considerable
savings on disk storage requirements.

One advantage ECL has over other languages is the richness of its integer types. By allowing you to select the exact
number of bytes (in the range of one to eight), you can tailor your storage requirements to the exact range of values
you need to store, without wasting extra bytes.

Note that the use of the BIG_ENDIAN forms of all the integer types is limited to defining data as it comes in and
goes back out to the “outside world”—all integer data used internally must be in LITTLE_ENDIAN format. The
BIG_ENDIAN format is specifically designed for interfacing with external data sources, only.

Floating Point Data

When using floating point types, you should always specify the exact size of the REALn required to hold the largest
(and/or smallest) number possible for that particular field. This will improve execution performance and compiler ef-
ficiency because REAL defaults to REAL8 (eight bytes) unless otherwise specified. REAL values are stored internally
in IEEE signed floating point format; REAL4 is the 32-bit format and REAL8 is the 64-bit format.

The following table defines the number of significant digits of precision and the largest and smallest values that can
be represented as REAL (floating point) values:

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
18

Type Significant Digits Largest Value Smallest Value
REAL4 7 (9999999) 3.402823e+038 1.175494e-038
REAL8 15 (999999999999999) 1.797693e+308 2.225074e-308

If you need more than fifteen significant digits in your calculations, then you should consider using the DECIMAL
type. If all components of an expression are DECIMAL types then the result is calculated using BCD math libraries
(performing base-10 math instead of floating point's base-2 math). This gives you the capability of achieving up to
thirty-two digits of precision, if needed. By using base-10 math, you also eliminate the rounding issues that are common
to floating point math.

String Data Type Selection
Deciding which of the various string data types to use can be a complex process, since there are several choices:
STRING, QSTRING, VARSTRING, UNICODE, and VARUNICODE. The obvious choices are between the various
STRING types and UNICODE. You need to use UNICODE and/or VARUNICODE only if you are actually dealing
with Unicode data. If that is the case, then the selection is simple. However, deciding exactly which type of string
type to use can be more challenging.

STRING vs. VARSTRING

Data that comes in from or goes out to the “outside world” may contain null-terminated strings. If that is the case,
then you need to use VARSTRING to define those fields in the ingest/output data file. However, the temptation of
programmers with a lot of C/C++ programming experience is to use VARSTRING for everything, in the belief that
it will be more efficient—but that belief is mistaken.

There is no inherent advantage to using VARSTRING instead of STRING within the system. STRING is the base
internal string data type, and so is the more efficient type to use. The VARSTRING type is specifically designed for
interfacing with external data sources, although it may be used within the system, also.

This applies equally to making the choice between using UNICODE versus VARUNICODE.

STRING vs. QSTRING

Depending on what use you need to make of your data, you may or may not care about retaining the original case of
the characters. Therefore, if you DO NOT care about the case, then storing your string data in all uppercase is perfectly
appropriate and QSTRING is your logical choice instead of the STRING type. If, however, you DO need to maintain
case sensitive data, then STRING is the only choice to make.

The advantage that QSTRING has over STRING is an “instant” 25% data compression rate, since QSTRING data
characters are represented by six bits each instead of eight. It achieves this by storing the data in uppercase and only
allowing alphanumeric characters and a small set of special characters (! " # $ % & ' () * + , - . / ; < = > ? @ [\] ^ _).

For strings smaller than four bytes there is no advantage to using QSTRING over STRING, since fields must still
be aligned on byte boundaries. Therefore, the smallest QSTRING that makes any sense to use is a QSTRING4 (four
characters stored in three bytes instead of four).

Fixed Length vs. Variable Length Strings

A string field or parameter may be defined at a specific length, by appending the number of characters to the type name
(such as, STRING20 for a 20-character string). They may also be defined as variable-length by simply not defining
the length (such as, STRING for a variable-length string).

String fields or parameters that are known to always be a specific size should be declared to the exact size needed.
This will improve efficiency and performance by allowing the compiler to optimize for that specific size string and not

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
19

incur the overhead of dynamically calculating the variable length at runtime. The variable-length value type (STRING,
QSTRING, or UNICODE) should only be used when the string length is variable or unknown.

You can use the LENGTH function to determine the length of a variable length string passed as a parameter to a
function. A string passed to a function in which the parameter has been declared as a STRING20 will always have
a length of 20, regardless of its content. For example, a STRING20 which contains ‘ABC’ will have a length of
20, not 3 (unless, of course, you include the TRIM function in the expression). A string that has been declared as a
variable-length STRING and contains ‘ABC’ will have a length of 3.

STRING20 CityName := 'Orlando'; // LENGTH(CityName) is 20
STRING CityName := 'Orlando'; // LENGTH(CityName) is 7

User-Defined Data Types
There are several ways you may define your own data types in ECL. The RECORD and TYPE structures are the
most common.

RECORD Structure

The RECORD structure can be likened to a struct in the C/C++ languages. It defines a related set of fields that are the
fields of a recordset, whether that recordset is a dataset on disk, or a temporary TABLE, or the result of any operation
using a TRANSFORM function.

The RECORD structure is a user-defined data type because, once defined as an attribute you may use that attribute as:

* the data type for parameters passed to TRANSFORM functions

* the data type for a “field” in another RECORD structure (nested structures)

* the structure of a nested child DATASET field in another RECORD structure

Here's an example that shows all three uses (contained in the RecStruct.ECL file) :

IMPORT ProgrammersGuide.DeclareData AS ProgGuide;

Layout_Person := RECORD
 UNSIGNED1 PersonID;
 STRING15 FirstName;
 STRING25 LastName;
END;
Person := DATASET([{1,'Fred','Smith'},
 {2,'Joe','Blow'},
 {3,'Jane','Smith'}],Layout_Person);

Layout_Accounts := RECORD
 STRING10 Account;
 UNSIGNED4 Balance;
END;
Layout_Accounts_Link := RECORD
 UNSIGNED1 PersonID;
 Layout_Accounts; //nested RECORD structure
END;

Accounts := DATASET([{1,'45621234',452},
 {1,'55621234',5000},
 {2,'45629876',4215},
 {3,'45628734',8525}],Layout_Accounts_Link);

Layout_Combined := RECORD
 Layout_Person;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
20

 DATASET(Layout_Accounts) Accounts; //nested child DATASET
END;

P_recs := PROJECT(Person, TRANSFORM(Layout_Combined,SELF := LEFT; SELF := []));

Layout_Combined CombineRecs(Layout_Combined L,
 Layout_Accounts_Link R) := TRANSFORM
 SELF.Accounts := L.Accounts + ROW({R.Account,R.Balance}, Layout_Accounts);
 SELF := L;
END; //input and output types

NestedPeopleAccts := DENORMALIZE(P_recs,
 Accounts,
 LEFT.personid=RIGHT.personid,
 CombineRecs(LEFT,RIGHT));

OUTPUT(NestedPeopleAccts);

The Layout_Accounts_Link contains Layout_Accounts. There is no field name given to it, which means that it simply
inherits all the fields in that structure, as they are defined, and those inherited fields are referenced as if they were
explicitly declared in the Layout_Accounts_Link RECORD structure, like this:

x := Accounts.Balance;

However, if a name had been given to it, then it would define a nested structure and the fields in that nested structure
would have to be referenced using the nested structure's name as part of the qualifier, like this:

//Assuming the definition was this:
Layout_Accounts_Link := RECORD
 UNSIGNED1 PersonID;
 Layout_Accounts AcctStruct; //nested RECORD with name
END;
 //then the field reference would have to be this:
x := Accounts.AcctStruct.Balance;

The Layout_Accounts RECORD structure attribute defines the structure of the child DATASET field in
Layout_Combined. The Layout_Combined RECORD structure is then used as the LEFT input and output for the
CombineRecs TRANSFORM function.

TYPE Structure

The TYPE structure is an obvious user-defined type because you are defining a data type that is not already supported
in the ECL language. Its purpose is to allow you to import data in whatever format you receive it, work with it in one
of the internal formats, then re-write the data in its original format back to disk.

It works by defining specific callback functions inside the TYPE structure (LOAD, STORE, etc.) that the system will
use to read and write the data from and to disk. The LOAD callback function reads the data from disk and defines the
internal type the data will be as you work with it as the return data type from the LOAD function you write.

GetXLen(DATA x,UNSIGNED len) := TRANSFER(((DATA4)(x[1..len])),UNSIGNED4);
xstring(UNSIGNED len) := TYPE
 EXPORT INTEGER PHYSICALLENGTH(DATA x) := GetXLen(x,len) + len;
 EXPORT STRING LOAD(DATA x) := (STRING)x[(len+1)..GetXLen(x,len) + len];
 EXPORT DATA STORE(STRING x):= TRANSFER(LENGTH(x),DATA4)[1..len] + (DATA)x;
END;

pstr := xstring(1); // typedef for user defined type
pppstr := xstring(3);
nameStr := STRING20; // typedef of a system type

namesRecord := RECORD
 pstr surname;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
21

 nameStr forename;
 pppStr addr;
END;

ds := DATASET([{'TAYLOR','RICHARD','123 MAIN'},
 {'HALLIDAY','GAVIN','456 HIGH ST'}],
 {nameStr sur,nameStr fore, nameStr addr});

namesRecord MoveData(ds L) := TRANSFORM
 SELF.surname := L.sur;
 SELF.forename := L.fore;
 SELF.addr := L.addr;
END;

out := PROJECT(ds,MoveData(LEFT));
OUTPUT(out);

This example defines a “Pascal string” data type with the leading length stored as one to four bytes prepended to the
data.

TypeDef Attributes

The TypeDef attribute is another obvious user-defined type because you are defining a specific instance of a data type
that is already supported in the ECL language as a new name, either for convenience of maintenance or code readability
purposes. The above example also demonstrates the use of TypeDef attributes.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
22

Using the GROUP Function
The GROUP function provides important functionality when processing very large datasets. The basic concept is that
the GROUP function will break the dataset up into a number of smaller subsets, but the GROUPed dataset is still
treated as a single entity in your ECL code.

Operations on a GROUPed dataset are automatically performed on each subset, separately. Therefore, an operation
on a GROUPed dataset will appear in the ECL code as a single operation, but will in fact internally be accomplished
by serially performing the same operation against each subset in turn. The advantage this approach has is that each
individual operation is much smaller, and more likely to be able to be accomplished without spilling to disk, which
means the total time to perform all the separate operations will typically be less than performing the same operation
against the entire dataset (sometimes dramatically so).

GROUP vs. SORT
The GROUP function does not automatically sort the records it’s operating on—it will GROUP based on the order of
the records it is given. Therefore, SORTing the records first by the field(s) on which you want to GROUP is usually
done (except in circumstances where the GROUP field(s) are used only to break a single large operation up into a
number of much smaller operations).

For the set of operations that use TRANSFORM functions (such as ITERATE, PROJECT, ROLLUP, etc), operating
on a GROUPed dataset where the operation is performed on each fragment (group) in the recordset, independently,
implies that testing for boundary conditions will be different than if you were working with a SORTed dataset. For
example, the following code (contained in GROUPfunc.ECL) uses the GROUP function to rank people's accounts,
based on the open date and balance. The account with the newest open date is ranked highest (if there are multiple
accounts opened the same day the one with the highest balance is used). There is no boundary check needed in the
TRANSFORM function because the ITERATE starts over again with each person, so the L.Ranking field value for
each new person group is zero (0).

IMPORT $;

accounts := $.DeclareData.Accounts;

rec := RECORD
 accounts.PersonID;
 accounts.Account;
 accounts.opendate;
 accounts.balance;
 UNSIGNED1 Ranking := 0;
END;

tbl := TABLE(accounts,rec);

rec RankGrpAccts(rec L, rec R) := TRANSFORM
 SELF.Ranking := L.Ranking + 1;
 SELF := R;
END;
GrpRecs := SORT(GROUP(SORT(tbl,PersonID),PersonID),-Opendate,-Balance);
i1 := ITERATE(GrpRecs,RankGrpAccts(LEFT,RIGHT));
OUTPUT(i1);

The following code just uses SORT to achieve the same record order as in the previous code. Notice the boundary
check code in the TRANSFORM function. This is required, since the ITERATE will perform a single operation against
the entire dataset.:

rec RankSrtAccts(rec L, rec R) := TRANSFORM
 SELF.Ranking := IF(L.PersonID = R.PersonID,L.Ranking + 1, 1);

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
23

 SELF := R;
END;
SortRecs := SORT(tbl,PersonID,-Opendate,-Balance);
i2 := ITERATE(SortRecs,RankSrtAccts(LEFT,RIGHT));
OUTPUT(i2);

The different bounds checking in each is required by the fragmenting created by the GROUP function. The ITERATE
operates separately on each fragment in the first example, and operates on the entire record set in the second.

Performance Considerations
There is also a major performance advantage to using the GROUP function. For example, the SORT is an n log n
operation, so breaking large record sets up into smaller sets of sets can dramatically improve the amount of time it
takes to perform the sorting operation.

Assuming that a dataset contains 1 billion 1,000-byte records (1,000,000,000) and you're operating on a 100-node
supercomputer. Assuming also that the data is evenly distributed, then you have 10 million records per node occupying
1 gigabyte of memory on each node. Suppose you need to sort the data by three fields: by personID, opendate, and
balance. You could achieve the result three possible ways: a global SORT, a distributed local SORT, or a GROUPed
distributed local SORT.

Here's an example that demonstrates all three methods (contained in GROUPfunc.ECL):

bf := NORMALIZE(accounts,
 CLUSTERSIZE * 2,
 TRANSFORM(RECORDOF(ProgGuide.Accounts),
 SELF := LEFT));
ds0 := DISTRIBUTE(bf,RANDOM()) : PERSIST('~PROGGUIDE::PERSIST::TestGroupSort');
ds1 := DISTRIBUTE(ds,HASH32(personid));

// do a global sort
s1 := SORT(ds0,personid,opendate,-balance);
a := OUTPUT(s1,,'~PROGGUIDE::EXAMPLEDATA::TestGroupSort1',OVERWRITE);

// do a distributed local sort
s3 := SORT(ds1,personid,opendate,-balance,LOCAL);
b := OUTPUT(s3,,'~PROGGUIDE::EXAMPLEDATA::TestGroupSort2',OVERWRITE);

// do a grouped local sort
s4 := SORT(ds1,personid,LOCAL);
g2 := GROUP(s4,personid,LOCAL);
s5 := SORT(g2,opendate,-balance);
c := OUTPUT(s5,,'~PROGGUIDE::EXAMPLEDATA::TestGroupSort3',OVERWRITE);
SEQUENTIAL(a,b,c);

The result sets for all of these SORT operations are identical. However, the time it takes to produce them is not. The
above example operates only on 10 million 46-byte records per node, not the one billion 1,000-byte records previously
mentioned, but it certainly illustrates the techniques.

For the hypothetical one billion record example, the performance of the Global Sort is calculated by the formula: 1
billion times the log of 1 billion (9), resulting in a performance metric of 9 billion. The performance of Distributed
Local Sort is calculated by the formula: 10 million times the log of 10 million (7), resulting in a performance metric
of 70 million. Assuming the GROUP operation created 1,000 sub-groups on each node, the performance of Grouped
Local Sort is calculated by the formula: 1,000 times (10,000 times the log of 10,000 (4)), resulting in a performance
metric of 40 million.

The performance metric numbers themselves are meaningless, but their ratios do indicate the difference in performance
you can expect to see between SORT methods. This means that the distributed local SORT will be roughly 128 times
faster than the global SORT (9 billion / 70 million) and the grouped SORT will be roughly 225 times faster than the

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
24

global SORT (9 billion / 40 million) and the grouped SORT will be about 1.75 times faster than the distributed local
SORT (70 million / 40 million).

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
25

Automated ECL
Once you have established standard ECL processes that you know you need to perform regularly, you can begin to make
those processes automated. Doing this eliminates the need to remember the order of processes, or their periodicity.

One form of automation typically involves launching MACROs with the ECLPlus application. By using MACROs,
you can have standard processes that operate on different input each time, but produce the same result. Since ECLPlus
is a command-line application, its use can be automatically launched in many different ways — DOS Batch files, from
within another application, or ...

Here's an example. This MACRO (contained in DeclareData.ECL) takes two parameters: the name of a file, and the
name of a field in that file to produce a count of the unique values in that field and a crosstab report of the number
of instances of each value.

EXPORT MAC_CountFieldValues(infile,infield) := MACRO
 // Create the count of unique values in the infield
 COUNT(DEDUP(TABLE(infile,{infile.infield}),infield,ALL));

 // Create the crosstab report
 #UNIQUENAME(r_macro)
 %r_macro% := RECORD
 infile.infield;
 INTEGER cnt := COUNT(GROUP);
 END;
 #UNIQUENAME(y_macro)
 %y_macro% := TABLE(infile,%r_macro%,infield,FEW);
 OUTPUT(CHOOSEN(%y_macro%,50000));
ENDMACRO;

By using #UNIQUENAME to generate all the attribute names, this MACRO can be used multiple times in the same
workunit. You can test the MACRO through the ECL IDE program by executing a query like this in the ECL Builder
window:

IMPORT ProgrammersGuide AS PG;
PG.DeclareData.MAC_CountFieldValues(PG.DeclareData.Person.file,gender);

Once you've throughly tested the MACRO and are certain it works correctly, you can automate the process by using
ECLplus.

Install the ECLplus program in its own directory on the same PC that runs the ECL IDE, and create an ECLPLUS.INI
file in the same folder with the correct settings to access your cluster (see the Command Line ECL section of the Client
Tools PDF). Then you can open a Command Prompt window and run the same query from the command line like this:

C:\eclplus>eclplus ecl=$ProgGuide.MAC_CountFieldValues(ProgrammersGuide.DeclareData.Person.File,gender)

Notice that you're using the ecl= command line option and not the $Module.Attribute option. This is the “proper” way
to make a MACRO expand and execute through ECLplus. The $Module.Attribute option is only used to execute ECL
Builder window queries that have been saved as attributes in the repository (Builder Window Runnable—BWR code)
and won't work with MACROs.

When the MACRO expands and executes, you get a result that looks like this in your Command Prompt window:

Workunit W20070118-145647 submitted
[Result 1]
Result_1
2
[Result_2]
gender cnt
 F 500000

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
26

 M 500000

You can re-direct this output to a file by using the output=”filename” option on the command line, like this:

C:\eclplus>eclplus ecl=$ProgGuide.MAC_CountFieldValues(ProgrammersGuide.DeclareData.Person.File, gender)
 output="MyFile.txt"

This will send the output to the “MyFile.txt” file on your local PC. For larger output files, you'll want to have the
OUTPUT action in your ECL code write the result set to disk in the supercomputer then de-spray it to your landing
zone (you can use the Standard Library's File.Despray function to do this from within your ECL code).

Using Text Files
Another automation option is to generate a text file containing the ECL code to execute, then execute that code from
the command line.

For example, you could create a file containing this:

IMPORT ProgrammersGuide AS PG;
PG.DeclareData.MAC_CountFieldValues(PG.DeclareData.Person.file,gender);
PG.DeclareData.MAC_CountFieldValues(PG.DeclareData.person.File,state)

These two MACRO calls will generate the field ordinality count and crosstab report for two fields in the same file.
You could then execute them like this (where “test.ECL” is the name of the file you created):

C:\eclplus>eclplus @test.ecl

This will generate similar results to that above.

The advantage this method has is the ability to include any necessary “setup” ECL code in the file before the MACRO
calls, like this (contained in RunText.ECL):

IMPORT ProgrammersGuide AS PG;
MyRec := RECORD
 STRING1 value1;
 STRING1 value2;
END;
D := DATASET([{'A','B'},
 {'B','C'},
 {'A','D'},
 {'B','B'},
 {'A','C'},
 {'B','D'},
 {'A','B'},
 {'C','C'},
 {'C','D'},
 {'A','A'}],MyRec);

PG.DeclareData.MAC_CountFieldValues(D,Value1)
PG.DeclareData.MAC_CountFieldValues(D,Value2)

So that you get a result like this:

C:\eclplus>eclplus @test.ecl
Workunit W20070118-145647 submitted
[Result 1]
result_1
3
[Result 2]
value1 cnt
C 2
A 5

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
27

B 3
[Result 3]
result_3
4
[Result 4]
value2 cnt
D 3
C 3
A 1
B 3

How you create this text file is up to you. To fully automate the process you may want to write a daemon application
that watches a directory (such as your HPCC environment's landing zone) to detect new files dropped in (by whatever
means) and generate the appropriate ECL code file to process that new file in some standard fashion (typically using
MACRO calls), then execute it from ECLplus command line as described above. The realm of possibilities is endless.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
28

Job “Failure”
Sometimes jobs fail. And sometimes that behavior is by design.

For example, attempting to send an entire output result back to the ECL IDE program when that result contains more
than 10 megabytes of data will cause the job to "fail" with the error “Dataset too large to output to workunit (limit 10
megabytes).” This job “failure” is deliberate on the part of the system (and you can reset this particular limit on a per-
workunit basis using #OPTION), because any time you are writing that amount of data out you should be writing it
to a file to de-spray. Otherwise, you will rapidly fill your system data store.

Other examples of this type of deliberate system "failure" is exceeding skew limits or exceeding any other runtime limit.
For some of these limits there are ways to reset the limit itself (which is usually NOT the best solution). Otherwise,
the deliberate “failure” is a signal that there is something inherently wrong with the job and perhaps the approach you
are using needs to be re-thought.

Contact Technical Support whenever such an issue arises and we will help you formulate a strategy to accomplish
what you need to without incurring these deliberate system "failures."

