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Executive Summary
As a result of the continuing information explosion, many organizations are drowning in data and the resulting “data 
gap” or inability to process this information and use it effectively is increasing at an alarming rate. Data-intensive 
computing represents a new computing paradigm which can address the data gap using scalable parallel processing 
and allow government and commercial organizations and research environments to process massive amounts of 
data and implement applications previously thought to be impractical or infeasible.

The fundamental challenges of data-intensive computing are managing and processing exponentially growing 
data volumes, significantly reducing associated data analysis cycles to support practical, timely applications, and 
developing new algorithms which can scale to search and process massive amounts of data. LexisNexis believes 
that the answer to these challenges is a scalable, integrated computer systems hardware and software architecture 
designed for parallel processing of data-intensive computing applications. This paper explores the challenges of 
data-intensive computing and offers an in-depth comparison of commercially available system architectures 
including the LexisNexis Data Analytics Supercomputer (DAS) also referred to as the LexisNexis High-Performance 
Computing Cluster (HPCC), and Hadoop, an open source implementation of Google’s MapReduce architecture.

The MapReduce architecture and programming model pioneered by Google is an example of a systems architecture 
specifically designed for processing and analyzing large datasets. This architecture was designed to run on large 
clusters of commodity machines and utilizes a distributed file system in which files are divided into blocks and 
stored on nodes in the cluster. In a MapReduce application, input data blocks are processed in parallel by Map 
tasks assigned to each data block to perform specific operations and transformations on the data and Reduce 
tasks which aggregate results and write output data blocks. Multiple MapReduce sequences are typically required 
to implement more complex data processing procedures. The Hadoop architecture is functionally similar to the 
Google implementation but uses Java as the base programming language instead of C++. Both Google and Hadoop 
implemented high-level parallel dataflow languages for data analysis to improve programmer productivity. For 
Hadoop, this language is called Pig Latin and the associated execution environment is called Pig.

LexisNexis, an industry leader in data content, data aggregation, and information services independently developed 
and implemented a solution for data-intensive computing called HPCC. The LexisNexis approach also utilizes 
commodity clusters of hardware running the Linux operating system and includes custom system software and 
middleware components developed and layered on the base Linux operating system to provide the execution 
environment and distributed filesystem support required for data-intensive computing. Because LexisNexis 
recognized the need for a new computing paradigm to address its growing volumes of data, the design approach 
included the definition of a new high-level dataflow language for parallel data processing called ECL (Enterprise Data 
Control Language). The power, flexibility, advanced capabilities, speed of development, and ease of use of the ECL 
programming language is the primary distinguishing factor between the LexisNexis HPCC and other data-intensive 
computing solutions.

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an 
optimum manner required the design and implementation of two distinct processing environments, each of which 
could be optimized independently for its parallel data processing purpose. The first of these platforms is called a 
Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any 
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data (extract, transform, load), 
record linking and entity resolution, large-scale ad-hoc analysis of data, and creation of keyed data and indexes 
to support high-performance structured queries and data warehouse applications. The second platform is called 
the Data Delivery Engine. This platform is designed as an online high-performance structured query and analysis 
platform or data warehouse delivering the parallel data access processing requirements of online applications 
through Web services interfaces supporting thousands of simultaneous queries and users with sub-second 
response times. Both platforms can be integrated in the same processing environment, and both platforms utilize 
the same ECL programming language increasing continuity and programmer productivity.

This paper presents a detailed analysis and