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
29

Non-Random RANDOM
There are occasions when you need a random number, but once you've gotten it, you want that value to stay the same
for the duration of the workunit. For example, the “problem” with this code is that it will OUTPUT three different
values (this code is in NonRandomRandom.ECL):

INTEGER1 Rand1 := (RANDOM() % 25) + 1;
OUTPUT(Rand1);
OUTPUT(Rand1);
OUTPUT(Rand1);

To make the “random” value persistent throughout the workunit, you can simply add the STORED Workflow Service
to the attribute definition, like this (this code is also in NonRandomRandom.ECL):

INTEGER1 Rand2 := (RANDOM() % 25) + 1 : STORED('MyRandomValue');
OUTPUT(Rand2);
OUTPUT(Rand2);
OUTPUT(Rand2);

This will cause the “random” value to be calculated once, then used throughout the rest of the workunit.

The GLOBAL Workflow Service would accomplish the same thing, but using STORED has the added advantage that
the “random” value used for the workunit is displayed on the ECL Watch page for that workunit, allowing you to
better debug your code by seeing exactly what “random” value was used for the job.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
30

Working with XML Data
Data is not always handed to you in nice, easy-to-work-with, fixed-length flat files; it comes in many forms. One form
growing in usage every day is XML. ECL has a number of ways of handling XML data—some obvious and some
not so obvious.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified XPATH matches a very large amount of data, then a large data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Simple XML Data Handling
The XML options on DATASET and OUTPUT allow you to easily work with simple XML data. For example, an
XML file that looks like this (this data generated by the code in GenData.ECL):

<?xml version=1.0 ...?>
<timezones>
<area>
 <code>
 215
 </code>
 <state>
 PA
 </state>
 <description>
 Pennsylvania (Philadelphia area)
 </description>
 <zone>
 Eastern Time Zone
 </zone>
</area>
<area>
 <code>
 216
 </code>
 <state>
 OH
 </state>
 <description>
 Ohio (Cleveland area)
 </description>
 <zone>
 Eastern Time Zone
 </zone>
</area>
</timezones>

This file can be declared for use in your ECL code (as this file is declared as the TimeZonesXML DATASET declared
in the DeclareData MODULE Structure) like this:

EXPORT TimeZonesXML :=
 DATASET('~PROGGUIDE::EXAMPLEDATA::XML_timezones',
 {STRING code,
 STRING state,
 STRING description,
 STRING timezone{XPATH('zone')}},
 XML('timezones/area'));

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
31

This makes the data contained within each XML tag in the file available for use in your ECL code just like any flat-file
dataset. The field names in the RECORD structure (in this case, in-lined in the DATASET declaration) duplicate the
tag names in the file. The use of the XPATH modifier on the timezone field allows us to specify that the field comes
from the <zone> tag. This mechanism allows us to name fields differently from their tag names.

By defining the fields as STRING types without specifying their length, you can be sure you're getting all the data—
including any carriage-returns, line feeds, and tabs in the XML file that are contained within the field tags (as are
present in this file). This simple OUTPUT shows the result (this and all subsequent code examples in this article are
contained in the XMLcode.ECL file).

IMPORT $;

ds := $.DeclareData.timezonesXML;

OUTPUT(ds);

Notice that the result displayed in the ECL IDE program contains squares in the data—these are the carriage-returns,
line feeds, and tabs in the data. You can get rid of the extraneous carriage-returns, line feeds, and tabs by simply
passing the records through a PROJECT operation, like this:

StripIt(STRING str) := REGEXREPLACE('[\r\n\t]',str,'$1');
RECORDOF(ds) DoStrip(ds L) := TRANSFORM
 SELF.code := StripIt(L.code);
 SELF.state := StripIt(L.state);
 SELF.description := StripIt(L.description);
 SELF.timezone := StripIt(L.timezone);
END;
StrippedRecs := PROJECT(ds,DoStrip(LEFT));
OUTPUT(StrippedRecs);

The use of the REGEXREPLACE function makes the process very simple. Its first parameter is a standard Perl regular
expression representing the characters to look for: carriage return (\r), line feed (\n), and tab (\t).

You can now operate on the StrippedRecs recordset (or ProgGuide.TimeZonesXML dataset) just as you would with
any other. For example, you might want to simply filter out unnecessary fields and records and write the result to a
new XML file to pass on, something like this:

InterestingRecs := StrippedRecs((INTEGER)code BETWEEN 301 AND 303);
OUTPUT(InterestingRecs,{code,timezone},
 '~PROGGUIDE::EXAMPLEDATA::OUT::timezones300',
 XML('area',HEADING('<?xml version=1.0 ...?>\n<timezones>\n','</timezones>')),OVERWRITE);

The resulting XML file looks like this:

<?xml version=1.0 ...?>
<timezones>
<area><code>301</code><zone>Eastern Time Zone</zone></area>
<area><code>302</code><zone>Eastern Time Zone</zone></area>
<area><code>303</code><zone>Mountain Time Zone</zone></area>
</timezones>

Complex XML Data Handling
You can create much more complex XML output by using the CSV option on OUTPUT instead of the XML option.
The XML option will only produce the straight-forward style of XML shown above. However, some applications
require the use of XML attributes inside the tags. This code demonstrates how to produce that format:

CRLF := (STRING)x'0D0A';
OutRec := RECORD
 STRING Line;
END;

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
32

OutRec DoComplexXML(InterestingRecs L) := TRANSFORM
SELF.Line := ' <area code="' + L.code + '">' + CRLF +
 ' <zone>' + L.timezone + '</zone>' + CRLF +
 ' </area>';
END;
ComplexXML := PROJECT(InterestingRecs,DoComplexXML(LEFT));
OUTPUT(ComplexXML,,'~PROGGUIDE::EXAMPLEDATA::OUT::Complextimezones301',
 CSV(HEADING('<?xml version=1.0 ...?>'+CRLF+'<timezones>'+CRLF,'</timezones>')),OVERWRITE);

The RECORD structure defines a single output field to contain each logical XML record that you build with the
TRANSFORM function. The PROJECT operation builds all of the individual output records, then the CSV option
on the OUTPUT action specifies the file header and footer records (in this case, the XML file tags) and you get the
result shown here:

<?xml version=1.0 ...?>
<timezones>
 <area code="301">
 <zone>Eastern Time Zone</zone>
 </area>
 <area code="302">
 <zone>Eastern Time Zone</zone>
 </area>
 <area code="303">
 <zone>Mountain Time Zone</zone>
 </area>
</timezones>

So, if using the CSV option is the way to OUTPUT complex XML data formats, how can you access existing com-
plex-format XML data and use ECL to work with it?

The answer lies in using the XPATH option on field definitions in the input RECORD structure, like this:

NewTimeZones :=
 DATASET('~PROGGUIDE::EXAMPLEDATA::OUT::Complextimezones301',
 {STRING area {XPATH('<>')}},
 XML('timezones/area'));

The specified {XPATH('<>')} option basically says “give me everything that's in this XML tag, including the tags
themselves” so that you can then use ECL to parse through the text to do your work. The NewTimeZones data records
look like this one (since it includes all the carriage return/line feeds) when you do a simple OUTPUT and copy the
record to a text editor:

<area code="301">
 <zone>Eastern Time Zone</zone>
</area>

You can then use any of the string handling functions in ECL or the Service Library functions in StringLib or Uni-
codeLib (see the Services Library Reference) to work with the text. However, the more powerful ECL text parsing
tool is the PARSE function, allowing you to define regular expressions and/or ECL PATTERN attribute definitions
to process the data.

This example uses the TRANSFORM version of PARSE to get at the XML data:

{ds.code, ds.timezone} Xform(NewTimeZones L) := TRANSFORM
 SELF.code := XMLTEXT('@code');
 SELF.timezone := XMLTEXT('zone');
END;
ParsedZones := PARSE(NewTimeZones,area,Xform(LEFT),XML('area'));

OUTPUT(ParsedZones);

In this code we're using the XML form of PARSE and its associated XMLTEXT function to parse the data from
the complex XML structure. The parameter to XMLTEXT is the XPATH to the data we're interested in (the major

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
33

subset of the XPATH standard that ECL supports is documented in the Language Reference in the RECORD structure
discussion).

Input with Complex XML Formats
XML data comes in many possible formats, and some of them make use of “child datasets” such that a given tag may
contain multiple instances of other tags that contain individual field tags themselves.

Here's an example of such a complex structure using UCC data. An individual Filing may contain one or more Trans-
actions, which in turn may contain multiple Debtor and SecuredParty records:

<UCC>
 <Filing number='5200105'>
 <Transaction ID='5'>
 <StartDate>08/01/2001</StartDate>
 <LapseDate>08/01/2006</LapseDate>
 <FormType>UCC 1 FILING STATEMENT</FormType>
 <AmendType>NONE</AmendType>
 <AmendAction>NONE</AmendAction>
 <EnteredDate>08/02/2002</EnteredDate>
 <ReceivedDate>08/01/2002</ReceivedDate>
 <ApprovedDate>08/02/2002</ApprovedDate>
 <Debtor entityId='19'>
 <IsBusiness>true</IsBusiness>
 <OrgName><![CDATA[BOGUS LABORATORIES, INC.]]></OrgName>
 <Status>ACTIVE</Status>
 <Address1><![CDATA[334 SOUTH 900 WEST]]></Address1>
 <Address4><![CDATA[SALT LAKE CITY 45 84104]]></Address4>
 <City><![CDATA[SALT LAKE CITY]]></City>
 <State>UTAH</State>
 <Zip>84104</Zip>
 <OrgType>CORP</OrgType>
 <OrgJurisdiction><![CDATA[SALT LAKE CITY]]></OrgJurisdiction>
 <OrgID>654245-0142</OrgID>
 <EnteredDate>08/02/2002</EnteredDate>
 </Debtor>
 <Debtor entityId='7'>
 <IsBusiness>false</IsBusiness>
 <FirstName><![CDATA[FRED]]></FirstName>
 <LastName><![CDATA[JONES]]></LastName>
 <Status>ACTIVE</Status>
 <Address1><![CDATA[1038 E. 900 N.]]></Address1>
 <Address4><![CDATA[OGDEN 45 84404]]></Address4>
 <City><![CDATA[OGDEN]]></City>
 <State>UTAH</State>
 <Zip>84404</Zip>
 <OrgType>NONE</OrgType>
 <EnteredDate>08/02/2002</EnteredDate>
 </Debtor>
 <SecuredParty entityId='20'>
 <IsBusiness>true</IsBusiness>
 <OrgName><![CDATA[WELLS FARGO BANK]]></OrgName>
 <Status>ACTIVE</Status>
 <Address1><![CDATA[ATTN: LOAN OPERATIONS CENTER]]></Address1>
 <Address3><![CDATA[P.O. BOX 9120]]></Address3>
 <Address4><![CDATA[BOISE 13 83707-2203]]></Address4>
 <City><![CDATA[BOISE]]></City>
 <State>IDAHO</State>
 <Zip>83707-2203</Zip>
 <Status>ACTIVE</Status>
 <EnteredDate>08/02/2002</EnteredDate>
 </SecuredParty>
 <Collateral>

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
34

 <Action>ADD</Action>
 <Description><![CDATA[ALL ACCOUNTS]]></Description>
 <EffectiveDate>08/01/2002</EffectiveDate>
 </Collateral>
 </Transaction>
 <Transaction ID='375799'>
 <StartDate>08/01/2002</StartDate>
 <LapseDate>08/01/2006</LapseDate>
 <FormType>UCC 3 AMENDMENT</FormType>
 <AmendType>TERMINATION BY DEBTOR</AmendType>
 <AmendAction>NONE</AmendAction>
 <EnteredDate>02/23/2004</EnteredDate>
 <ReceivedDate>02/18/2004</ReceivedDate>
 <ApprovedDate>02/23/2004</ApprovedDate>
 </Transaction>
 </Filing>
</UCC>

The key to working with this type of complex XML data are the RECORD structures that define the layout of the
XML data.

CollateralRec := RECORD
 STRING Action {XPATH('Action')};
 STRING Description {XPATH('Description')};
 STRING EffectiveDate {XPATH('EffectiveDate')};
END;

PartyRec := RECORD
 STRING PartyID {XPATH('@entityId')};
 STRING IsBusiness {XPATH('IsBusiness')};
 STRING OrgName {XPATH('OrgName')};
 STRING FirstName {XPATH('FirstName')};
 STRING LastName {XPATH('LastName')};
 STRING Status {XPATH('Status[1]')};
 STRING Address1 {XPATH('Address1')};
 STRING Address2 {XPATH('Address2')};
 STRING Address3 {XPATH('Address3')};
 STRING Address4 {XPATH('Address4')};
 STRING City {XPATH('City')};
 STRING State {XPATH('State')};
 STRING Zip {XPATH('Zip')};
 STRING OrgType {XPATH('OrgType')};
 STRING OrgJurisdiction {XPATH('OrgJurisdiction')};
 STRING OrgID {XPATH('OrgID')};
 STRING10 EnteredDate {XPATH('EnteredDate')};
END;

TransactionRec := RECORD
 STRING TransactionID {XPATH('@ID')};
 STRING10 StartDate {XPATH('StartDate')};
 STRING10 LapseDate {XPATH('LapseDate')};
 STRING FormType {XPATH('FormType')};
 STRING AmendType {XPATH('AmendType')};
 STRING AmendAction {XPATH('AmendAction')};
 STRING10 EnteredDate {XPATH('EnteredDate')};
 STRING10 ReceivedDate {XPATH('ReceivedDate')};
 STRING10 ApprovedDate {XPATH('ApprovedDate')};
 DATASET(PartyRec) Debtors {XPATH('Debtor')};
 DATASET(PartyRec) SecuredParties {XPATH('SecuredParty')};
 CollateralRec Collateral {XPATH('Collateral')}
END;

UCC_Rec := RECORD
 STRING FilingNumber {XPATH('@number')};

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
35

 DATASET(TransactionRec) Transactions {XPATH('Transaction')};
END;
UCC := DATASET('~PROGGUIDE::EXAMPLEDATA::XML_UCC',UCC_Rec,XML('UCC/Filing'));

Building from the bottom up, these RECORD structures combine to create the final UCC_Rec layout that defines the
entire format of this XML data.

The XML option on the final DATASET declaration specifies the XPATH to the record tag (Filing) then the child
DATASET “field” definitions in the RECORD structures handle the multiple instance issues. Because ECL is case
insensitive and XML syntax is case sensitive, it is necessary to use the XPATH to define all the field tags. The PartyRec
RECORD structure works with both the Debtors and SecuredParties child DATASET fields because both contain the
same tags and information.

Once you've defined the layout, how can you extract the data into a normalized relational structure to work with it in the
supercomputer? NORMALIZE is the answer. NORMALIZE needs to know how many times to call its TRANSFORM,
so you must use the TABLE function to get the counts, like this:

XactTbl := TABLE(UCC,{INTEGER XactCount := COUNT(Transactions), UCC});

OUTPUT(XactTbl);

This TABLE function gets the counts of the multiple Transaction records per Filing so that we can use NORMALIZE
to extract them into a table of their own.

Out_Transacts := RECORD
 STRING FilingNumber;
 STRING TransactionID;
 STRING10 StartDate;
 STRING10 LapseDate;
 STRING FormType;
 STRING AmendType;
 STRING AmendAction;
 STRING10 EnteredDate;
 STRING10 ReceivedDate;
 STRING10 ApprovedDate;
 DATASET(PartyRec) Debtors;
 DATASET(PartyRec) SecuredParties;
 CollateralRec Collateral;
END;

Out_Transacts Get_Transacts(XactTbl L, INTEGER C) := TRANSFORM
 SELF.FilingNumber := L.FilingNumber;
 SELF := L.Transactions[C];
END;

Transacts := NORMALIZE(XactTbl,LEFT.XactCount,Get_Transacts(LEFT,COUNTER));

OUTPUT(Transacts);

This NORMALIZE extracts all the Transactions into a separate recordset with just one Transaction per record with
the parent information (the Filing number) appended. However, each record here still contains multiple Debtor and
SecuredParty child records.

PartyCounts := TABLE(Transacts,
 {INTEGER DebtorCount := COUNT(Debtors),
 INTEGER PartyCount := COUNT(SecuredParties),
 Transacts});

OUTPUT(PartyCounts);

This TABLE function gets the counts of the multiple Debtor and SecuredParty records for each Transaction.

Out_Parties := RECORD

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
36

 STRING FilingNumber;
 STRING TransactionID;
 PartyRec;
END;

Out_Parties Get_Debtors(PartyCounts L, INTEGER C) := TRANSFORM
 SELF.FilingNumber := L.FilingNumber;
 SELF.TransactionID := L.TransactionID;
 SELF := L.Debtors[C];
END;
TransactDebtors := NORMALIZE(PartyCounts,
 LEFT.DebtorCount,
 Get_Debtors(LEFT,COUNTER));

OUTPUT(TransactDebtors);

This NORMALIZE extracts all the Debtors into a separate recordset.

Out_Parties Get_Parties(PartyCounts L, INTEGER C) := TRANSFORM
 SELF.FilingNumber := L.FilingNumber;
 SELF.TransactionID := L.TransactionID;
 SELF := L.SecuredParties[C];
END;

TransactParties := NORMALIZE(PartyCounts,
 LEFT.PartyCount,
 Get_Parties(LEFT,COUNTER));

OUTPUT(TransactParties);

This NORMALIZE extracts all the SecuredParties into a separate recordset. With this, we've now broken out all the
child records into their own normalized relational structure that we can work with easily.

Piping to Third-Party Tools
One other way to work with XML data is to use third-party tools that you have adapted for use in the supercomputer so
that you have the advantage of working with previously proven technology and the benefit of running that technology
in parallel on all the supercomputer nodes at once.

The technique is simple: just define the input file as a data stream and use the PIPE option on DATASET to process
the data in its native form. Once the processing is complete, you can OUTPUT the result in whatever form it comes
out of the third-party tool, something like this example code (non-functional):

Rec := RECORD
 STRING1 char;
END;

TimeZones := DATASET('timezones.xml',Rec,PIPE('ThirdPartyTool.exe'));

OUTPUT(TimeZones,,'ProcessedTimezones.xml');

The key to this technique is the STRING1 field definition. This makes the input and output just a 1-byte-at-a-time data
stream that flows into the third-party tool and back out of your ECL code in its native format. You don't even need to
know what that format is. You could also use this technique with the PIPE option on OUTPUT.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
37

Working with BLOBs
BLOB (Binary Large OBject) support in ECL begins with the DATA value type. This type may contain any type of
data, making it perfect for housing BLOB data.

There are essentially three issues around working with BLOB data:

1) How to get the data into the HPCC (spraying).

2) How to work with the data, once it is in the HPCC.

3) How to get the data back out of the HPCC (despraying).

Spraying BLOB Data
In the HPCCClientTools.PDF there is a chapter devoted to the DFUplus.exe program. This is a command line tool with
specific options that allow you to spray and despray files into BLOBs in the HPCC. In all the examples below, we'll
assume you have a DFUPLUS.INI file in the same folder as the executable containing the standard content described
in that section of the PDF.

The key to making a spray operation write to BLOBs is the use of the prefix=Filename,Filesize option. For example, the
following command line sprays all the .JPG and .BMP files from the c:\import directory of the 10.150.51.26 machine
into a single logical file named LE::imagedb:

C:\>dfuplus action=spray srcip=10.150.51.26 srcfile=c:\import*.jpg,c:\import*.bmp
 dstcluster=le_thor dstname=LE::imagedb overwrite=1
 PREFIX=FILENAME,FILESIZE nosplit=1

Working with BLOB Data
Once you've sprayed the data into the HPCC you must define the RECORD structure and DATASET. The following
RECORD structure defines the result of the spray above:

imageRecord := RECORD
 STRING filename;
 DATA image;
 //first 4 bytes contain the length of the image data
 UNSIGNED8 RecPos{virtual(fileposition)};
END;
imageData := DATASET('LE::imagedb',imageRecord,FLAT);

The key to this structure is the use of variable-length STRING and DATA value types. The filename field receives the
complete name of the original .JPG or .BMP file that is now contained within the image field. The first four bytes of the
image field contain an integer value specifying the number of bytes in the original file that are now in the image field.

The DATA value type is used here for the BLOB field because the JPG and BMP formats are essentially binary data.
However, if the BLOB were to contain XML data from multiple files, then it could be defined as a STRING value
type. In that case, the first four bytes of the field would still contain an integer value specifying the number of bytes
in the original file, followed by the XML data from the file.

The addition of the RecPos field (a standard ECL “record pointer” field) allows us to create an INDEX, like this:

imageKey := INDEX(imageData,{filename,fpos},'LE::imageKey');
BUILDINDEX(imageKey);

Having an INDEX allows you to work with the imageData file in keyed JOIN or FETCH operations. Of course, you
can also perform any operation on the BLOB data files that you would do with any other file in ECL.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
38

Despraying BLOB Data
The DFUplus.exe program also allows you to despray BLOB files from the HPCC, splitting them back into the separate
files they originated from. The key to making a despray operation write BLOBs to separate files is the use of the
splitprefix=Filename,Filesize option. For example, the following command line desprays all the BLOB data to the c:
\import\despray directory of the 10.150.51.26 machine from the single logical file named LE::imagedb:

C:\>dfuplus action=despray dstip=10.150.51.26 dstfile=c:\import\despray*.*
 srcname=LE::imagedb PREFIX=FILENAME,FILESIZE nosplit=1

Once this command has executed, you should have the same set of files that were originally sprayed, recreated in a
separate directory.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
39

Using ECL Keys (INDEX Files)
The ETL (Extract, Transform, and Load—standard data ingest processing) operations in ECL typically operate against
all or most of the records in any given dataset, which makes the use of keys (INDEX files) of little use. Many queries
do the same.

However, production data delivery to end-users rarely requires accessing all records in a dataset. End-users always
want “instant” access to the data they're interested in, and most often that data is a very small subset of the total set of
records available. Therefore, using keys (INDEXes) becomes a requirement.

The following attribute definitions used by the code examples in this article are declared in the DeclareData MODULE
structure attribute in the DeclareData.ECL file:

EXPORT Person := MODULE
 EXPORT File := DATASET('~PROGGUIDE::EXAMPLEDATA::People',Layout_Person, THOR);
 EXPORT FilePlus := DATASET('~PROGGUIDE::EXAMPLEDATA::People',
 {Layout_Person,
 UNSIGNED8 RecPos{VIRTUAL(fileposition)}}, THOR);
END;
EXPORT Accounts := DATASET('~PROGGUIDE::EXAMPLEDATA::Accounts',
 {Layout_Accounts_Link,
 UNSIGNED8 RecPos{VIRTUAL(fileposition)}}, THOR);
EXPORT PersonAccounts := DATASET('~PROGGUIDE::EXAMPLEDATA::PeopleAccts',
 {Layout_Combined,
 UNSIGNED8 RecPos{virtual(fileposition)}},THOR);

EXPORT IDX_Person_PersonID := INDEX(Person.FilePlus,{PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::People.PersonID');
EXPORT IDX_Accounts_PersonID := INDEX(Accounts,{PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::Accounts.PersonID');

EXPORT IDX_Accounts_PersonID_Payload :=
 INDEX(Accounts,
 {PersonID},
 {Account,OpenDate,IndustryCode,AcctType,
 AcctRate,Code1,Code2,HighCredit,Balance,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::Accounts.PersonID.Payload');

EXPORT IDX_PersonAccounts_PersonID :=
 INDEX(PersonAccounts,{PersonID,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::PeopleAccts.PersonID');

EXPORT IDX__Person_LastName_FirstName :=
 INDEX(Person.FilePlus,{LastName,FirstName,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::People.LastName.FirstName');
EXPORT IDX__Person_PersonID_Payload :=
 INDEX(Person.FilePlus,{PersonID},
 {FirstName,LastName,MiddleInitial,
 Gender,Street,City,State,Zip,RecPos},
 '~PROGGUIDE::EXAMPLEDATA::KEYS::People.PersonID.Payload');

Although you can use an INDEX as if it were a DATASET, there are only two operations in ECL that directly use
keys: FETCH and JOIN.

Simple FETCH
The FETCH is the simplest use of an INDEX. Its purpose is to retrieve records from a dataset by using an INDEX
to directly access only the specified records.

The example code below (contained in the IndexFetch.ECL file) illustrates the usual form:

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
40

IMPORT $;

F1 := FETCH($.DeclareData.Person.FilePlus,
 $.DeclareData.IDX_Person_PersonID(PersonID=1),
 RIGHT.RecPos);
OUTPUT(F1);

You will note that the DATASET named as the first parameter has no filter, while the INDEX named as the second
parameter does have a filter. This is always the case with FETCH. The purpose of an INDEX in ECL is always to allow
“direct” access to individual records in the base dataset, therefore filtering the INDEX is always required to define the
exact set of records to retrieve. Given that, filtering the base dataset is unnecessary.

As you can see, there is no TRANSFORM function in this code. For most typical uses of FETCH a transform function is
unnecessary, although it is certainly appropriate if the result data requires formatting, as in this example (also contained
in the IndexFetch.ECL file):

r := RECORD
 STRING FullName;
 STRING Address;
 STRING CSZ;
END;

r Xform($.DeclareData.Person.FilePlus L) := TRANSFORM
 SELF.Fullname := TRIM(L.Firstname) + TRIM(' ' + L.MiddleInitial) + ' ' + L.Lastname;
 SELF.Address := L.Street;
 SELF.CSZ := TRIM(L.City) + ', ' + L.State + ' ' + L.Zip;
END;

F2 := FETCH($.DeclareData.Person.FilePlus,
 $.DeclareData.IDX_Person_PersonID(PersonID=1),
 RIGHT.RecPos,
 Xform(LEFT));
OUTPUT(F2);

Even with a TRANSFORM function, this code is still a very straight-forward “go get me the records, please” operation.

Full-keyed JOIN
As simple as FETCH is, using INDEXes in JOIN operations is a little more complex. The most obvious form is a "full-
keyed" JOIN, specified by the KEYED option, which, nominates an INDEX into the right-hand recordset (the second
JOIN parameter). The purpose for this form is to handle situations where the left-hand recordset (named as the first
parameter to the JOIN) is a fairly small dataset that needs to join to a large, indexed dataset (the right-hand recordset).
By using the KEYED option, the JOIN operation uses the specified INDEX to find the matching right-hand records.
This means that the join condition must use the key fields in the INDEX to find matching records.

This example code (contained in the IndexFullKeyedJoin.ECL file) illustrates the usual use of a full-keyed join:

IMPORT $;

r1 := RECORD
 $.DeclareData.Layout_Person;
 $.DeclareData.Layout_Accounts;
END;

r1 Xform1($.DeclareData.Person.FilePlus L,
 $.DeclareData.Accounts R) := TRANSFORM
 SELF := L;
 SELF := R;
END;
J1 := JOIN($.DeclareData.Person.FilePlus(PersonID BETWEEN 1 AND 100),
 $.DeclareData.Accounts,

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
41

 LEFT.PersonID=RIGHT.PersonID,
 Xform1(LEFT,RIGHT),
 KEYED($.DeclareData.IDX_Accounts_PersonID));

OUTPUT(J1,ALL);

The right-hand Accounts file contains five million records, and with the specified filter condition the left-hand Person
recordset contains exactly one hundred records. A standard JOIN between these two would normally require that all
five million Accounts records be read to produce the result. However, by using the KEYED option the INDEX’s binary
tree is used to find the entries with the appropriate key field values and get the pointers to the exact set of Accounts
records required to produce the correct result. That means that the only records read from the right-hand file are those
actually contained in the result.

Half-keyed JOIN

The half-keyed JOIN is a simpler version, wherein the INDEX is the right-hand recordset in the JOIN. Just as with
the full-keyed JOIN, the join condition must use the key fields in the INDEX to do its work. The purpose of the half-
keyed JOIN is the same as the full-keyed version.

In fact, a full-keyed JOIN is, behind the curtains, actually the same as a half-keyed JOIN then a FETCH to retrieve
the base dataset records. Therefore, a half-keyed JOIN and a FETCH are semantically and functionally equivalent, as
shown in this example code (contained in the IndexHalfKeyedJoin.ECL file):

IMPORT $;

r1 := RECORD
 $.DeclareData.Layout_Person;
 $.DeclareData.Layout_Accounts;
END;
r2 := RECORD
 $.DeclareData.Layout_Person;
 UNSIGNED8 AcctRecPos;
END;

r2 Xform2($.DeclareData.Person.FilePlus L,
 $.DeclareData.IDX_Accounts_PersonID R) := TRANSFORM
 SELF.AcctRecPos := R.RecPos;
 SELF := L;
END;

J2 := JOIN($.DeclareData.Person.FilePlus(PersonID BETWEEN 1 AND 100),
 $.DeclareData.IDX_Accounts_PersonID,
 LEFT.PersonID=RIGHT.PersonID,
 Xform2(LEFT,RIGHT));

r1 Xform3($.DeclareData.Accounts L, r2 R) := TRANSFORM
 SELF := L;
 SELF := R;
END;
F1 := FETCH($.DeclareData.Accounts,
 J2,
 RIGHT.AcctRecPos,
 Xform3(LEFT,RIGHT));

OUTPUT(F1,ALL);

This code produces the same result set as the previous example.

The advantage of using half-keyed JOINs over the full-keyed version comes in where you may need to do several
JOINs to fully perform whatever process is being run. Using the half-keyed form allows you to accomplish all the

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
42

necessary JOINs before you explicitly do the FETCH to retrieve the final result records, thereby making the code
more efficient.

Payload INDEXes
There is an extended form of INDEX that allows each entry to carry a “payload”—additional data not included in the
set of key fields. These additional fields may simply be additional fields from the base dataset (not required as part of
the search key), or they may contain the result of some preliminary computation (computed fields). Since the data in
an INDEX is always compressed (using LZW compression), carrying the extra payload doesn't tax the system unduly.

A payload INDEX requires two separate RECORD structures as the second and third parameters of the INDEX dec-
laration. The second parameter RECORD structure lists the key fields on which the INDEX is built (the search fields),
while the third parameter RECORD structure defines the additional payload fields.

The virtual(fileposition) record pointer field must always be the last field listed in any type of INDEX, therefore,
when you're defining a payload key it is always the last field in the third parameter RECORD structure.

This example code (contained in the IndexHalfKeyedPayloadJoin.ECL file) once again duplicates the previous results,
but does so using just the half-keyed JOIN (without the FETCH) by making use of a payload key:

IMPORT $;

r1 := RECORD
 $.DeclareData.Layout_Person;
 $.DeclareData.Layout_Accounts;
END;

r1 Xform($.DeclareData.Person.FilePlus L, $.DeclareData.IDX_Accounts_PersonID_Payload R) :=
 TRANSFORM
 SELF := L;
 SELF := R;
END;

J2 := JOIN($.DeclareData.Person.FilePlus(PersonID BETWEEN 1 AND 100),
 $.DeclareData.IDX_Accounts_PersonID_Payload,
 LEFT.PersonID=RIGHT.PersonID,
 Xform(LEFT,RIGHT));

OUTPUT(J2,ALL);

You can see that this makes for tighter code. By eliminating the FETCH operation you also eliminate the disk access
associated with it, making your process faster. The requirement, of course, is to pre-build the payload keys so that
the FETCH becomes unnecessary.

Computed Fields in Payload Keys
There is a trick to putting computed fields in the payload. Since a “computed field” by definition does not exist in the
dataset, the technique required for their creation and use is to build the content of the INDEX beforehand.

The following example code (contained in IndexPayloadFetch.ECL) illustrates how to accomplish this by building the
content of some computed fields (derived from related child records) in a TABLE on which the INDEX is built:

IMPORT $;

PersonFile := $.DeclareData.Person.FilePlus;
AcctFile := $.DeclareData.Accounts;
IDXname := '~$.DeclareData::EXAMPLEDATA::KEYS::Person.PersonID.CompPay';

r1 := RECORD

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
43

 PersonFile.PersonID;
 UNSIGNED8 AcctCount := 0;
 UNSIGNED8 HighCreditSum := 0;
 UNSIGNED8 BalanceSum := 0;
 PersonFile.RecPos;
END;

t1 := TABLE(PersonFile,r1);
st1 := DISTRIBUTE(t1,HASH32(PersonID));

r2 := RECORD
 AcctFile.PersonID;
 UNSIGNED8 AcctCount := COUNT(GROUP);
 UNSIGNED8 HighCreditSum := SUM(GROUP,AcctFile.HighCredit);
 UNSIGNED8 BalanceSum := SUM(GROUP,AcctFile.Balance);
END;

t2 := TABLE(AcctFile,r2,PersonID);
st2 := DISTRIBUTE(t2,HASH32(PersonID));

r1 countem(t1 L, t2 R) := TRANSFORM
 SELF := R;
 SELF := L;
END;

j := JOIN(st1,st2,LEFT.PersonID=RIGHT.PersonID,countem(LEFT,RIGHT),LOCAL);

Bld := BUILDINDEX(j,
 {PersonID},
 {AcctCount,HighCreditSum,BalanceSum,RecPos},
 IDXname,OVERWRITE);

i := INDEX(PersonFile,
 {PersonID},
 {UNSIGNED8 AcctCount,UNSIGNED8 HighCreditSum,UNSIGNED8 BalanceSum,RecPos},
 IDXname);

f := FETCH(PersonFile,i(PersonID BETWEEN 1 AND 100),RIGHT.RecPos);

Get := OUTPUT(f,ALL);

SEQUENTIAL(Bld,Get);

The first TABLE function gets all the key field values from the Person dataset for the INDEX and creates empty fields
to contain the computed values. Note well that the RecPos virtual(fileposition) field value is also retrieved at this point.

The second TABLE function calculates the values to go into the computed fields. The values in this example are
coming from the related Accounts dataset. These computed field values will allow the final payload INDEX into the
Person dataset to produce these child recordset values without any additional code (or disk access).

The JOIN operation moves combines the result from two TABLEs into its final form. This is the data from which
the INDEX is built.

The BUILDINDEX action writes the INDEX to disk. The tricky part then is to declare the INDEX against the base
dataset (not the JOIN result). So the key to this technique is to build the INDEX against a derived/computed set of
data, then declare the INDEX against the base dataset from which that data was drawn.

To demonstrate the use of a computed-field payload INDEX, this example code just does a simple FETCH to return the
combined result containing all the fields from the Person dataset along with all the computed field values. In “normal”
use, this type of payload key would generally be used in a half-keyed JOIN operation.

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
44

Computed Fields in Search Keys

There is one situation where using a computed field as a search key is required—when the field you want to search on
is a REAL or DECIMAL data type. Neither of these two is valid for use as a search key. Therefore, making the search
key a computed STRING field containing the value to search on is a way to get around this limitation.

The trick to computed fields in the payload is the same for search keys—build the content of the INDEX beforehand.
The following example code (contained in IndexREALkey.ECL) illustrates how to accomplish this by building the
content of computed search key fields on which the INDEX is built using a TABLE and PROJECT:

IMPORT $;

r := RECORD
 REAL8 Float := 0.0;
 DECIMAL8_3 Dec := 0.0;
 $.DeclareData.person.file;
END;
t := TABLE($.DeclareData.person.file,r);

r XF(r L) := TRANSFORM
 SELF.float := L.PersonID / 1000;
 SELF.dec := L.PersonID / 1000;
 SELF := L;
END;
p := PROJECT(t,XF(LEFT));

DSname := '~PROGGUIDE::EXAMPLEDATA::KEYS::dataset';
IDX1name := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestIDX1';
IDX2name := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestIDX2';
OutName1 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout1';
OutName2 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout2';
OutName3 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout3';
OutName4 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout4';
OutName5 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout5';
OutName6 := '~PROGGUIDE::EXAMPLEDATA::KEYS::realkeytestout6';

DSout := OUTPUT(p,,DSname,OVERWRITE);

ds := DATASET(DSname,r,THOR);

idx1 := INDEX(ds,{STRING13 FloatStr := REALFORMAT(float,13,3)},{ds},IDX1name);
idx2 := INDEX(ds,{STRING13 DecStr := (STRING13)dec},{ds},IDX2name);

Bld1Out := BUILD(idx1,OVERWRITE);
Bld2Out := BUILD(idx2,OVERWRITE);

j1 := JOIN(idx1,idx2,LEFT.FloatStr = RIGHT.DecStr);
j2 := JOIN(idx1,idx2,KEYED(LEFT.FloatStr = RIGHT.DecStr));
j3 := JOIN(ds,idx1,KEYED((STRING10)LEFT.float = RIGHT.FloatStr));
j4 := JOIN(ds,idx2,KEYED((STRING10)LEFT.dec = RIGHT.DecStr));
j5 := JOIN(ds,idx1,KEYED((STRING10)LEFT.dec = RIGHT.FloatStr));
j6 := JOIN(ds,idx2,KEYED((STRING10)LEFT.float = RIGHT.DecStr));

JoinOut1 := OUTPUT(j1,,OutName1,OVERWRITE);
JoinOut2 := OUTPUT(j2,,OutName2,OVERWRITE);
JoinOut3 := OUTPUT(j3,,OutName3,OVERWRITE);
JoinOut4 := OUTPUT(j4,,OutName4,OVERWRITE);
JoinOut5 := OUTPUT(j5,,OutName5,OVERWRITE);
JoinOut6 := OUTPUT(j6,,OutName6,OVERWRITE);

SEQUENTIAL(DSout,Bld1Out,Bld2Out,JoinOut1,JoinOut2,JoinOut3,JoinOut4,JoinOut5,JoinOut6);

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
45

This code starts with some filename definitions. The record structure adds two fields to the existing set of fields from
our base dataset: a REAL8 field named “float” and a DECIMAL12_6 field named “dec.” These will contain our REAL
and DECIMAL data that we want to search on. The PROJECT of the TABLE puts values into these two fields (in this
case, just dividing the PersonID file by 1000 to achieve a floating point value to use that will be unique).

The IDX1 INDEX definition creates the REAL search key as a STRING13 computed field by using the REALFOR-
MAT function to right-justify the floating point value into a 13-character STRING. This formats the value with exactly
the number of decimal places specified in the REALFORMAT function.

The IDX2 INDEX definition creates the DECIMAL search key as a STRING13 computed field by casting the DECI-
MAL data to a STRING13. Using the typecast operator simply left-justifies the value in the string. It may also drop
trailing zeros, so the number of decimal places is not guaranteed to always be the same.

Because of the two different methods of constructing the search key strings, the strings themselves are not equal,
although the values used to create them are the same. This means that you cannot expect to “mix and match” between
the two—you need to use each INDEX with the method used to create it. That's why the two JOIN operations that
demonstrate their usage use the same method to create the string comparison value as was used to create the INDEX.
This way, you are guaranteed to achieve matching values.

Using an INDEX like a DATASET
Payload keys can also be used for standard DATASET-type operations. In this type of usage, the INDEX acts as if
it were a dataset, with the advantage that it contains compressed data and a btree index. The key difference in this
type of use is the use of KEYED and WILD in INDEX filters, which allows the INDEX read to make use of the btree
instead of doing a full-table scan.

The following example code (contained in IndexAsDataset.ECL) illustrates the use of an INDEX as if it were a
DATASET, and compares the relative performance of INDEX versus DATASET use:

IMPORT $;

OutRec := RECORD
 INTEGER Seq;
 QSTRING15 FirstName;
 QSTRING25 LastName;
 STRING2 State;
END;

IDX := $.DeclareData.IDX__Person_LastName_FirstName_Payload;
Base := $.DeclareData.Person.File;

OutRec XF1(IDX L, INTEGER C) := TRANSFORM
 SELF.Seq := C;
 SELF := L;
END;

O1 := PROJECT(IDX(KEYED(lastname='COOLING'),
 KEYED(firstname='LIZZ'),
 state='OK'),
 XF1(LEFT,COUNTER));
OUTPUT(O1,ALL);

OutRec XF2(Base L, INTEGER C) := TRANSFORM
 SELF.Seq := C;
 SELF := L;
END;

O2 := PROJECT(Base(lastname='COOLING',
 firstname='LIZZ',
 state='OK'),

ECL Programmers Guide
ECL Programming Concepts

© 2016 HPCC Systems®. All rights reserved
46

 XF2(LEFT,COUNTER));
OUTPUT(O2,ALL);

Both PROJECT operations will produce exactly the same result, but the first one uses an INDEX and the second uses a
DATASET. The only significant difference between the two is the use of KEYED in the INDEX filter. This indicates
that the index read should use the btree to find the specific set of leaf node records to read. The DATASET version
must read all the records in the file to find the correct one, making it a much slower process.

If you check the workunit timings in ECL Watch, you should see a difference. In this test case, the difference may not
appear to be significant (there's not that much test data), but in your real-world applications the difference between an
index read operation and a full-table scan should prove meaningful.

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
47

Working With SuperFiles

SuperFile Overview
First, let's define some terms:

Logical File A single logical entity whose multiple physical parts (one on each node of the cluster) are inter-
nally managed by the Distributed File Utility (DFU).

Dataset A Logical File declared as a DATASET.

SuperFile A managed list of sub-files (Logical Files) treated as a single logical entity. The sub-files do
not need DATASET declarations (although they may have). A SuperFile must be declared as a
DATASET for use in ECL, and is treated in ECL code just like any other Dataset. The complex-
ities of managing the multiple sub-files are left up to the DFU (just as it manages the physical
parts of each sub-file).

Each sub-file in a SuperFile must have the same structure type (THOR, CSV, or XML) and the same field layout.
A sub-file may itself be a SuperFile, allowing you to build multi-level hierarchies that allow easy maintenance. The
functions that build and maintain SuperFiles are all in the File standard library (see the Standard Library Reference).

The major advantage of using SuperFiles is the easy maintenance of the set of sub-files. This means that updating the
actual data a query reads can be as simple as adding a new sub-file to an existing SuperFile.

SuperFile Existence Functions
The following functions govern SuperFile creation, deletion, and existence detection:

CreateSuperFile()
DeleteSuperFile()
SuperFileExists()

You must first create a SuperFile using the CreateSuperFile() function before you can perform any other SuperFile
operations on that file. The SuperFileExists() function tells you if a SuperFile with the specified name exists, and
DeleteSuperFile() removes a SuperFile from the system.

SuperFile Inquiry Functions
The following functions provide information about a given SuperFile:

GetSuperFileSubCount()
GetSuperFileSubName()
FindSuperFileSubName()
SuperFileContents()
LogicalFileSuperOwners()

The GetSuperFileSubCount() function allows you to determine the number of sub-files in a given SuperFile. The
GetSuperFileSubName() function returns the name of the sub-file at a given position in the list of sub-files. The Find-
SuperFileSubName() function returns the ordinal position of a given sub-file in the list of sub-files. The SuperFileCon-
tents() function returns a recordset of logical sub-file names contained in the SuperFile. The LogicalFileSuperOwners
function returns a list of all the SuperFiles that contain a specified sub-file.

SuperFile Maintenance Functions
The following functions allow you to maintain the list of sub-files that comprise a SuperFile:

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
48

AddSuperFile()
RemoveSuperFile()
ClearSuperFile()
SwapSuperFile()
ReplaceSuperFile()

The AddSuperFile() function adds a sub-file to the SuperFile. The RemoveSuperFile() function deletes a sub-file from
the SuperFile. The ClearSuperFile() function deletes all sub-files from the SuperFile. The SwapSuperFile() function
moves swaps all sub-files between two SuperFiles. The ReplaceSuperFile() function replaces one sub-file in the Su-
perFile with another.

All of these functions must be called within a transaction frame to ensure there are no problems with SuperFile usage.

SuperFile Transactions
The SuperFile Maintenance functions (only) must be called within a transaction frame if there is a possibility another
process may try to use the superfile during sub-file maintenance. The transaction frame locks out all other operations
for the duration of the transaction. This way, maintenance work can be accomplished without causing problems with
any query that might use the SuperFile. This means two things:

1) The SEQUENTIAL action must be used to ensure sequential execution of the function calls within the transaction
frame.

2) The StartSuperFileTransaction() and FinishSuperFileTransaction() functions are used to “lock” the SuperFile during
maintenance, and always surround the SuperFile Maintenance function calls within the SEQUENTIAL action.

Any function other than the Maintenance Functions listed above that might be present inside a transaction
frame might appear to be part of the transaction, but are not. This can lead to confusion if you, for example,
include a call to ClearSuperFile() (which is valid for use within the transaction frame) and follow it with a call to
DeleteSuperFile() (which is not valid for use within the transaction frame) then you will get an error, because the delete
operation will occur outside the transaction frame, and before the ClearSuperFile() function has a chance to do its work.

Other Useful Functions
The following functions, while not specifically designed for SuperFile use, are generally useful in creating and main-
taining SuperFiles:

RemoteDirectory()
ExternalLogicalFilename()
LogicalFileList()
LogicalFileSuperOwners()

Use of these functions will be described in the subsequent set of SuperFile articles.

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
49

Creating and Maintaining SuperFiles
Creating Data
First, we need to create some logical files to put into a SuperFile.

The following filenames for the new sub-files are declared in the DeclareData MODULE structure:

EXPORT BaseFile := '~PROGGUIDE::SUPERFILE::Base';
EXPORT SubFile1 := '~PROGGUIDE::SUPERFILE::People1';
EXPORT SubFile2 := '~PROGGUIDE::SUPERFILE::People2';
EXPORT SubFile3 := '~PROGGUIDE::SUPERFILE::People3';
EXPORT SubFile4 := '~PROGGUIDE::SUPERFILE::People4';
EXPORT SubFile5 := '~PROGGUIDE::SUPERFILE::People5';
EXPORT SubFile6 := '~PROGGUIDE::SUPERFILE::People6';

The following code (in SuperFile1.ECL) creates the files that we'll use to build SuperFiles:

IMPORT $;
IMPORT Std;

s1 := $.DeclareData.Person.File(firstname[1] = 'A');
s2 := $.DeclareData.Person.File(firstname[1] BETWEEN 'B' AND 'C');
s3 := $.DeclareData.Person.File(firstname[1] BETWEEN 'D' AND 'J');
s4 := $.DeclareData.Person.File(firstname[1] BETWEEN 'K' AND 'N');
s5 := $.DeclareData.Person.File(firstname[1] BETWEEN 'O' AND 'R');
s6 := $.DeclareData.Person.File(firstname[1] BETWEEN 'S' AND 'Z');

Rec := $.DeclareData.Layout_Person;

IF(~Std.File.FileExists($.DeclareData.SubFile1),
 OUTPUT(s1,,$.DeclareData.SubFile1));

IF(~Std.File.FileExists($.DeclareData.SubFile2),
 OUTPUT(s2,,$.DeclareData.SubFile2));

IF(~Std.File.FileExists($.DeclareData.SubFile3),
 OUTPUT(s3,,$.DeclareData.SubFile3));

IF(~Std.File.FileExists($.DeclareData.SubFile4),
 OUTPUT(s4,,$.DeclareData.SubFile4));

IF(~Std.File.FileExists($.DeclareData.SubFile5),
 OUTPUT(s5,,$.DeclareData.SubFile5));

IF(~Std.File.FileExists($.DeclareData.SubFile6),
 OUTPUT(s6,,$.DeclareData.SubFile6));

This code takes data from the ProgGuide.Person.File dataset (created by the code in GenData.ECL and declared in the
ProgGuide MODULE structure attribute in the Default module) and writes six separate discrete samples to their own
logical files, but only if they do not already exist. We'll use these logical files to build some SuperFiles.

A Simple Example
We'll start with a simple example of how to create and use a SuperFile. This dataset declaration is in the ProgGuide
MODULE structure (contained in the Default module). This declares the SuperFile as a DATASET that can be refer-
enced in ECL code:

EXPORT SuperFile1 := DATASET(BaseFile,Layout_Person,FLAT);

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
50

Then we'll create and add sub-files to a SuperFile (this code is contained in SuperFile2.ECL):

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.CreateSuperFile($.DeclareData.BaseFile),
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.BaseFile,$.DeclareData.SubFile1),
 Std.File.AddSuperFile($.DeclareData.BaseFile,$.DeclareData.SubFile2),
 Std.File.FinishSuperFileTransaction());

If the workunit failed with a “logical name progguide::superfile::base already exists” error message, then open the
SuperFileRestart.ECL file and run it, then re-try the above code. Once you've successfully executed this code in a
builder window, you've created the SuperFile and added two sub-files into it.

The SuperFile1 DATASET declaration attribute makes the SuperFile available for use just as any other DATASET
would be—this is the key to using SuperFiles. That means the following types of actions can be executed against the
SuperFile, just as with any other dataset:

IMPORT $;
COUNT($.DeclareData.SuperFile1(PersonID <> 0));
OUTPUT($.DeclareData.SuperFile1);

Given the logical files previously built, the results of the COUNT should be 317,000. The filter condition will always
be true, so the COUNT returned will be the total number of records in the SuperFile. The (PersonID <> 0) record filter
is necessary so that the actual COUNT is performed each time and the result is not a shortcut value stored internally
by the ECL Agent. Of course, the OUTPUT produces the first 100 records in the SuperFile.

Nesting SuperFiles

Nesting SuperFiles (a SuperFile containing a sub-file that is itself another SuperFile) is a technique that allows new
data coming in on a periodic basis (every day, or every hour, or) to be “instantly” available to the system. Since
the ECL code that refers to a SuperFile always references the DATASET declaration, the only change necessary to
make new data available to queries is to add the new data as a sub-file. Since adding a new sub-file always takes place
within a SuperFile transaction, any queries are locked out while the update is in progress.

Implicit in this technique is also the periodic roll up and consolidation of the new data into composite files. This is
necessary because the practical limit to the number of physical files you should combine into a SuperFile is about one
hundred (100), since every time you reference the SuperFile every sub-file must be physically opened and read from
disk, and the more sub-files there are the more operating system resources are used just to get at the data.

Therefore, you need to periodically run a process that physically combines all the incremental logical files and com-
bines them into a single logical file that replaces them all. Periodic SuperFile data consolidation is a simple process
of using OUTPUT to write the complete contents of the SuperFile to a new, single logical file. Once all data is in a
single file, a SuperFile transaction can clear the old set of sub-files then add in the new “base” logical file.

Nested SuperFile Example

Here is an example of how to nest SuperFiles. This example assumes you have new data coming every day. It also
assumes you want to roll up the new data daily and weekly. The following filenames for the new sub-files are declared
in the DeclareData MODULE structure attribute:

EXPORT AllPeople := '~PROGGUIDE::SUPERFILE::AllPeople';
EXPORT WeeklyFile := '~PROGGUIDE::SUPERFILE::Weekly';
EXPORT DailyFile := '~PROGGUIDE::SUPERFILE::Daily';

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
51

Creating three more SuperFiles has to be done just once, then you need to add the sub-files to them (this code is
contained in SuperFile3.ECL):

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.CreateSuperFile($.DeclareData.AllPeople),
 Std.File.CreateSuperFile($.DeclareData.WeeklyFile),
 Std.File.CreateSuperFile($.DeclareData.DailyFile),
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.AllPeople,$.DeclareData.BaseFile),
 Std.File.AddSuperFile($.DeclareData.AllPeople,$.DeclareData.WeeklyFile),
 Std.File.AddSuperFile($.DeclareData.AllPeople,$.DeclareData.DailyFile),
 Std.File.FinishSuperFileTransaction());

Now the AllPeople SuperFile contains the BaseFile, WeeklyFile, and DailyFile Superfiles as sub-files, creating a
hierarchy of SuperFiles, only one of which yet contains any actual data. The Base SuperFile contains all the currently
known data, as of the time of the build of the logical files. The Weekly and Daily SuperFiles will contain the interim
data updates as they come in the door, precluding the need to rebuild the entire database every time a new set of data
comes in.

One important caveat to this scheme is that a given actual logical file (real data file) should be contained in exactly
one of the nested SuperFiles at a time, otherwise you would have duplicate records in the base SuperFile. Therefore,
you have to be careful how you maintain your hierarchy so as not to allow the same logical file to be referenced by
more than one of the nested SuperFiles at once, outside of a transaction frame.

As you get new logical files in during the day, you can add them to the Daily SuperFile like this (this code is contained
in SuperFile4.ECL):

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.DailyFile,$.DeclareData.SubFile3),
 Std.File.FinishSuperFileTransaction());

This appends the ProgGuide.SubFile3 logical file to the list of sub-files in the DailyFile SuperFile. This means that
the very next query using the SuperFile1 dataset will be using the very latest up-to-the-minute data.

This dataset declaration is in the DeclareData MODULE structure (contained in the Default module). This declares
the nested SuperFile as a DATASET that can be referenced in ECL code:

EXPORT SuperFile2 := DATASET(AllPeople,Layout_Person,FLAT);

Execute the following action:

IMPORT ProgrammersGuide AS PG;
COUNT(PG.DeclareData.SuperFile2(PersonID <> 0));

The result of the COUNT should now be 451,000.

Edit the code from SuperFile4.ECL to add in ProgGuide.SubFile4, like this:

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.DailyFile,$.DeclareData.SubFile4),
 Std.File.FinishSuperFileTransaction());

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
52

Re-running the above COUNT action should now result in 620,000.

Once a day, you can roll all the sub-files up into the WeeklyFile and clear out the DailyFile for the next day's data
ingest processing, like this (this code is contained in SuperFile5.ECL):

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.WeeklyFile,$.DeclareData.DailyFile,,TRUE),
 Std.File.ClearSuperFile($.DeclareData.DailyFile),
 Std.File.FinishSuperFileTransaction());

This moves the references to all the sub-files from the DailyFile to the WeeklyFile (the fourth parameter to the Ad-
dSuperFile function being TRUE copies the references from one SuperFile to another), then clears out the DailyFile.

Data Consolidation
Since the practical limit to the number of logical files you should combine into a SuperFile is about a hundred, you'll
need to periodically run a process that physically combines all the incremental logical files and combines them into
a single logical file that replaces them all, like this:

IMPORT $;
IMPORT Std;

OUTPUT($.DeclareData.SuperFile2,,'~$.DeclareData::SUPERFILE::People14',OVERWRITE);

This will write a new file containing all the records from all the sub-files in the SuperFile.

Once you've done that, you'll need to clear all the component SuperFiles and add the new all-the-data-there-is data file
into the BaseFile, like this (this code is contained in SuperFile6.ECL):

IMPORT $;
IMPORT Std;
SEQUENTIAL(
 Std.File.StartSuperFileTransaction(),
 Std.File.ClearSuperFile($.DeclareData.BaseFile),
 Std.File.ClearSuperFile($.DeclareData.WeeklyFile),
 Std.File.ClearSuperFile($.DeclareData.DailyFile),
 Std.File.AddSuperFile($.DeclareData.BaseFile,'~$.DeclareData::SUPERFILE::People14'),
 Std.File.FinishSuperFileTransaction());

This action clears out the Base SuperFile, adds the reference to the new all-inclusive logical file, then clears all the
incremental SuperFiles.

Re-running the above COUNT action should still result in 620,000.

Once again, edit the code from SuperFile4.ECL to add ProgGuide.SubFile5 and ProgGuide.SubFile6 to the DailyFile,
like this:

IMPORT $;
IMPORT Std;

SEQUENTIAL(
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.DailyFile,$.DeclareData.SubFile5),
 Std.File.AddSuperFile($.DeclareData.DailyFile,$.DeclareData.SubFile6),
 Std.File.FinishSuperFileTransaction());

Once you've done that, re-running the above COUNT action should now result in 1,000,000.

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
53

Getting SuperFile Components
This macro (in the DeclareData MODULE structure attribute) demonstrates one technique to list the component sub-
files of a SuperFile:

IMPORT STD;
EXPORT MAC_ListSFsubfiles(SuperFile) := MACRO

#UNIQUENAME(SeedRec)
%SeedRec% := DATASET([{''}], {STRING name});

#UNIQUENAME(Xform)
TYPEOF(%SeedRec%) %Xform%(%SeedRec% L, INTEGER C) :=
 TRANSFORM
SELF.name :=
 Std.File.GetSuperFileSubName(SuperFile,C);
END;

OUTPUT(NORMALIZE(%SeedRec%,
Std.File.GetSuperFileSubCount(SuperFile),
%Xform%(LEFT,COUNTER)));
ENDMACRO;

The interesting technique here is the use of NORMALIZE to call the TRANSFORM function iteratively until all
sub-files in the SuperFile are listed. You can call this macro in a builder window like this (this code is contained in
SuperFile7.ECL):

IMPORT $;
IMPORT Std;

$.DeclareData.MAC_ListSFsubfiles($.DeclareData.AllPeople);

This will return a list of all the sub-files in the specified SuperFile. However, this type of code is no longer necessary,
since the default mode of the SuperFileContents() function now returns exactly the same result, like this:

IMPORT $;
IMPORT Std;
OUTPUT(Std.File.SuperFileContents($.DeclareData.AllPeople));

The SuperFileContents() function has an advantage over the macro—it has an option to return the sub-files from any
nested SuperFile (which the macro can't do). That form looks like this:

IMPORT $;
IMPORT Std;
OUTPUT(Std.File.SuperFileContents($.DeclareData.AllPeople,TRUE));

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
54

Indexing into SuperFiles
SuperFiles vs. SuperKeys
A SuperFile may contain INDEX files instead of DATASET files, making it a SuperKey. All the same creation and
maintenance processes and principles apply as described previously in the Creating and Maintaining SuperFiles article.

However, a SuperKey may not contain INDEX sub-files that directly reference the sub-files of a SuperFile using
the {virtual(fileposition)} “record pointer” mechanism (used by FETCH and full-keyed JOIN operations). This is
because the {virtual(fileposition)} field is a virtual (exists only when the file is read from disk) field containing the
relative byte position of each record within the single logical entity.

The following attribute definitions used by the code examples in this article are declared in the DeclareData MODULE
structure attribute:

EXPORT i1name := '~PROGGUIDE::SUPERKEY::IDX1';
EXPORT i2name := '~PROGGUIDE::SUPERKEY::IDX2';
EXPORT i3name := '~PROGGUIDE::SUPERKEY::IDX3';
EXPORT SFname := '~PROGGUIDE::SUPERKEY::SF1';
EXPORT SKname := '~PROGGUIDE::SUPERKEY::SK1';
EXPORT ds1 := DATASET(SubFile1,{Layout_Person,UNSIGNED8 RecPos {VIRTUAL(fileposition)}},THOR);
EXPORT ds2 := DATASET(SubFile2,{Layout_Person,UNSIGNED8 RecPos {VIRTUAL(fileposition)}},THOR);
EXPORT i1 := INDEX(ds1,{personid,RecPos},i1name);
EXPORT i2 := INDEX(ds2,{personid,RecPos},i2name);
EXPORT sf1 := DATASET(SFname,{Layout_Person,UNSIGNED8 RecPos {VIRTUAL(fileposition)}},THOR);
EXPORT sk1 := INDEX(sf1,{personid,RecPos},SKname);
EXPORT sk2 := INDEX(sf1,{personid,RecPos},i3name);

There is a Problem
The easiest way to illustrate the problem is to run the following code (this code is contained in IndexSuperFile1.ECL)
that uses two of the sub-files from the Creating and Maintaining SuperFiles article.

IMPORT $;

OUTPUT($.DeclareData.ds1);
OUTPUT($.DeclareData.ds2);

You will notice that the RecPos values returned for both of these datasets are exactly the same (0, 89, 178 ...), which is
to be expected since they both have the same fixed-length RECORD structure. The problem lies in using that field when
building separate INDEXes for the two datasets. It works perfectly as separate INDEXes into separate DATASETs.

For example, you can use this code to build and test the separate INDEXes (contained in IndexSuperFile2.ECL):

IMPORT $;

Bld := PARALLEL(BUILDINDEX($.DeclareData.i1,OVERWRITE),BUILDINDEX($.DeclareData.i2,OVERWRITE));

F1 := FETCH($.DeclareData.ds1,
 $.DeclareData.i1(personid=$.DeclareData.ds1[1].personid),
 RIGHT.RecPos);
F2 := FETCH($.DeclareData.ds2,
 $.DeclareData.i2(personid=$.DeclareData.ds2[1].personid),
 RIGHT.RecPos);

Get := PARALLEL(OUTPUT(F1),OUTPUT(F2));
SEQUENTIAL(Bld,Get);

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
55

As you can see, two different records are returned by the two FETCH operations. However, when you create a SuperFile
and a SuperKey and then try using them to do the same two FETCHes again, they both return the same record, as
shown by this code (contained in IndexSuperFile3.ECL):

IMPORT $;
IMPORT Std;

BldSF := SEQUENTIAL(
 Std.File.CreateSuperFile($.DeclareData.SFname),
 Std.File.CreateSuperFile($.DeclareData.SKname),
 Std.File.StartSuperFileTransaction(),
 Std.File.AddSuperFile($.DeclareData.SFname,$.DeclareData.SubFile1),
 Std.File.AddSuperFile($.DeclareData.SFname,$.DeclareData.SubFile2),
 Std.File.AddSuperFile($.DeclareData.SKname,$.DeclareData.i1name),
 Std.File.AddSuperFile($.DeclareData.SKname,$.DeclareData.i2name),
 Std.File.FinishSuperFileTransaction());

F1 := FETCH($.DeclareData.sf1,
 $.DeclareData.sk1(personid=$.DeclareData.ds1[1].personid),
 RIGHT.RecPos);
F2 := FETCH($.DeclareData.sf1,
 $.DeclareData.sk1(personid=$.DeclareData.ds2[1].personid),
 RIGHT.RecPos);
Get := PARALLEL(OUTPUT(F1),OUTPUT(F2));
SEQUENTIAL(BldSF,Get);

Once you combine the DATASETS into a SuperFile and combine the INDEXes into a SuperKey, you then have
multiple entries in the SuperKey, with different key field values, that all point to the same physical record in the
SuperFile, because the record pointer values are the same.

And the Solution Is ...
The way around this problem is to create a single INDEX into the SuperFile, as shown by this code (contained in
IndexSuperFile4.ECL):

IMPORT $;

F1 := FETCH($.DeclareData.sf1,
 $.DeclareData.sk2(personid=$.DeclareData.ds1[1].personid),
 RIGHT.RecPos);
F2 := FETCH($.DeclareData.sf1,
 $.DeclareData.sk2(personid=$.DeclareData.ds2[1].personid),
 RIGHT.RecPos);
Get := PARALLEL(OUTPUT(F1),OUTPUT(F2));

SEQUENTIAL(BUILDINDEX($.DeclareData.sk2,OVERWRITE),Get);

When you use a single INDEX instead of a SuperKey, the FETCH operations once again retrieve the correct records.

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
56

Using SuperKeys
A SuperFile whose sub-files are INDEXes (not DATASETs) is a SuperKey. As described previously in the Indexing
Into SuperFiles article, there is a problem with using a SuperKey to try to index into a SuperFile. So what good are
SuperKeys?

In the Using ECL Keys (INDEX Files) article, the technique of creating and using INDEXes that contain payload fields
was demonstrated. By putting the payload fields in the INDEX itself, there becomes no need to directly access the
base dataset from which the INDEX was built. Thus, the problem becomes moot.

SuperKeys are built with payload keys. And, since the primary operation for a payload key is the half-keyed JOIN,
that also becomes the primary SuperKey operational use.

Both SuperFiles and SuperKeys may be used in Thor or Roxie operations.

The following attribute definitions used by the code examples in this article are declared in the DeclareData MODULE
structure attribute:

EXPORT SubKey1 := '~PROGGUIDE::SUPERKEY::Accounts1';
EXPORT SubKey2 := '~PROGGUIDE::SUPERKEY::Accounts2';
EXPORT SubKey3 := '~PROGGUIDE::SUPERKEY::Accounts3';
EXPORT SubKey4 := '~PROGGUIDE::SUPERKEY::Accounts4';
EXPORT SubIDX1 := '~PROGGUIDE::SUPERKEY::KEY::AcctsIDX1';
EXPORT SubIDX2 := '~PROGGUIDE::SUPERKEY::KEY::AcctsIDX2';
EXPORT SubIDX3 := '~PROGGUIDE::SUPERKEY::KEY::AcctsIDX3';
EXPORT SubIDX4 := '~PROGGUIDE::SUPERKEY::KEY::AcctsIDX4';
EXPORT AcctSKname :=
 '~PROGGUIDE::SUPERKEY::KEY::AcctsSK';
EXPORT AcctSK := INDEX(Accounts,{PersonID},

Building SuperKeys
Before you can create a SuperKey, you must first have some INDEXes to use. The following code (contained in
SuperKey1.ECL) builds four separate payload keys from the Account dataset:

IMPORT $;
IMPORT Std;

s1 := $.DeclareData.Accounts(Account[1] = '1');
s2 := $.DeclareData.Accounts(Account[1] = '2');
s3 := $.DeclareData.Accounts(Account[1] = '3');
s4 := $.DeclareData.Accounts(Account[1] IN ['4','5','6','7','8','9']);

Rec := $.DeclareData.Layout_Accounts_Link;
RecPlus := {Rec,UNSIGNED8 RecPos{virtual(fileposition)}};
d1 := DATASET($.DeclareData.SubKey1,RecPlus,THOR);
d2 := DATASET($.DeclareData.SubKey2,RecPlus,THOR);
d3 := DATASET($.DeclareData.SubKey3,RecPlus,THOR);
d4 := DATASET($.DeclareData.SubKey4,RecPlus,THOR);

i1 := INDEX(d1,{PersonID},
 {Account,OpenDate,IndustryCode,AcctType,AcctRate,
 Code1,Code2,HighCredit,Balance,RecPos},
 $.DeclareData.SubIDX1);
i2 := INDEX(d2,{PersonID},
 {Account,OpenDate,IndustryCode,AcctType,AcctRate,
 Code1,Code2,HighCredit,Balance,RecPos},
 $.DeclareData.SubIDX2);
i3 := INDEX(d3,{PersonID},
 {Account,OpenDate,IndustryCode,AcctType,AcctRate,

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
57

 Code1,Code2,HighCredit,Balance,RecPos},
 $.DeclareData.SubIDX3);
i4 := INDEX(d4,{PersonID},
 {Account,OpenDate,IndustryCode,AcctType,AcctRate,
 Code1,Code2,HighCredit,Balance,RecPos},
 $.DeclareData.SubIDX4);

BldDat := PARALLEL(
 IF(~Std.File.FileExists($.DeclareData.SubKey1),
 OUTPUT(s1,
 {PersonID,Account,OpenDate,IndustryCode,AcctType,
 AcctRate,Code1,Code2,HighCredit,Balance},
 $.DeclareData.SubKey1)),

 IF(~Std.File.FileExists($.DeclareData.SubKey2),
 OUTPUT(s2,
 {PersonID,Account,OpenDate,IndustryCode,AcctType,
 AcctRate,Code1,Code2,HighCredit,Balance},
 $.DeclareData.SubKey2)),

 IF(~Std.File.FileExists($.DeclareData.SubKey3),
 OUTPUT(s3,
 {PersonID,Account,OpenDate,IndustryCode,AcctType,
 AcctRate,Code1,Code2,HighCredit,Balance},
 $.DeclareData.SubKey3)),

 IF(~Std.File.FileExists($.DeclareData.SubKey4),
 OUTPUT(s4,
 {PersonID,Account,OpenDate,IndustryCode,AcctType,
 AcctRate,Code1,Code2,HighCredit,Balance},
 $.DeclareData.SubKey4)));

BldIDX := PARALLEL(
 IF(~Std.File.FileExists($.DeclareData.SubIDX1),
 BUILDINDEX(i1)),

 IF(~Std.File.FileExists($.DeclareData.SubIDX2),
 BUILDINDEX(i2)),

 IF(~Std.File.FileExists($.DeclareData.SubIDX3),
 BUILDINDEX(i3)),

 IF(~Std.File.FileExists($.DeclareData.SubIDX4),
 BUILDINDEX(i4)));

SEQUENTIAL(BldDat,BldIDX);

This code sequentially builds logical files by taking sub-sets of records from the Accounts dataset and writing those
records to files on disk. Once the logical files physically exist, then the BUILDINDEX actions write the payload keys
to disk.

One interesting twist to this code is the use of the Std.File.FileExists function to detect whether these files have already
been created. The code in the next section also uses the Std.File.SuperFileExists function to detect whether the Super-
File has already been created, and create it only if it hasn't been. This technique allows the example code in this article
to run correctly whether another user has already gone through the examples or not.

Creating a SuperKey
Creating a SuperKey is exactly the same process as creating a SuperFile. The following code (contained in
SuperKey2.ECL) creates a SuperKey and adds the first two payload keys to it:

IMPORT $;

ECL Programmers Guide
Working With SuperFiles

© 2016 HPCC Systems®. All rights reserved
58

IMPORT Std;

SEQUENTIAL(
 IF(~Std.File.SuperFileExists($.DeclareData.AcctSKname),
 Std.File.CreateSuperFile($.DeclareData.AcctSKname)),
 Std.File.StartSuperFileTransaction(),
 Std.File.ClearSuperFile($.DeclareData.AcctSKname),
 Std.File.AddSuperFile($.DeclareData.AcctSKname,$.DeclareData.SubIDX1),
 Std.File.AddSuperFile($.DeclareData.AcctSKname,$.DeclareData.SubIDX2),
 Std.File.FinishSuperFileTransaction());

Using a SuperKey
Once you have a SuperKey ready for use, you can use it in half-keyed JOINs, as demonstrated in this code (contained
in SuperKey3.ECL):

IMPORT $;

r1 := RECORD
 $.DeclareData.Layout_Person;
 $.DeclareData.Layout_Accounts;
END;

r1 Xform($.DeclareData.Person.FilePlus L, $.DeclareData.AcctSK R) := TRANSFORM
 SELF := L;
 SELF := R;
END;

J3 := JOIN($.DeclareData.Person.FilePlus(PersonID BETWEEN 1 AND 100),
 $.DeclareData.AcctSK,
 LEFT.PersonID=RIGHT.PersonID,
 Xform(LEFT,RIGHT));

OUTPUT(J3,ALL);

Maintaining SuperKeys
A SuperKey is simply a SuperFile whose component sub-files are payload keys. Therefore, building and maintaining
a SuperKey is exactly the same process as described already in the Creating and Maintaining SuperFiles article.
The only significant difference is the manner in which you create the component sub-files, which process is already
described in the Using ECL Keys (INDEX Files) article.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
59

Working With Roxie

Roxie Overview
Let's start with some definitions:

Thor An HPCC cluster specifically designed to perform massive data manipulation (ETL) processes.
This is a back-office data preparation tool and not meant for end-user production-level queries.
See the HPCC operational manuals for complete documentation.

Roxie An HPCC cluster specifically designed to service standard queries, providing a throughput rate
of a thousand-plus responses per second (actual response rate for any given query is, of course,
dependent on its complexity). This is a production-level tool designed for mission-critical ap-
plication. See the HPCC operational manuals for complete documentation.

hThor An R&D platform designed for iterative, interactive development and testing of Roxie queries.
This is not a separate cluster, but a “piggyback” implementation of ECL Agent and Thor. See
the HPCC operational manuals for complete documentation.

Thor
Thor clusters are used to do all the “heavy lifting” data preparation work to process raw data into standard formats.
Once that process is complete, end-users can query that standardized data to glean real information. However, end-
users typically want to see their results “immediately or sooner”—and usually more than one end-user wants their
result at the same time. The Thor platform only works on one query at a time, which makes it impractical for use by
end-users, and that is why the Roxie platform was created.

Roxie
Roxie clusters can handle thousands of simultaneous end-users and provide them all with the perception of “immedi-
ately or sooner” results. It does this by only allowing end-users to run standard, pre-compiled queries that have been
developed specifically for end-user use on the Roxie cluster. Typically, these queries use indexes and thus, provide
extremely fast performance. However, the Roxie cluster is impractical for use as a development tool, since all its
queries must be pre-compiled and the data they use must have been previously deployed. Therefore, the iterative query
development and testing process is performed using Doxie.

hThor
hThor is not a separate cluster on its own; it is an instance of ECL Agent (which operates on a single server) that
emulates the operation of a Roxie cluster. Just as with Thor queries, hThor queries are compiled each time they are
run. hThor queries access data directly from an associated Thor cluster's disk drives without interfering with any Thor
operations. This makes it an appropriate tool for developing queries that are destined for use on a Roxie cluster.

How to Structure Roxie Queries
To begin developing queries for use on Roxie clusters you must start by deciding what data to query and how to index
that data so that end-users see their result in minimum time. The process of putting the data into its most useful form
and indexing it is accomplished on a Thor cluster. The previous articles on indexing and superfiles should guide you
in the right direction for that.

Once the data is ready to use, you can then write the query. Queries for Roxie clusters always contain at least one
action—usually a simple OUTPUT to return the result set.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
60

Roxie queries use either a SOAP (Simple Object Access Protocol) or JSON (JavaScript Object Notation) interface
to “pass in” data values. The values passed through the interface wind up in definitions with the STORED workflow
service. Your ECL code then can use those definitions to determine the passed values and return the appropriate result
to the end-user.

Here is a simple example of the structure of a Roxie query (contained in RoxieOverview1.ECL):

IMPORT $;

EXPORT RoxieOverview1 := FUNCTION

STRING30 lname_value := '' : STORED('LastName');
STRING30 fname_value := '' : STORED('FirstName');

IDX := $.DeclareData.IDX__Person_LastName_FirstName;
Base := $.DeclareData.Person.FilePlus;

Fetched := IF(fname_value = '',
 FETCH(Base, IDX(LastName=lname_value), RIGHT.RecPos),
 FETCH(Base, IDX(LastName=lname_value, FirstName=fname_value), RIGHT.RecPos));

RETURN OUTPUT(CHOOSEN(Fetched,2000));

END;

Notice that the FUNCTION does not receive any parameters. Instead, the lname_value and fname_value definitions
both have the STORED workflow service that supply storage names. The SOAP/JSON interface uses the storage
names to pass in values, because the STORED option opens up a storage space in the workunit where the interface
can place the values to pass to the service.

This code uses FETCH because it is the simplest example of using an INDEX in ECL. More typically, Roxie queries
use half-keyed JOIN operations with payload keys (the Complex Roxie Queries article addresses this issue). Note that
the OUTPUT contains a CHOOSEN as a simple example of how to ensure you limit the maximum amount of data
that can be returned from the query to some “reasonable” amount—it doesn't make much sense to have a Roxie query
that could possibly return 10 billion records to an end-user's PC (anybody actually needing that much data should be
working in Thor, not Roxie).

Testing Queries
Once you have written your query you naturally need to test it. That's where hThor comes into play. hThor is an
interactive test system that you can use before deploying your queries to Roxie. The easiest way to describe the process
is to walk through it using this simple example query.

1. Open the Samples\ProgrammersGuide\RoxieOverview1.ECL file

Now you're ready to publish this query to hThor.

2. Select "hthor" on the Target drop list

3. Click the down arrow on the Submit button and select Compile

4. Open the compiled workunit and select the ECL Watch tab

5. Press the Publish button

Open the ECL Watch web page (not using the ECL IDE — open it in Internet Explorer). The IP for ECL Watch is the
same as the IP you used to configure the ECL IDE to access the environment you're working in. The Port is 8010.

6. Click on System Servers (it's in the Topology section)

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
61

7. Find the ESP Servers section

8. Click on the ESP server's name link to display its list of services and their ports

9. Note the port number beside the wsecl Service Type (this is usually 8002, but it could be set to something else)

Once you've know the IP and port for your wsecl service (the service that makes hthor "pretend" to be a Roxie), you
can go there and run the query.

10. The easy way is to right-click on the wsecl link and open it in a new tab or window (or you can Edit Internet
Explorer's address bar to point to the correct IP:port

11. Press the Enter key

A login dialog may appear—your login ID and password are the same as the ones you use for the ECL IDE. After
you've logged in, you'll see a tree list of QuerySets on the left.

12. Click on the hthor branch

A list of all the Queries published to your hthor appears in the tree. In this case, there's only the one.

13. Click on the RoxieOverview1.1 branch

A web page containing two entry controls and a Submit button appears.

14. Type in any last name from the set of last names that were used by the code in GenData.ECL to generate the data
files for this Programmer's Guide

COOLING is a good example to use. Note that, since this is an extremely simple example, you'll need to type it in
ALL CAPS, otherwise the FETCH will fail to find any matching records (this is only due to the simplicity of this ECL
code and not any inherent lack in the system).

15. Press the Submit button

Queries are pre-compiled when you Publish, so after a second you should see an XML result with 1,000 records in it.

Deploying Queries to Roxie
Once you've done enough testing on hThor to be sure the query does what you expect it to do, the only step then
required is to deploy it to Roxie and test it there, too (just to be completely certain that everything operates the way it
should). Once you've tested it on Roxie, you can inform the users that the query is available for their use.

The Roxie deployment process is done the same way we just did for hThor, except the Target drop list has to be set
to Roxie.

Once you've deployed the query, you can test it the same way you tested it on hThor, except the new service will
appear under your Roxie in the tree list.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
62

SOAP-enabling Queries
Queries destined for use in Roxie are SOAP-enabled first. The required ECL code to accomplish this is the STORED
workflow service. Roxie queries may be contained in the FUNCTION structure or may simply be an executable query.

The ECL Key to SOAP
The ECL code requirement for SOAP-enabled input parameters is the use of the STORED workflow service. Each
SOAP parameter name must be the STORED name for an ECL definition. The STORED workflow service creates a
data storage space in the workunit that the SOAP interface uses to populate the “passed” data. The ECL code simply
uses those STORED definitions to determine whether data was passed from that “parameter” and what that data is.
The data type of the passed SOAP parameter is implied by the STORED definition.

For the following code example, you must create two definitions with STORED names duplicating the SOAP para-
meter name, like this:

STRING30 lname_value := '' : STORED('LastName');

STRING30 fname_value := '' : STORED('FirstName');

These default to blank and the STORED workflow service opens a space in the workunit to store the value. The
Enterprise Service Platform (ESP) handles the SOAP interface chores by plugging in the appropriate values into the
storage space created by STORED. Therefore, the ECL code only needs to use the definitions (in this case, Lname and
Fname) to accomplish the query. This makes the ECL side of the equation very simple.

Putting It All Together
Once you understand the requirements, a SOAP-enabled query would look like this (contained in SOAPenabling.ECL):

IMPORT ProgrammersGuide.DeclareData AS ProgGuide;

EXPORT SOAPenabling() := FUNCTION
 STRING30 lname_value := '' : STORED('LastName');
 STRING30 fname_value := '' : STORED('FirstName');
 IDX := ProgGuide.IDX__Person_LastName_FirstName;
 Base := ProgGuide.Person.FilePlus;
 Fetched := IF(fname_value = '',
 FETCH(Base,IDX(LastName=lname_value),RIGHT.RecPos),
 FETCH(Base,IDX(LastName=lname_value,
 FirstName=fname_value),RIGHT.RecPos));
 RETURN OUTPUT(CHOOSEN(Fetched,2000));
END;

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
63

Complex Roxie Query Techniques
The ECL coding techniques used in Roxie queries can be quite complex, making use of multiple keys, payload keys,
half-keyed JOINs, the KEYDIFF function, and various other ECL language features. All these techniques share a
single focus, though—to maximize the performance of the query so its result is delivered as efficiently as possible,
thereby maximizing the total transaction throughput rate possible for the Roxie that services the query.

Key Selection Based on Input

It all starts with the architecture of your data and the keys you build from it. Typically, a single dataset would have
multiple indexes into it so as to provide multiple access methods into the data. Therefore, one of the key techniques
used in Roxie queries is to detect which of the set of possible values have been passed to the query, and based on those
values, choose the correct INDEX to use.

The basis for detecting which values have been passed to the query is determined by the STORED attributes defined
to receive the passed values. The SOAP Interface automatically populates these attributes with whatever values have
been passed to the query. That means the query code need simply interrogate those parameters for the presence of
values other than their defaults.

This example demonstrates the technique:

IMPORT $;
EXPORT PeopleSearchService() := FUNCTION
 STRING30 lname_value := '' : STORED('LastName');
 STRING30 fname_value := '' : STORED('FirstName');
 IDX := $.IDX__Person_LastName_FirstName;
 Base := $.Person.FilePlus;

 Fetched := IF(fname_value = '',
 FETCH(Base,IDX(LastName=lname_value),RIGHT.RecPos),
 FETCH(Base,IDX(LastName=lname_value,FirstName=fname_value),RIGHT.RecPos));
 RETURN OUTPUT(CHOOSEN(Fetched,2000));
END;

This query is written assuming that the LastName parameter will always be passed, so the IF needs only to detect
whether a FirstName was also entered by the user. If so, then the filter on the index parameter to the FETCH needs to
include that value, otherwise the FETCH just needs to filter the index with the LastName value.

There are several ways this code could have been written. Here's an alternative:

IMPORT $;
EXPORT PeopleSearchService() := FUNCTION
 STRING30 lname_value := '' : STORED('LastName');
 STRING30 fname_value := '' : STORED('FirstName');
 IDX := $.IDX__Person_LastName_FirstName;
 Base := $.Person.FilePlus;
 IndxFilter := IF(fname_value = '',
 IDX.LastName=lname_value,
 IDX.LastName=lname_value AND IDX.FirstName=fname_value);
 Fetched := FETCH(Base,IDX(IndxFilter),RIGHT.RecPos);
 RETURN OUTPUT(CHOOSEN(Fetched,2000));
END;

In this example, the IF simply builds the correct filter expression for the FETCH to use. Using this form makes the code
easier to read and maintain by separating out the multiple possible forms of the filter logic from the function that uses it.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
64

Keyed Joins
Although the FETCH function was specifically designed for indexed access to data, in practice the half-keyed JOIN
operation is more commonly used in Roxie queries. A major reason for this is the flexibility that is possible with JOIN.

The advantages of using keyed JOIN operations in any query is fully discussed in the Using ECL Keys (INDEX
Files) article. These advantages really benefit Roxie queries tremendously. Because of the nature of Roxie, the best
advantage from keyed JOINs comes from the use of half-keyed JOINs that utilize payload keys (eliminating the need
for additional FETCH operations).

Limiting Output
One major consideration for developing a Roxie query is the amount of data that may possibly be returned from the
query. Since JOIN operations can possibly result in huge datasets, care should be taken to limit the number of records
any given query may return to a number that is “reasonable” for that specific type of query. Here are some techniques
to help accomplish that goal:

* The CHOOSEN and LIMIT functions should be used to limit index reads to some maximum number.

* Keyed JOINs should use the ATMOST, KEEP, or LIMIT option.

* When a nested child dataset is defined, it should have a MAXCOUNT option defined on the child
DATASET field in the RECORD structure, and the code that builds the nested child dataset should
use CHOOSEN with a value that exactly matches the MAXCOUNT.

All of these techniques will help to ensure that, when the end-user expects to get around ten results, that they don't
end up with ten million.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
65

SOAPCALL from Thor to Roxie
Once you have your SOAP-enabled queries tested and deployed to Roxie, you need to be able to use them. Many
Roxie queries can be launched through some specially-designed user interface that allow end-users to enter search
criteria and get results, one at a time. However, sometimes you need to retrieve data in a batch mode, where the same
query is run once against each record from a dataset. That makes Thor a candidate to be the requesting platform, by
using SOAPCALL.

One Record Input, Record Set Return
This example code (contained in Soapcall1.ECL) calls the service previously deployed in the Roxie Overview article
(you will need to change the IP attribute in this code to the appropriate IP and port for the Roxie to which it has been
deployed):

IMPORT $;

OutRec1 := $.DeclareData.Layout_Person;
RoxieIP := 'http://127.0.0.1:8002/WsEcl/soap/query/roxie/roxieoverview1.1';
svc := 'RoxieOverview1.1';

InputRec := RECORD
 STRING30 LastName := 'KLYDE';
 STRING30 FirstName := '';
END;
//1 rec in, recordset out
ManyRec1 := SOAPCALL(RoxieIP,
 svc,
 InputRec,
 DATASET(OutRec1));
OUTPUT(ManyRec1);

This example shows how you would make a SOAPCALL to the service passing it a single set of parameters to retrieve
only those records that relate to the set of passed parameters. The service receives a single set of input data and returns
only those records that meet that criteria. The expected result from this query is a returned set of the 1000 records
whose LastName field contains “KLYDE.”

Record Set Input, Record Set Return
This next example code (contained in Soapcall2.ECL) also calls the same service as the previous example (remember,
you will need to change the IP attribute in this code to the appropriate IP and port for the Roxie to which it has been
deployed):

IMPORT $;

OutRec1 := $.DeclareData.Layout_Person;
RoxieIP := 'http://127.0.0.1:8002/WsEcl/soap/query/roxie/roxieoverview1.1';
svc := 'RoxieOverview1.1';
//recordset in, recordset out
InRec := RECORD
 STRING30 LastName {XPATH('LastName')};
 STRING30 FirstName{XPATH('FirstName')};
END;

InputDataset := DATASET([{'TRAYLOR','CISSY'},
 {'KLYDE','CLYDE'},
 {'SMITH','DAR'},
 {'BOWEN','PERCIVAL'},
 {'ROMNEY','GEORGE'}],Inrec);

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
66

ManyRec2 := SOAPCALL(InputDataset,
 RoxieIP,
 svc,
 Inrec,
 TRANSFORM(LEFT),
 DATASET(OutRec1),
 ONFAIL(SKIP));
OUTPUT(ManyRec2);

This example passes a dataset containing multiple sets of parameters on which the service will operate, returning a
single recordset of all records returned by each set of parameters. In this form, the TRANSFORM function allows the
SOAPCALL to operate like a PROJECT to produce the input records that provide the input parameters for the service.

The service operates on each record in the input dataset in turn, combining the results from each into a single return
result set. The ONFAIL option indicates that if there is any type of error, then the record should simply by skipped.
The expected result from this query is a returned set of three records for the only three records that match the input
criteria (CISSY TRAYLOR, CLYDE KLYDE, and PERCIVAL BOWEN).

Performance Considerations: PARALLEL
The form of the first example takes a single row as its input. When a single URL is specified, SOAPCALL sends the
request to that one URL and waits for a response. If multiple URLs are specified, SOAPCALL sends a request to the
first URL in the list, waits for a response, sends a request to the second URL, and on down the list. The PARALLEL
option controls concurrency, so if PARALLEL(n) is specified, requests are sent concurrently from each Thor node,
with up to n requests in flight at once from each node.

The form of the second example takes a dataset as its input. When a single URL specified, the default behaviour is
to send two requests with the first and second rows concurrently, wait for a response, send the third rows, and so on
down the dataset, with up to two requests in flight at once. If PARALLEL(n) is specified, it sends n requests with the
first n rows concurrently from each Thor node, and so on, with up to n requests in flight at once from each node.

In an ideal world you would specify a PARALLEL value that multiplies out to at least the number of Roxie URLs,
so that every available host can work simultaneously. Also, if you're using a dataset as input, you might want to try
a value several times the number of URLs. However, this could cause network contention (timeouts and dropped
connections) if set too high.

You should add the PARALLEL option to the code from both previous examples to see what effect differing values
may have in your environment.

Performance Considerations: MERGE
The MERGE option controls the number of rows per request for the form that takes a dataset (MERGE does not apply
to the forms of SOAPCALL that take a single row as input). If MERGE(m) is specified, each request contains up to
m rows, rather than a single row.

If the concurrency (PARALLEL option setting) is less than or equal to the number of URLs then each URL will
normally only see one request at a time (assuming all hosts operate at about the same speed). In that case, you might
choose a value of MERGE as high as the host and the network can take: too high a value and a massive request might
kill or swamp the service, but too low a value needlessly increases overhead by sending many small requests in place
of fewer larger ones. If the concurrency is greater than the number of URLs then each URL will see several requests
at a time and these considerations still apply.

Assuming that the host processes a single request serially, there is one additional consideration. You should ensure
that the MERGE value is smaller than the number of rows in the dataset so as to ensure that you are making use of
the parallelization on the hosts. If the value of MERGE is greater than or equal to the number of input rows, then you
send the entire input dataset in one request and the host processes the rows serially.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
67

You should add the MERGE option to the code from the second example to see what effect differing values may have
in your environment.

A Real World Example

A customer asked for help with a problem—how to compare two strings and determine if the first contains every
word in the second, in any order, when there are an indeterminate number of words in each string. This is a fairly
straight-forward problem in ECL. Using JOIN and ROLLUP would be one approach, or nested child dataset queries
(not supported in Thor at the time of the request for help, though they may be by the time you read this). All the
following code is contained in the Soapcall3.ECL file.

The first need was to create a function that would extract all the discrete words from a string. This is the kind of job
that the PARSE function excels at, so that's exactly what this code does:

ParseWords(STRING LineIn) := FUNCTION
 PATTERN Ltrs := PATTERN('[A-Za-z]');
 PATTERN Char := Ltrs | '-' | '\'';
 TOKEN Word := Char+;
 ds := DATASET([{LineIn}],{STRING line});
 RETURN PARSE(ds,line,Word,{STRING Pword := MATCHTEXT(Word)});
END;

This FUNCTION (contained in Soapcall3.ECL) receives an input string and produces a record set result of all the
words contained in that string. It defines a PATTERN attribute (Char) of allowable characters in a word as the set of
all upper and lower case letters (defined by the Ltrs PATTERN), the hyphen, and the apostrophe. Any other character
than these will be ignored.

Next, it defines a Word as one or more allowable Char pattern characters. This pattern is defined as a TOKEN so that
only the full word match is returned and not all the possible alternative matches (i.e. returning just SOAP, instead of
SOAP, SOA, SO, and S—all the possible alternative matches that a PATTERN would generate).

The one record in-line DATASET attribute (ds) creates the input “file” for the PARSE function to work on, producing
the result record set of all the discrete words from the input string.

Next, we need a Roxie query to compare the two strings (also contained in Soapcall3.ECL):

EXPORT Soapcall3() := FUNCTION
 STRING UID := '' : STORED('UIDstr');
 STRING LeftIn := '' : STORED('LeftInStr');
 STRING RightIn := '' : STORED('RightInStr');
 BOOLEAN TokenMatch := FUNCTION
 P1 := ParseWords(LeftIn);
 P2 := ParseWords(RightIn);
 SetSrch := SET(P1,Pword);
 ProjRes := PROJECT(P2,
 TRANSFORM({BOOLEAN Fnd},
 SELF.Fnd := LEFT.Pword IN SetSrch));
 AllRes := DEDUP(SORT(ProjRes,Fnd));
 RETURN COUNT(AllRes) = 1 AND AllRes[1].Fnd = TRUE;
 END;
 RETURN OUTPUT(DATASET([{UID,TokenMatch}],{STRING UID,BOOLEAN res}));
END;

There are three pieces of data this query expects to receive: a string containing an identifier for the comparison (for
context purposes in the result), and the two strings whose words to compare.

The FUNCTION passes the input strings to the ParseWords function to create two recordsets of words from those
strings. The SET function then re-defines the first recordset as a SET so the the IN operator may be used.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
68

The PROJECT operation does all the real work. It passes each word in turn from the second input string to its inline
TRANSFORM function, which produces a Boolean result for that word—TRUE or FALSE, is it present in the set of
words from the first input string or not?

To determine if all the words in the second string were contained in the first, the SORT/DEDUP sorts all the resulting
Boolean values then removes all the duplicate entries. There will only be one or two records left: either a TRUE and
a FALSE, or a single TRUE or FALSE record.

The RETURN expression detects which of the three scenarios has occurred. Two records left indicates some, but not
all, of the words were present. One record indicates either all or none of the words were present, and if the value of
that record is TRUE, then all words were present and the FUNCTION returns TRUE. All other cases return FALSE.

The OUTPUT uses a one-record inline DATASET to format the result. The identifier that was passed in is passed back
along with the Boolean result of the compare. The identifier becomes important when the query is called multiple times
in Roxie to process through a dataset of strings to compare in a batch mode because the results may not be returned in
the same order as the input records. If it were only ever used interactively, this identifier would not be necessary.

Once you've saved the query to the Repository, you can test it with hThor and/or deploy it to Roxie (hThor will work
for testing, but Roxie is much faster for production). Either way, you can use SOAPCALL to access it like this (the
only difference would be the IP and port you target for the query (contained in Soapcall4.ECL)):

RoxieIP := 'http://127.0.0.1:8002/WsEcl/soap/query/roxie/soapcall3.1'; //Roxie
svc := 'soapcall3.1';

InRec := RECORD
 STRING UIDstr{XPATH('UIDstr')};
 STRING LeftInStr{XPATH('LeftInStr')};
 STRING RightInStr{XPATH('RightInStr')};
END;
InDS := DATASET([
 {'1','the quick brown fox jumped over the lazy red dog','quick fox red dog'},
 {'2','the quick brown fox jumped over the lazy red dog','quick fox black dog'},
 {'3','george of the jungle lives here','fox black dog'},
 {'4','fred and wilma flintstone','fred flintstone'},
 {'5','yomama comeonah','brake chill'}],InRec);

RS := SOAPCALL(InDS,
 RoxieIP,
 svc,
 InRec,
 TRANSFORM(LEFT),
 DATASET({STRING UIDval{XPATH('uid')},BOOLEAN CompareResult{XPATH('res')}}));

OUTPUT(RS);

Of course, you must first change the IP and port in this code to the correct values for your environment. You
can find the proper IP and port to use by looking at the System Servers page of your ECL Watch. To target Doxie (aka
ECL Agent or hthor), use the IP of your Thor's ESP Server and the port for its wsecl service. To target Roxie, use the
IP of your Roxie's ESP Server and the port for its wsecl service. It's possible that both ESP servers could be on the
same box. If so, then the difference will only be in the port assignment for each.

The key to this SOAPCALL query is the InRec RECORD structure with its XPATH definitions. These must exactly
match the part names and the STORED names of the query's parameter receiving attributes (NB that these are case
sensitive, since XPATH is XML and XML is always case sensitive). This is what maps the input data fields through
the SOAP interface to the query's attributes.

This SOAPCALL receives a recordset as input and produces a recordset as its result, making it very similar to the
second example above. One small change from that previous example of this type is the use of the shorthand TRANS-
FORM instead of an inline TRANSFORM function. Also, note that the XPATH for the first field in the DATASET

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
69

parameter's inline RECORD structure contains lower case “uid” while it is obviously referencing the query's OUTPUT
field named “UID”—the XML returned from the SOAP service uses lower case tag names for the returned data fields.

When you run this you'll get a TRUE result for records one and four, and FALSE for all others.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
70

Controlling Roxie Queries
There are several ECL functions that are designed specifically to help optimize queries for execution on Roxie. These
include PRELOAD, ALLNODES, THISNODE, LOCAL, and NOLOCAL. Understanding how all these functions
work together can make a big difference in the performance of your Roxie queries.

How Graphs Execute
Writing efficient queries for Roxie or Thor can require an understanding of how the different clusters operate. This
brings up three questions:

How does the graph execute, on a single node, or on all nodes in parallel?

How are datasets accessed by each node executing the graph, only the parts that are local to the node, or all parts
on all nodes?

Does an operation coordinate with the same operation on other nodes, or does each node operate independently?

Here's how queries “normally” execute on each type of cluster:

Thor Graphs execute on multiple slave nodes in parallel.

Index/disk reads are done locally by each slave node.

All other disk access (FETCH, keyed JOIN, etc.) are effectively accessed across all nodes.

Coordination with operations on other nodes is controlled by the presence or absence of the LO-
CAL option on the operation.

No support for child queries (this may change in future releases).

hthor Graphs execute on the single ECL Agent node.

All parts of the dataset/index are accessed by directly accessing the disk drive of the node with
the data—no other interaction with the other nodes.

Child queries always execute on same node as parent.

Roxie Graphs execute on a single (Roxie server) node.

All parts of the dataset/index are accessed by directly accessing the disk drive of the node with
the data—no other interaction with the other nodes.

Child queries might execute on a single agent node instead of a Roxie server node.

ALLNODES vs. THISNODE
In Roxie, graphs execute on a single Roxie server node unless the ALLNODES() function is used. ALLNODES()
causes the portion of the query it encloses to execute on all agent nodes in parallel. The results are calculated indepen-
dently on each node then merged together, without ordering the records. It is generally used to do some complex re-
mote processing which only requires local index access, substantially reducing the network traffic between the nodes.

By default, everything within the ALLNODES() will be executed on all the nodes, but sometimes the ALLNODES()
query requires some input or arguments that shouldn't be executed on all the nodes—for example, the previous best
guess at the results, or some information controlling the parallel query. The THISNODE() function can be used to
surround element that are to be evaluated by the current node instead.

A typical usage would look like this:

bestSearchResults := ALLNODES(doRemoteSearch(THISNODE(searchWords),THISNODE(previousResults)))

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
71

Where 'searchWords' and 'previousResults' are effectively calculated on the current node, and then passed as parameters
to each instance of the doRemoteSearch() executing in parallel on all nodes.

LOCAL vs. NOLOCAL
The LOCAL option available on many functions (like JOIN, SORT, etc.) and the LOCAL() and NOLOCAL() functions
control whether the graphs running on a particular node access all parts of a file/index or only those associated with
the particular node (LOCAL). Often within an ALLNODES() context you only want to access local index parts from
a single node because each node is independently processing its associated parts. Specifying that an index read or a
keyed JOIN is LOCAL means that only the local part is used on each node. A local read of a single part INDEX will
only be evaluated on the first agent node (or the farmer node if not within an ALLNODES)

Local evaluation can be specified in two ways:

1) As a dataset operation:

LOCAL(MyIndex)(myField = searchField)

2) As an option on the operation:

JOIN(... ,LOCAL)
FETCH(... ,LOCAL)

The LOCAL(dataset) function causes every operation on the dataset to access the file/key locally. For example,

LOCAL(JOIN(index1, index2,...))

will read index1 and index2 locally. This rule is recursively applied until you reach one of the following:

Use of the NOLOCAL() function

A non-local attribute—the operation stays non-local, but children are still marked as local as nec-
essary

A GLOBAL() or THISNODE() or workflow operation—since they will be evaluated in a different
context

Use of the ALLNODES() function (as in a nested child query)

Note that:

JOIN(x, LOCAL(index1)...) is treated the same as JOIN(x, index1, ..., local).

LOCAL is also supported as an option on an INDEX, but the LOCAL() function is preferred, because it generally
depends on the context an index is used in whether or not access to it should be local or not.

A non-local attribute is supported everywhere that a LOCAL attribute is allowed - to override an enclosing LOCAL()
function.

The use of LOCAL to indicate that dataset/key access is local does not conflict with its use to control coordination of
an operation with other nodes, because there is no operation that potentially co-ordinates with other nodes and also
accesses indexes or datasets.

NOROOT Indexes
The ALLNODES() function is particularly useful if there is more than one index co-distributed on a particular value
so that all information that relates to a particular key field value is associated with the same node. However generally

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
72

indexes are globally sorted. Adding a NOROOT option to a BUILD action or INDEX declaration indicates that
the index is not globally sorted, and there is no root index to indicate which part of the index will contain a
particular entry.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
73

Query Libraries
A Query Library is a set of attributes, packaged together in a self contained unit, which allows the code to be shared
between different workunits. This reduces the time required to deploy a set of attributes, and can reduce the memory
footprint for the set of queries within Roxie that use the library. It is also possible to update a query library without
having to re-deploy all the queries that use it.

Query libraries are not supported in Thor, but may be in the future.

A Query Library is defined by two structures—an INTERFACE to define the parameters to pass, and a MODULE
that implements the INTERFACE.

Library INTERFACE Definition
To create a Query Library, the first requirement is a definition of its input parameters with an INTERFACE structure
that receives the parameters:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;
 STRING20 LName;
END;

FilterLibIface1(DATASET(namesRec) ds, STRING search) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

This example defines the INTERFACE for a library that takes two inputs—a DATASET (with the specified layout
format) and a STRING—and which gives you the ability to output two DATASET results.

For most library queries it may be preferable to also use a separate INTERFACE to define the input parameters. Using
an INTERFACE makes the passed parameters clearer and makes it easier to keep the interface and implementation in
sync. This example defines the same library interface as above:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;
 STRING20 LName;
END;

IFilterArgs := INTERFACE //defines passed parameters
 EXPORT DATASET(namesRec) ds;
 EXPORT STRING search;
END;
FilterLibIface2(IFilterArgs args) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

Library MODULE Definitions
A query library is a MODULE structure definition that implements a particular library INTERFACE definition. The
parameters passed to the MODULE must exactly match the parameters for the library INTERFACE definition, and the
MODULE must contain compatible EXPORT attribute definitions for each of the results specified in the library IN-
TERFACE. The LIBRARY option on the MODULE definition specifies the library INTERFACE being implemented.
This example defines an implementation for the INTERFACEs above:

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
74

FilterDsLib1(DATASET(namesRec) ds,
 STRING search) := MODULE,LIBRARY(FilterLibIface1)
 EXPORT matches := ds(Lname = search);
 EXPORT others := ds(Lname != search);
END;

and for the variety that takes an INTERFACE as its single parameter:

FilterDsLib2(IFilterArgs args) := MODULE,LIBRARY(FilterLibIface2)
 EXPORT matches := args.ds(Lname = args.search);
 EXPORT others := args.ds(Lname != args.search);
END;

Building an External library
A query library may be either internal or external. An internal library would be primarily used in hthor queries for
testing and debugging before deploying to Roxie. Although you can use internal query libraries in Roxie queries, the
advantages come from using the external version.

An external query library is created by the BUILD action, which compiles the query library into its own workunit.
The name of the library is the job name associated with the workunit. Therefore, the #WORKUNIT would normally
be used to give the workunit a meaningful job name, as in this example:

#WORKUNIT('name','Ppass.FilterDsLib');
BUILD(FilterDsLib1);

This code builds the library for the INTERFACE parameter version of the code above:

#WORKUNIT('name','Ipass.FilterDsLib');
BUILD(FilterDsLib2);

The system maintains a catalog of the latest versions of each query library that is updated whenever a library is built.
Hthor uses this to resolve query libraries when running a query (as will Thor, when it eventually supports query
libraries). Roxie uses the query aliasing mechanism in the same way.

Using a Query Library
The syntax for using a query library is slightly different depending on whether the library is internal or external.
However, both methods use the LIBRARY function.

The LIBRARY function returns a MODULE implementation with the proper parameters passed for the instance in
which you want to use it, which may be used to access the EXPORT attributes from the library.

Internal Libraries

An internal library generates the library code as a separate unit, but then includes that unit within the query workunit. It
doesn't have the advantage of reducing compile time or memory usage in Roxie, but it does retain the library structure,
which means that changes to the code cannot affect anyone else using the system. That makes internal libraries a
perfect testing method.

The syntax for using an internal query library simply passes the library MODULE attribute's name inside an INTER-
NAL function call in the first parameter to the LIBRARY function, as in this example (for the version that does not
take an INTERFACE as its parameter):

NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
75

 {4,'Anywhere','but here'}],
 NamesRec);
lib1 := LIBRARY(INTERNAL(FilterDsLib1),FilterLibIface1(NamesTable, 'Holliday'));

In this case, result is a MODULE with two EXPORTed attributes—matches and others—that can be used just like
any other MODULE, as in this example:

OUTPUT(lib1.matches);
OUTPUT(lib1.others);

and the code changes to this for the variety that takes an INTERFACE:

NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);
SearchArgs := MODULE(IFilterArgs)
 EXPORT DATASET(namesRec) ds := NamesTable;
 EXPORT STRING search := 'Holliday';
END;
lib3 := LIBRARY(INTERNAL(FilterDsLib2),FilterLibIface2(SearchArgs));
OUTPUT(lib3.matches);
OUTPUT(lib3.others);

External Libraries

Once the library is implemented as an external library (using the BUILD action to create the library is done in a separate
workunit) the LIBRARY function no longer requires the use of the INTERNAL function to specify the library. Instead,
it takes a string constant containing the name of the workunit created by BUILD as its first parameter, like this:

NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);
lib2 := LIBRARY('Ppass.FilterDsLib',FilterLibIface1(NamesTable, 'Holliday'));
OUTPUT(lib2.matches);
OUTPUT(lib2.others);

Or, for the INTERFACE version:

NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);

SearchArgs := MODULE(IFilterArgs)
 EXPORT DATASET(namesRec) ds := NamesTable;
 EXPORT STRING search := 'Holliday';
END;

lib4 := LIBRARY('Ipass.FilterDsLib',FilterLibIface2(SearchArgs));
OUTPUT(lib4.matches);
OUTPUT(lib4.others);

A couple of words of warning about using external libraries: If you are developing an attribute inside a library that is
shared by other people, then you need to make sure that your development changes don't invalidate other queries. This
means you need to use a different library name while developing. The simplest method is probably to use a different
attribute for the library implementation while you are developing. Another way to avoid this is to develop/test with
internal libraries and only build and implement the external library when you are ready to put the query into production.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
76

If libraries are nested then it gets more complicated. If you are working on a libraryC, which is called from a libraryA,
which is then called from a query, then you will need to use different library names for libraryC and libraryA. Otherwise
you will either not call your modified code in libraryC, or everyone using libraryA will call your modified code. You
may prefer to make libraryA and libraryC internal instead, but you won't gain from the reduced compile time associated
with external libraries.

Also remember your changes are occurring in the library, not in the query. It's not uncommon to wonder why changes
to the ECL aren't having any effect, and then realize that you've been rebuilding/deploying the wrong item.

Query Library Tips
You can make your code cleaner by making the LIBRARY call a function attribute, like this:

FilterDataset(DATASET(namesRecord) ds,
 STRING search) := LIBRARY('Ppass.FilterDsLib',FilterLibIface1(ds, search));

The use of the library then becomes:

FilterDataset(myNames, 'Holliday');

The library name (specified as the first parameter to the LIBRARY function) does not have to be a constant value,
but it must not change while the query is running. This means you can conditionally select between different versions
of a library.

For example, it is likely that you will want separate libraries for handling FCRA and non-FCRA data, since combining
the two could generate inefficient or un-processable code. The code for selecting between the two implementations
would look like this:

LibToUse := IF(isFCRA,'special.lookupFRCA','special.lookupNoFCRA);
MyResults := LIBRARY(LibToUse, InterfaceCommonToBoth(args));

Restrictions
The system will report an error if you attempt to use an implementation of a query library that has a different INTER-
FACE from the one specified in the LIBRARY function.

There is one particularly notable restriction on the ECL that can be included within a library: they cannot include
workflow services such as INDEPENDENT, PERSIST, SUCCESS, and especially, STORED. STORED attributes
don't make sense inside a query library because a query library should be independent of both the queries that use it, and
other query libraries. Instead of using STORED attributes (like SOAP-enabled Roxie queries use) to pass parameters to
the library queries, the parameters must be explicitly passed into the query library—either as an individual parameter,
or as part of an INTERFACE definition that provides the arguments. The query that uses the query library can use
stored variables, and then map those stored variables to the parameters expected by the query libraries.

Query libraries can currently only EXPORT datasets, datarows, and single-valued expressions. In particular they can-
not EXPORT actions (like OUTPUT), TRANSFORM structures, or other MODULE structures.

Notes on the implementation
There are a couple of items that may be worth noting about the implementation. In Roxie, before executing the query,
all library graphs are expanded into the query graph. Any datasets that are supplied as parameters to the library (or a
dataset inside an interface parameter) are directly connected to the place they are used in the query library, and only
results that are used are evaluated. This means that using a query library should have very little overhead compared
with including the ECL code directly in the query. NOTE: Datasets inside row parameters aren't streamed, so passing
a ROW containing a dataset as a parameter to the library is not as efficient as using an INTERFACE.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
77

The implementation in hthor is not as efficient. Dataset parameters are fully evaluated, and passed to the library as a
complete unit block and all results are evaluated. Thor does not yet support query libraries.

The other item of note is that if libraryA uses libraryC, and libraryB also uses libraryC with the same parameters, the
calls from different libraries will not be commoned up. However if an attribute exported from an instance of libraryC
is passed to libraryA and libraryB, then the calls to libraryC will be commoned up. The way attributes currently tend to
be structured in the repository, e.g., calculating get_Dids() and passing that into other attributes means this is unlikely
to cause any issues in practice.

Suggested Structure
Before writing a lot of libraries, it is worth spending some time working out how the attributes for a library are
structured, so all the libraries in the system are consistent. Here are some guidelines to use during your query library
design phase:

Naming Conventions

I would also suggest coming up with a consistent naming convention before developing lots of libraries. In particu-
lar, you need a convention for the names of the library arguments, library definition, implementing module, library
implementation and the attribute that wraps the use of the library. (E.g., something like IXArgs, Xinterface, DoX,
Xlibrary, and X()).

Use an INTERFACE to define parameters

This mechanism (example shown below) provides documentation for the parameters required by a service. It means
the code inside the implementation will access them as args.xxx or options.xxx, so it will be clear when parameters
are being accessed. It also makes some of the following suggestions simpler.

Hide the LIBRARY

Making the LIBRARY function call a functional attribute (example also shown below) means you can easily modify
all uses of a library if you are developing a new version. Similarly you can easily switch to use an internal library
instead by changing just the one line of code.

Use MODULE Inheritance

Use a MODULE structure (without the LIBRARY option) that implements the library's INTERFACE, and a separate
MODULE derived from the first to implement the LIBRARY using that service module. By hiding the LIBRARY
and using a separate MODULE implementation you can easily remove the library all together. Also, using a separate
implementation from the library definitions means you can easily generate multiple variants of the same library from
the same definition.

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;
 STRING20 LName;
END;
NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);

 //define an INTERFACE for the passed parameters
IFilterArgs := INTERFACE
 EXPORT DATASET(namesRec) ds;

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
78

 EXPORT STRING search;
END;

 //then define an INTERFACE for the query library
FilterLibIface2(IFilterArgs args) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

 //implement the INTERFACE
FilterDsLib(IFilterArgs args) := MODULE
 EXPORT matches := args.ds(Lname = args.search);
 EXPORT others := args.ds(Lname != args.search);
END;

 //then derive that MODULE to implement the LIBRARY
FilterDsLib2(IFilterArgs args) := MODULE(FilterDsLib(args)),LIBRARY(FilterLibIface2)
END;

 //make the LIBRARY call a function
FilterDs(IFilterArgs args) := LIBRARY(INTERNAL(FilterDsLib2),FilterLibIface2(args));
 //easily modified to eliminate the LIBRARY, if desired
 // FilterDs(IFilterArgs args) := FilterDsLib2(args));
 //define the parameters to pass as the interface
SearchArgs := MODULE(IFilterArgs)
 EXPORT DATASET(namesRec) ds := NamesTable;
 EXPORT STRING search := 'Holliday';
END;

 //use the LIBRARY, passing the parameters
OUTPUT(FilterDs(SearchArgs).matches);
OUTPUT(FilterDs(SearchArgs).others);

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
79

Smart Stepping
Overview
Smart Stepping is a set of indexing techniques that, taken together, comprise a method of doing n-ary join/merge-join
operations, where n is defined as two or more datasets. Smart Stepping enables the supercomputer to efficiently join
records from multiple filtered data sources, including subsets of the same dataset. It is particularly efficient when the
matches are sparse and uncorrelated. Smart Stepping also supports matching records from M-of-N datasets.

Before the advent of Smart Stepping, finding the intersection of records from multiple datasets was performed by
extracting the potential matches from one dataset, and then joining that candidate set to each of the other datasets
in turn. The joins would use various mechanisms including index lookups, or reading the potential matches from a
dataset, and then joining them. This means that the only way to join multiple datasets required that at least one dataset
be read in its entirety and then joined to the others. This could be very inefficient if the programmer didn't take care to
select the most efficient order in which to read the datasets. Unfortunately, it is often impossible to know beforehand
which order would be the best. It is also often impossible to order the joins so that the two least frequent terms are
joined. It was also particularly difficult to efficiently implement the M-of-N join varieties.

With Smart Stepping technology, these multiple dataset joins become a single efficient operation instead of a series of
multiple operations. Smart Stepping can only be used in the context where the join condition is primarily an equality
test between columns in the input datasets and the input datasets must have output sorted by those columns.

Smart Stepping also provides an efficient way of streaming information from a dataset, sorted by any trailing sort order.
Previously if you had a sorted dataset (often an index) which was required to be filtered by some leading components,
and then have the resulting rows sorted by the trailing components, you would have had to achieve it by reading the
entire filtered result, and then post sorting that result.

Smart Stepping can use significant amounts of temporary storage if used inappropriately. Therefore, care should be
taken to use it properly.

Trailing Field Sorts
The STEPPED function provides the ability to sort by trailing key component fields in a much more efficient manner
than sorting after filtering (the only previous method of accomplishing this). The stepped trailing key fields allows the
sorted rows to be returned without reading the entire dataset.

Prior to the advent of Smart Stepping, a sorted dataset or index could efficiently produce filtered rows, or rows sorted
in the same order as the original sort order, but it could not efficiently produce rows sorted by a trailing sort order
of the index (whether filtered or not). The filtering then post-sorting method required that all rows be read from the
dataset before any sorted rows could be retrieved. Smart Stepping allows the sorted data to be read immediately (and
therefore partially).

The easiest way to see the effect is with this example (contained in SmartStepping1.ECL—this code must be run in
hthor or Roxie, not Thor):

IMPORT $;
IDX := $.DeclareData.IDX__Person_State_City_Zip_LastName_FirstName_Payload;
Filter := IDX.State = 'LA' AND IDX.City = 'ABBEVILLE';
 //filter by the leading index elements
 //and sort the output by a trailing element
OUTPUT(SORT(IDX(Filter),FirstName),ALL); //the old way
OUTPUT(STEPPED(IDX(Filter),FirstName),ALL); //Smart Stepping

The previous method of accomplishing this meant producing the filtered result set, then using SORT to achieve the
desired sort order. The new method looks very similar, using STEPPED instead of SORT, and both OUTPUTs produce
the same result, but the efficiency of the methods by which those results are achieved is very different.

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
80

Once you've successfully run this code and gotten your result, take a look at the Graphs page.

Notice that the first OUTPUT's sub-graph contains three activities: the index read, the sort, and the output. But the
second OUTPUT's sub-graph only contains two activities: the index read and the output. All of the Smart Stepping
work to produce the result is done by the index read. If you then go to the ECL Watch page for the workunit and look
at the timings you should see that the second OUTPUT's graph1-1 time is significantly less than the first's graph1-2:

Thus demonstrating the type of performance advantage Smart Stepping can have over previous methods. Of course,
the real performance advantage shows up when you ask for only the first n records, as in this example (contained in
SmartStepping1a.ECL):

IMPORT $;
IDX := $.DeclareData.IDX__Person_State_City_Zip_LastName_FirstName_Payload;
Filter := IDX.State = 'LA' AND IDX.City = 'ABBEVILLE';
OUTPUT(CHOOSEN(SORT(IDX(Filter),FirstName),5)); //the old way
OUTPUT(CHOOSEN(STEPPED(IDX(Filter),FirstName),5)); //Smart Stepping

After running this code, check the timings on the ECL watch page. You should again see quite a performance difference
between the two methods, even with this little amount of data.

N-ary JOINs
The primary purpose of Smart Stepping is to enable n-ary merge/join operations to be accomplished as efficiently as
possible. To that end the concept of a set of datasets (or indexes) has been added to the language. This allows JOIN
to be extended to operate on multiple datasets, not just two.

For example, given this data (contained in the SmartStepping2.ECL file)

Rec := RECORD,MAXLENGTH(4096)
 STRING1 Letter;
 UNSIGNED1 DS;
 UNSIGNED1 Matches := 1;
 UNSIGNED1 LastMatch := 1;
 SET OF UNSIGNED1 MatchDSs := [1];
END;

ds1 := DATASET([{'A',1},{'B',1},{'C',1},{'D',1},{'E',1}],Rec);
ds2 := DATASET([{'A',2},{'B',2},{'H',2},{'I',2},{'J',2}],Rec);
ds3 := DATASET([{'B',3},{'C',3},{'M',3},{'N',3},{'O',3}],Rec);
ds4 := DATASET([{'A',4},{'B',4},{'R',4},{'S',4},{'T',4}],Rec);
ds5 := DATASET([{'B',5},{'V',5},{'W',5},{'X',5},{'Y',5}],Rec);

To do an inner join on all five datasets using Smart Stepping the code is this (also contained in the SmartStepping2.ECL
file):

SetDS := [ds1,ds2,ds3,ds4,ds5];

Rec XF(Rec L,DATASET(Rec) Matches) := TRANSFORM
 SELF.Matches := COUNT(Matches);
 SELF.LastMatch := MAX(Matches,DS);
 SELF.MatchDSs := SET(Matches,DS);
 SELF := L;
END;
j1 := JOIN(SetDS,STEPPED(LEFT.Letter=RIGHT.Letter),XF(LEFT,ROWS(LEFT)),SORTED(Letter));

O1 := OUTPUT(j1);

Without using Smart Stepping the code is this (also contained in the SmartStepping2.ECL file):

Rec XF1(Rec L,Rec R,integer MatchSet) := TRANSFORM
 SELF.Matches := L.Matches + 1;

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
81

 SELF.LastMatch := MatchSet;
 SELF.MatchDSs := L.MatchDSs + [MatchSet];
 SELF := L;
END;
j2 := JOIN(ds1,ds2,LEFT.Letter=RIGHT.Letter,XF1(LEFT,RIGHT,2));
j3 := JOIN(j2,ds3, LEFT.Letter=RIGHT.Letter,XF1(LEFT,RIGHT,3));
j4 := JOIN(j3,ds4, LEFT.Letter=RIGHT.Letter,XF1(LEFT,RIGHT,4));
j5 := JOIN(j4,ds5, LEFT.Letter=RIGHT.Letter,XF1(LEFT,RIGHT,5));
O2 := OUTPUT(SORT(j5,Letter));

Both of these examples produce the same one-record output, but without Smart Stepping you need four separate JOINs
to accomplish the goal, and in “real world” code you might need a separate TRANSFORM for each, depending on
what result you were trying to produce.

In addition to the standard inner join between all the datasets, the Smart Stepping form of JOIN also supports the same
type of LEFT OUTER and LEFT ONLY joins as the standard JOIN operation. However, this form also supports M
of N joins (MOFN), where matching records must appear in a specified minimum number of the datasets, and may
optionally specify a maximum in which they appear, as in these examples (also contained in the SmartStepping2.ECL
file):

j6 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),
 SORTED(Letter),
 LEFT OUTER);
j7 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),
 SORTED(Letter),
 LEFT ONLY);
j8 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),
 SORTED(Letter),
 MOFN(3));
j9 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),
 SORTED(Letter),
 MOFN(3,4));
O3 := OUTPUT(j6);
O4 := OUTPUT(j7);
O5 := OUTPUT(j8);
O6 := OUTPUT(j9);

The RANGE function is also available to limit which datasets in the set of datasets will be processed, as in this example
(also contained in the SmartStepping2.ECL file):

j10 := JOIN(RANGE(SetDS,[1,3,5]),
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),
 SORTED(Letter));
O7 := OUTPUT(j10);

SEQUENTIAL(O1,O2,O3,O4,O5,O6,O7);

This feature can be useful in situations where you may not have all the information to select from all the datasets in
the set.

This next example demonstrates the most probable use for this technology in the real world—finding the set of parent
records where related child records exist that fit a specified set of filter criteria. That's exactly what this example
(contained in the SmartStepping3.ECL file) does:

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
82

LinkRec := RECORD
 UNSIGNED1 Link;
END;
DS_Rec := RECORD(LinkRec)
 STRING10 Name;
 STRING10 Address;
END;
Child1_Rec := RECORD(LinkRec)
 UNSIGNED1 Nbr;
END;
Child2_Rec := RECORD(LinkRec)
 STRING10 Car;
END;
Child3_Rec := RECORD(LinkRec)
 UNSIGNED4 Salary;
END;
Child4_Rec := RECORD(LinkRec)
 STRING10 Domicile;
END;

Using this form of RECORD structure inheritance makes it very simple to define the linkage between the parent and
child files. Note also that all these files have different formats.

ds := DATASET([{1,'Fred','123 Main'},{2,'George','456 High'},
 {3,'Charlie','789 Bank'},{4,'Danielle','246 Front'},
 {5,'Emily','613 Boca'},{6,'Oscar','942 Frank'},
 {7,'Felix','777 John'},{8,'Adele','543 Bank'},
 {9,'Johan','123 Front'},{10,'Ludwig','212 Front'}],
 DS_Rec);

Child1 := DATASET([{1,5},{2,8},{3,11},{4,14},{5,17},
 {6,20},{7,23},{8,26},{9,29},{10,32}],Child1_Rec);

Child2 := DATASET([{1,'Ford'},{2,'Ford'},{3,'Chevy'},
 {4,'Lexus'},{5,'Lexus'},{6,'Kia'},
 {7,'Mercury'},{8,'Jeep'},{9,'Lexus'},
 {9,'Ferrari'},{10,'Ford'}],
 Child2_Rec);

Child3 := DATASET([{1,10000},{2,20000},{3,155000},{4,800000},
 {5,250000},{6,75000},{7,200000},{8,15000},
 {9,80000},{10,25000}],
 Child3_Rec);

Child4 := DATASET([{1,'House'},{2,'House'},{3,'House'},{4,'Apt'},
 {5,'Apt'},{6,'Apt'},{7,'Apt'},{8,'House'},
 {9,'Apt'},{10,'House'}],
 Child4_Rec);

TblRec := RECORD(LinkRec),MAXLENGTH(4096)
 UNSIGNED1 DS;
 UNSIGNED1 Matches := 0;
 UNSIGNED1 LastMatch := 0;
 SET OF UNSIGNED1 MatchDSs := [];
END;

Filter1 := Child1.Nbr % 2 = 0;
Filter2 := Child2.Car IN ['Ford','Chevy','Jeep'];
Filter3 := Child3.Salary < 100000;
Filter4 := Child4.Domicile = 'House';

t1 := PROJECT(Child1(Filter1),TRANSFORM(TblRec,SELF.DS:=1,SELF:=LEFT));
t2 := PROJECT(Child2(Filter2),TRANSFORM(TblRec,SELF.DS:=2,SELF:=LEFT));
t3 := PROJECT(Child3(Filter3),TRANSFORM(TblRec,SELF.DS:=3,SELF:=LEFT));

ECL Programmers Guide
Working With Roxie

© 2016 HPCC Systems®. All rights reserved
83

t4 := PROJECT(Child4(Filter4),TRANSFORM(TblRec,SELF.DS:=4,SELF:=LEFT));

The PROJECT operation is a simple way to transform the results for all these different format files into a single
standard layout that can be used by the Smart Stepping JOIN operation.

SetDS := [t1,t2,t3,t4];

TblRec XF(TblRec L,DATASET(TblRec) Matches) := TRANSFORM
 SELF.Matches := COUNT(Matches);
 SELF.LastMatch := MAX(Matches,DS);
 SELF.MatchDSs := SET(Matches,DS);
 SELF := L;
END;

j1 := JOIN(SetDS,STEPPED(LEFT.Link=RIGHT.Link),XF(LEFT,ROWS(LEFT)),SORTED(Link));

OUTPUT(j1);

OUTPUT(ds(link IN SET(j1,link)));

The first OUTPUT simply displays the same kind of result as the previous example. The second OUTPUT produces
the “real-world” result set of the base dataset records that match the filter criteria for each of the child datasets.

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
84

Getting Things Done

Cartesian Product of Two Datasets
A Cartesian Product is the product of two non-empty sets in terms of ordered pairs. As an example, if we take the set
of values, A, B and C, and a second set of values, 1, 2, and 3, the Cartesian Product of these two sets would be the
set of ordered pairs, A1, A2, A3, B1, B2, B3, C1, C2, C3.

The ECL code to produce this kind of result from any two input datasets would look like this (contained in
Cartesian.ECL):

OutFile1 := '~PROGGUIDE::OUT::CP1';

rec := RECORD
 STRING1 Letter;
END;
Inds1 := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 rec);

Inds2 := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 rec);

CntInDS2 := COUNT(Inds2);
SetInDS2 := SET(inds2,letter);
outrec := RECORD
 STRING1 LeftLetter;
 STRING1 RightLetter;
END;

outrec CartProd(rec L, INTEGER C) := TRANSFORM
 SELF.LeftLetter := L.Letter;
 SELF.RightLetter := SetInDS2[C];
END;

//Run the small datasets
CP1 := NORMALIZE(Inds1,CntInDS2,CartProd(LEFT,COUNTER));
OUTPUT(CP1,,OutFile1,OVERWRITE);

The core structure of this code is the NORMALIZE that will produce the Cartesian Product. The two input datasets
each have twenty-five records, so the number of result records will be six hundred twenty-five (twenty-five squared).

Each record in the LEFT input dataset to the NORMALIZE will execute the TRANSFORM once for each entry in the
SET of values. Making the values a SET is the key to allowing NORMALIZE to perform this operation, otherwise you
would need to do a JOIN where the join condition is the keyword TRUE to accomplish this task. However, in testing
this with sizable datasets (as in the next instance of this code below), the NORMALIZE version was about 25% faster
than using JOIN. If there is more than one field, then multiple SETs may be defined and the process stays the same.

This next example does the same operation as above, but first generates two sizeable datasets to work with (also
contained in Cartesian.ECL):

InFile1 := '~PROGGUIDE::IN::CP1';

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
85

InFile2 := '~PROGGUIDE::IN::CP2';
OutFile2 := '~PROGGUIDE::OUT::CP2';

//generate data files
rec BuildFile(rec L, INTEGER C) := TRANSFORM
 SELF.Letter := Inds2[C].Letter;
END;

GenCP1 := NORMALIZE(InDS1,CntInDS2,BuildFile(LEFT,COUNTER));
GenCP2 := NORMALIZE(GenCP1,CntInDS2,BuildFile(LEFT,COUNTER));
GenCP3 := NORMALIZE(GenCP2,CntInDS2,BuildFile(LEFT,COUNTER));

Out1 := OUTPUT(DISTRIBUTE(GenCP3,RANDOM()),,InFile1,OVERWRITE);
Out2 := OUTPUT(DISTRIBUTE(GenCP2,RANDOM()),,InFile2,OVERWRITE);

// Use the generated datasets in a cartesian join:

ds1 := DATASET(InFile1,rec,thor);
ds2 := DATASET(InFile2,rec,thor);

CntDS2 := COUNT(ds2);
SetDS2 := SET(ds2,letter);

CP2 := NORMALIZE(ds1,CntDS2,CartProd(LEFT,COUNTER));
Out3 := OUTPUT(CP2,,OutFile2,OVERWRITE);
SEQUENTIAL(Out1,Out2,Out3)

Using NORMALIZE in this case to generate the datasets is the same type of usage previously described in the Creating
Example Data article. After that, the process to achieve the Cartesian Product is exactly the same as the previous
example.

Here's an example of how this same operation can be done using JOIN (also contained in Cartesian.ECL):

// outrec joinEm(rec L, rec R) := TRANSFORM
 // SELF.LeftLetter := L.Letter;
 // SELF.RightLetter := R.Letter;
// END;

// ds4 := JOIN(ds1, ds2, TRUE, joinEM(LEFT, RIGHT), ALL);
// OUTPUT(ds4);

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
86

Records Containing Any of a Set of
Words
Part of the data cleanup problem is the possible presence of profanity or cartoon character names in the data. This can
become an issue whenever you are working with data that originated from direct input by end-users to a website. The
following code (contained in the BadWordSearch.ECL file) will detect the presence of any of a set of “bad” words
in a given field:

IMPORT std;

SetBadWords := ['JUNK', 'GARBAGE', 'CRUD'];
BadWordDS := DATASET(SetBadWords,{STRING10 word});

SearchDS := DATASET([{1,'FRED','FLINTSTONE'},
 {2,'GEORGE','KRUEGER'},
 {3,'CRUDOLA','BAR'},
 {4,'JUNKER','KNIGHT'},
 {5,'GARBAGEGUY','MANGIA'},
 {6,'FREDDY','KRUEGER'},
 {7,'TIM','TINY'},
 {8,'JOHN','JONES'},
 {9,'MIKE','JETSON'}],
 {UNSIGNED6 ID,STRING10 firstname,STRING10 lastname});

outrec := RECORD
 SearchDS.ID;
 SearchDS.firstname;
 BOOLEAN FoundWord;
END;

{BOOLEAN Found} FindWord(BadWordDS L, STRING10 inword) := TRANSFORM
 SELF.Found := Std.Str.Find(inword,TRIM(L.word),1)>0;
END;

outrec CheckWords(SearchDS L) := TRANSFORM
 SELF.FoundWord := EXISTS(PROJECT(BadWordDS,FindWord(LEFT,L.firstname))(Found=TRUE));
 SELF := L;
END;

result := PROJECT(SearchDS,CheckWords(LEFT));

OUTPUT(result(FoundWord=TRUE));
OUTPUT(result(FoundWord=FALSE));

This code is a simple PROJECT of each record that you want to search. The result will be a record set containing
the record ID field, the firstname search field, and a BOOLEAN FoundWord flag field indicating whether any “bad”
word was found.

The search itself is done by a nested PROJECT of the field to be searched against the DATASET of “bad” words.
Using the EXISTS function to detect if any records are returned from that PROJECT where the returned Found field
is TRUE sets the FoundWord flag field value.

The Std.Str.Find function simply detects the presence anywhere within the search string of any of the “bad” words.
The OUTPUT of the set of records where the FoundWord is TRUE allows post-processing to evaluate whether the
record is worth keeping or garbage (probably requiring human intervention).

The above code is a specific example of this technique, but it would be much more useful to have a MACRO that
accomplishes this task, something like this one (also contained in the BadWordSearch.ECL file):

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
87

MAC_FindBadWords(BadWordSet,InFile,IDfld,SeekFld,ResAttr,MatchType=1) := MACRO
 #UNIQUENAME(BadWordDS)
 %BadWordDS% := DATASET(BadWordSet,{STRING word{MAXLENGTH(50)}});

 #UNIQUENAME(outrec)
 %outrec% := RECORD
 InFile.IDfld;
 InFile.SeekFld;
 BOOLEAN FoundWord := FALSE;
 UNSIGNED2 FoundPos := 0;
 END;

 #UNIQUENAME(ChkTbl)
 %ChkTbl% := TABLE(InFile,%outrec%);

 #UNIQUENAME(FindWord)
 {BOOLEAN Found,UNSIGNED2 FoundPos} %FindWord%(%BadWordDS% L,INTEGER C,STRING inword) := TRANSFORM
 #IF(MatchType=1) //"contains" search
 SELF.Found := Std.Str.Find(inword,TRIM(L.word),1) > 0;
 #END
 #IF(MatchType=2) //"exact match" search
 SELF.Found := inword = L.word;
 #END
 #IF(MatchType=3) //"starts with" search
 SELF.Found := Std.Str.Find(inword,TRIM(L.word),1) = 1;
 #END
 SELF.FoundPos := IF(SELF.FOUND=TRUE,C,0);
 END;
 #UNIQUENAME(CheckWords)
 %outrec% %CheckWords%(%ChkTbl% L) := TRANSFORM
 WordDS := PROJECT(%BadWordDS%,%FindWord%(LEFT,COUNTER,L.SeekFld));
 SELF.FoundWord := EXISTS(WordDS(Found=TRUE));
 SELF.FoundPos := WordDS(Found=TRUE)[1].FoundPos;
 SELF := L;
 END;
 ResAttr := PROJECT(%ChkTbl%,%CheckWords%(LEFT));
ENDMACRO;

This MACRO does a bit more than the previous example. It begins by passing in:

* The set of words to find

* The file to search

* The unique identifier field for the search record

* The field to search in

* The attribute name of the resulting recordset

* The type of matching to do (defaulting to 1)

Passing in the set of words to seek allows the MACRO to operate against any given set of strings. Specifying the result
attribute name allows easy post-processing of the data.

Where this MACRO starts going beyond the previous example is in the MatchType parameter, which allows the
MACRO to use the Template Language #IF function to generate three different kinds of searches from the same
codebase: a “contains” search (the default), an exact match, and a “starts with” search.

It also has an expanded output RECORD structure that includes a FoundPos field to contain the pointer to the first
entry in the passed in set that matched. This allows post processing to detect positional matches within the set so that
“matched pairs” of words can be detected, as in this example (also contained in the BadWordSearch.ECL file):

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
88

SetCartoonFirstNames := ['GEORGE','FRED', 'FREDDY'];
SetCartoonLastNames := ['JETSON','FLINTSTONE','KRUEGER'];

MAC_FindBadWords(SetCartoonFirstNames,SearchDS,ID,firstname,Res1,2)
MAC_FindBadWords(SetCartoonLastNames,SearchDS,ID,lastname,Res2,2)

Cartoons := JOIN(Res1(FoundWord=TRUE),
 Res2(FoundWord=TRUE),
 LEFT.ID=RIGHT.ID AND LEFT.FoundPos=RIGHT.FoundPos);

MAC_FindBadWords(SetBadWords,SearchDS,ID,firstname,Res3,3)
MAC_FindBadWords(SetBadWords,SearchDS,ID,lastname,Res4)
SetBadGuys := SET(Cartoons,ID) +
 SET(Res3(FoundWord=TRUE),ID) +
 SET(Res4(FoundWord=TRUE),ID);

GoodGuys := SearchDS(ID NOT IN SetBadGuys);
BadGuys := SearchDS(ID IN SetBadGuys);
OUTPUT(BadGuys,NAMED('BadGuys'));
OUTPUT(GoodGuys,NAMED('GoodGuys'));

Notice that the position of the cartoon character names in their separate sets defines a single character name to search
for in multiple passes. Calling the MACRO twice, searching for the first and last names separately, allows you to
post-process their results with a simple inner JOIN where the same record was found in each and, most importantly,
the positional values of the matches are the same. This prevents “GEORGE KRUEGER” from being mis-labelled a
cartoon character name.

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
89

Simple Random Samples
There is a statistical concept called a “Simple Random Sample” in which a statistically “random” (different from
simply using the RANDOM() function) sample of records is generated from any dataset. The algorithm implemented
in the following code example was provided by a customer.

This code is implemented as a MACRO to allow multiple samples to be produced in the same workunit (contained
in the SimpleRandomSamples.ECL file):

SimpleRandomSample(InFile,UID_Field,SampleSize,Result) := MACRO
 //build a table of the UIDs
 #UNIQUENAME(Layout_Plus_RecID)
 %Layout_Plus_RecID% := RECORD
 UNSIGNED8 RecID := 0;
 InFile.UID_Field;
 END;
 #UNIQUENAME(InTbl)
 %InTbl% := TABLE(InFile,%Layout_Plus_RecID%);

 //then assign unique record IDs to the table entries
 #UNIQUENAME(IDRecs)
 %Layout_Plus_RecID% %IDRecs%(%Layout_Plus_RecID% L, INTEGER C) :=
 TRANSFORM
 SELF.RecID := C;
 SELF := L;
 END;
 #UNIQUENAME(UID_Recs)
 %UID_Recs% := PROJECT(%InTbl%,%IDRecs%(LEFT,COUNTER));

 //discover the number of records
 #UNIQUENAME(WholeSet)
 %WholeSet% := COUNT(InFile) : GLOBAL;

 //then generate the unique record IDs to include in the sample
 #UNIQUENAME(BlankSet)
 %BlankSet% := DATASET([{0}],{UNSIGNED8 seq});
 #UNIQUENAME(SelectEm)
 TYPEOF(%BlankSet%) %SelectEm%(%BlankSet% L, INTEGER c) := TRANSFORM
 SELF.seq := ROUNDUP(%WholeSet% * (((RANDOM()%100000)+1)/100000));
 END;
 #UNIQUENAME(selected)
 %selected% := NORMALIZE(%BlankSet%, SampleSize,
 %SelectEm%(LEFT, COUNTER));

 //then filter the original dataset by the selected UIDs
 #UNIQUENAME(SetSelectedRecs)
%SetSelectedRecs% := SET(%UID_Recs%(RecID IN SET(%selected%,seq)),
 UID_Field);
 result := infile(UID_Field IN %SetSelectedRecs%);
ENDMACRO;

This MACRO takes four parameters:

* The name of the file to sample * The name of the unique identifier field in that file * The size of the sample to
generate * The name of the attribute for the result, so that it may be post-processed

The algorithm itself is fairly simple. We first create a TABLE of uniquely numbered unique identifier fields. Then we
use NORMALIZE to produce a recordset of the candidate records. Which candidate is chosen each time the TRANS-
FORM function is called is determined by generating a “random” value between zero and one, using modulus division
by one hundred thousand on the return from the RANDOM() function, then multiplying that result by the number of
records to sample from, rounding up to the next larger integer. This determines the position of the field identifier to

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
90

use. Once the set of positions within the TABLE is determined, they are used to define the SET of unique fields to
use in the final result.

This algorithm is designed to produce a sample “with replacement” so that it is possible to have a smaller number of
records returned than the sample size requested. To produce exactly the size sample you need (that is, a “without re-
placement” sample), you can request a larger sample size (say, 10% larger) then use the CHOOSEN function to retrieve
only the actual number of records required, as in this example (also contained in the SimpleRandomSamples.ECL file).

SomeFile := DATASET([{'A1'},{'B1'},{'C1'},{'D1'},{'E1'},
 {'F1'},{'G1'},{'H1'},{'I1'},{'J1'},
 {'K1'},{'L1'},{'M1'},{'N1'},{'O1'},
 {'P1'},{'Q1'},{'R1'},{'S1'},{'T1'},
 {'U1'},{'V1'},{'W1'},{'X1'},{'Y1'},
 {'A2'},{'B2'},{'C2'},{'D2'},{'E2'},
 {'F2'},{'G2'},{'H2'},{'I2'},{'J2'},
 {'K2'},{'L2'},{'M2'},{'N2'},{'O2'},
 {'P2'},{'Q2'},{'R2'},{'S2'},{'T2'},
 {'U2'},{'V2'},{'W2'},{'X2'},{'Y2'},
 {'A3'},{'B3'},{'C3'},{'D3'},{'E3'},
 {'F3'},{'G3'},{'H3'},{'I3'},{'J3'},
 {'K3'},{'L3'},{'M3'},{'N3'},{'O3'},
 {'P3'},{'Q3'},{'R3'},{'S3'},{'T3'},
 {'U3'},{'V3'},{'W3'},{'X3'},{'Y3'},
 {'A4'},{'B4'},{'C4'},{'D4'},{'E4'},
 {'F4'},{'G4'},{'H4'},{'I4'},{'J4'},
 {'K4'},{'L4'},{'M4'},{'N4'},{'O4'},
 {'P4'},{'Q4'},{'R4'},{'S4'},{'T4'},
 {'U4'},{'V4'},{'W4'},{'X4'},{'Y4'}
],{STRING2 Letter});

ds := DISTRIBUTE(SomeFile,HASH(letter[2]));
SimpleRandomSample(ds,Letter,6, res1) //ask for 6
SimpleRandomSample(ds,Letter,6, res2)
SimpleRandomSample(ds,Letter,6, res3)

OUTPUT(CHOOSEN(res1,5)); //actually need 5
OUTPUT(CHOOSEN(res3,5));

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
91

Hex String to Decimal String
An email request came to me to suggest a way to convert a string containing Hexadecimal values to a string
containing the decimal equivalent of that value. The problem was that this code needed to run in Roxie and the
StringLib.String2Data plug-in library function was not available for use in Roxie queries at that time. Therefore, an
all-ECL solution was needed.

This example function (contained in the Hex2Decimal.ECL file) provides that functionality, while at the same time
demonstrating practical usage of BIG ENDIAN integers and type transfer.

HexStr2Decimal(STRING HexIn) := FUNCTION

 //type re-definitions to make code more readable below
 BE1 := BIG_ENDIAN UNSIGNED1;
 BE2 := BIG_ENDIAN UNSIGNED2;
 BE3 := BIG_ENDIAN UNSIGNED3;
 BE4 := BIG_ENDIAN UNSIGNED4;
 BE5 := BIG_ENDIAN UNSIGNED5;
 BE6 := BIG_ENDIAN UNSIGNED6;
 BE7 := BIG_ENDIAN UNSIGNED7;
 BE8 := BIG_ENDIAN UNSIGNED8;

 TrimHex := TRIM(HexIn,ALL);
 HexLen := LENGTH(TrimHex);
 UseHex := IF(HexLen % 2 = 1,'0','') + TrimHex;

 //a sub-function to translate two hex chars to a packed hex format
 STRING1 Str2Data(STRING2 Hex) := FUNCTION
 UNSIGNED1 N1 :=
 CASE(Hex[1],
 '0'=>00x,'1'=>10x,'2'=>20x,'3'=>30x,
 '4'=>40x,'5'=>50x,'6'=>60x,'7'=>70x,
 '8'=>80x,'9'=>90x,'A'=>0A0x,'B'=>0B0x,
 'C'=>0C0x,'D'=>0D0x,'E'=>0E0x,'F'=>0F0x,00x);
 UNSIGNED1 N2 :=
 CASE(Hex[2],
 '0'=>00x,'1'=>01x,'2'=>02x,'3'=>03x,
 '4'=>04x,'5'=>05x,'6'=>06x,'7'=>07x,
 '8'=>08x,'9'=>09x,'A'=>0Ax,'B'=>0Bx,
 'C'=>0Cx,'D'=>0Dx,'E'=>0Ex,'F'=>0Fx,00x);
 RETURN (>STRING1<)(N1 | N2);
 END;

 UseHexLen := LENGTH(TRIM(UseHex));
 InHex2 := Str2Data(UseHex[1..2]);
 InHex4 := InHex2 + Str2Data(UseHex[3..4]);
 InHex6 := InHex4 + Str2Data(UseHex[5..6]);
 InHex8 := InHex6 + Str2Data(UseHex[7..8]);
 InHex10 := InHex8 + Str2Data(UseHex[9..10]);;
 InHex12 := InHex10 + Str2Data(UseHex[11..12]);
 InHex14 := InHex12 + Str2Data(UseHex[13..14]);
 InHex16 := InHex14 + Str2Data(UseHex[15..16]);
 RETURN CASE(UseHexLen,
 2 => (STRING)(>BE1<)InHex2,
 4 => (STRING)(>BE2<)InHex4,
 6 => (STRING)(>BE3<)InHex6,
 8 => (STRING)(>BE4<)InHex8,
 10 => (STRING)(>BE5<)InHex10,
 12 => (STRING)(>BE6<)InHex12,
 14 => (STRING)(>BE7<)InHex14,
 16 => (STRING)(>BE8<)InHex16,
 'ERROR');

ECL Programmers Guide
Getting Things Done

© 2016 HPCC Systems®. All rights reserved
92

END;

This HexStr2Decimal FUNCTION takes a variable-length STRING parameter containing the hexadecimal value to
evaluate. It begins by re-defining the eight possible sizes of unsigned BIG ENDIAN integers. This re-definition is
purely for cosmetic purposes—to make the subsequent code more readable.

The next three attributes detect whether an even or odd number of hexadecimal characters has been passed. If an odd
number is passed, then a “0” character is prepended to the passed value to ensure the hex values are placed in the
correct nibbles.

The Str2Data FUNCTION takes a two-character STRING parameter and translates each character into the appropriate
hexadecimal value for each nibble of the resulting 1-character STRING that it returns. The first character defines the
first nibble and the second defines the second. These two values are ORed together (using the bitwise | operator) then
the result is type transferred to a one-character string, using the shorthand syntax— (>STRING1<) —so that the bit
pattern remains untouched. The RETURN result from this FUNCTION is a STRING1 because each succeeding two-
character portion of the HexStr2Decimal FUNCTION's input parameter will pass through the Str2Data FUNCTION
and be concatenated with all the preceding results.

The UseHexLen attribute determines the appropriate size of BIG ENDIAN integer to use to translate the hex into
decimal, while the InHex2 through InHex16 attributes define the final packed-hexadecimal value to evaluate. The
CASE function then uses that UseHexLen to determine which InHex attribute to use for the number of bytes of hex
value passed in. Only even numbers of hex characters are allowed (meaning the call to the function would need to add
a leading zero to any odd-numbered hex values to translate) and the maximum number of characters allowed is sixteen
(representing an eight-byte packed hexadecimal value to translate).

In all cases, the result from the InHex attribute is type-transferred to the appropriately sized BIG ENDIAN integer.
The standard type cast to STRING then performs the actual value translation from the hexadecimal to decimal.

The following calls return the indicated results:

OUTPUT(HexStr2Decimal('0101')); // 257
OUTPUT(HexStr2Decimal('FF')); // 255
OUTPUT(HexStr2Decimal('FFFF')); // 65535
OUTPUT(HexStr2Decimal('FFFFFF')); // 16777215
OUTPUT(HexStr2Decimal('FFFFFFFF')); // 4294967295
OUTPUT(HexStr2Decimal('FFFFFFFFFF')); // 1099511627775
OUTPUT(HexStr2Decimal('FFFFFFFFFFFF')); // 281474976710655
OUTPUT(HexStr2Decimal('FFFFFFFFFFFFFF')); // 72057594037927935
OUTPUT(HexStr2Decimal('FFFFFFFFFFFFFFFF')); // 18446744073709551615
OUTPUT(HexStr2Decimal('FFFFFFFFFFFFFFFFFF')); // ERROR

ECL Programmers Guide
Embedded Languages and Data stores

© 2016 HPCC Systems®. All rights reserved
93

Embedded Languages and Data stores

ECL Programmers Guide
Embedded Languages and Data stores

© 2016 HPCC Systems®. All rights reserved
94

Code Signing, Embedded languages,
and Security
Versions of HPCC Systems® platform prior to 6.0.0 have always allowed some control over which operations were
permitted in ECL code. This was done, among other reasons, as a way to ensure that operations like PIPE or embedded
C++ could not be used to circumvent access controls on files by reading them directly from the operating system.

Version 6.0.0 (and above) has two features to provide more flexibility over the control of these operations.

• We now limit which SERVICE functions are called at compile time using the FOLD attribute. Typically, for security
reasons , FOLD should only be enabled in signed modules.

• You can configure the access rights (which control the ability to use PIPE, embed C++, or restrict the use of a
SERVICE) to be dependent on the code being signed. This means that we can provide signed code in the ECL
Standard Library that makes use of these features, without opening them up for anyone to call anything.

ECLCC Configuration Settings
In Configuration Manager, the ECLCC Server component has a tab named Options. This tab allows you to enter name
value pairs for permissions to execute various types of embedded code or plug-ins.

Name

-allow Allow the option specified.

-deny Deny the option specified.

-allowsigned Allow the option specified if the code has been signed and the key is present.

Note: Parts of the Standard Library may not function if the use of C++ and external definitions is denied. In general,
allowsigned is preferred.

Cluster

Specify the cluster for which this rule applies.

Value

cpp Allow/Deny C++ and other embedded languages. For languages other than C++ and Cassandra,
an optional plug-in must also be installed

pipe Allow/Deny using external applications using the PIPE command.

extern Allow/Deny an external function (SERVICE)

Code Signing
Code signing is similar to the way that emails can be signed to prove that they are from who they say they are and
they have not been tampered with, using the standard gpg package.

A file that has been signed will have an attached signature containing a cryptographic hash of the file contents with
the signer’s private key. Anyone in possession of the signer’s public key can then verify that the signature is valid
and that the content is unchanged.

ECL Programmers Guide
Embedded Languages and Data stores

© 2016 HPCC Systems®. All rights reserved
95

We have signed the SERVICE definitions provided by the ECL standard plug-ins and included the public key in the
HPCC platform installation. Code that tries to use service definitions that are signed will continue to work as before
but, code that tries to call arbitrary library functions using user-supplied SERVICE definitions will give compile errors,
if the code is unsigned, and the extern setting (see above) is set to deny or allowsigned.

System administrators can install additional keys on the ECLCC Server machine, so if you want to use your own
service definitions, they can be signed using a key that has been installed in this way:

gpg --output <signed-ecl> --default-key <key-id> --clearsign <ecl-file-to-sign>

Using this method, a trusted person can sign code to indicate that it is acceptable for untrusted people to use, without
allowing the untrusted people to execute arbitrary code.

	ECL Programmers Guide
	Table of Contents
	ECL Programming Concepts
	Attribute Creation
	Similarities and Differences
	“Atomic” Programming
	Growing Solutions
	“Ugly” ECL is Possible, Too
	Easy Optimization

	Creating Example Data
	Getting Code Files
	Generating Files
	Some Constants
	The RECORD Structures
	Starting Point Data
	Generating Parent Records
	Generating Child Records
	Create the Nested Child Dataset Records
	Write Files to Disk
	Defining the Files

	Cross-Tab Reports
	A Simple CrossTab
	A More Complex Example
	A Statistical Example

	Efficient Value Type Usage
	Numeric Data Type Selection
	Integer Data
	Floating Point Data

	String Data Type Selection
	STRING vs. VARSTRING
	STRING vs. QSTRING
	Fixed Length vs. Variable Length Strings

	User-Defined Data Types
	RECORD Structure
	TYPE Structure
	TypeDef Attributes

	Using the GROUP Function
	GROUP vs. SORT
	Performance Considerations

	Automated ECL
	Using Text Files

	Job “Failure”
	Non-Random RANDOM
	Working with XML Data
	Simple XML Data Handling
	Complex XML Data Handling
	Input with Complex XML Formats
	Piping to Third-Party Tools

	Working with BLOBs
	Spraying BLOB Data
	Working with BLOB Data
	Despraying BLOB Data

	Using ECL Keys (INDEX Files)
	Simple FETCH
	Full-keyed JOIN
	Half-keyed JOIN
	Payload INDEXes
	Computed Fields in Payload Keys
	Computed Fields in Search Keys
	Using an INDEX like a DATASET

	Working With SuperFiles
	SuperFile Overview
	SuperFile Existence Functions
	SuperFile Inquiry Functions
	SuperFile Maintenance Functions
	SuperFile Transactions
	Other Useful Functions

	Creating and Maintaining SuperFiles
	Creating Data
	A Simple Example
	Nesting SuperFiles
	Nested SuperFile Example
	Data Consolidation
	Getting SuperFile Components

	Indexing into SuperFiles
	SuperFiles vs. SuperKeys
	There is a Problem
	And the Solution Is ...

	Using SuperKeys
	Building SuperKeys
	Creating a SuperKey
	Using a SuperKey
	Maintaining SuperKeys

	Working With Roxie
	Roxie Overview
	Thor
	Roxie
	hThor
	How to Structure Roxie Queries
	Testing Queries
	Deploying Queries to Roxie

	SOAP-enabling Queries
	The ECL Key to SOAP
	Putting It All Together

	Complex Roxie Query Techniques
	Key Selection Based on Input
	Keyed Joins
	Limiting Output

	SOAPCALL from Thor to Roxie
	One Record Input, Record Set Return
	Record Set Input, Record Set Return
	Performance Considerations: PARALLEL
	Performance Considerations: MERGE
	A Real World Example

	Controlling Roxie Queries
	How Graphs Execute
	ALLNODES vs. THISNODE
	LOCAL vs. NOLOCAL
	NOROOT Indexes

	Query Libraries
	Library INTERFACE Definition
	Library MODULE Definitions
	Building an External library
	Using a Query Library
	Internal Libraries
	External Libraries

	Query Library Tips
	Restrictions
	Notes on the implementation
	Suggested Structure
	Naming Conventions
	Use an INTERFACE to define parameters
	Hide the LIBRARY
	Use MODULE Inheritance

	Smart Stepping
	Overview
	Trailing Field Sorts
	N-ary JOINs

	Getting Things Done
	Cartesian Product of Two Datasets
	Records Containing Any of a Set of Words
	Simple Random Samples
	Hex String to Decimal String

	Embedded Languages and Data stores
	Code Signing, Embedded languages, and Security
	ECLCC Configuration Settings
	Code Signing

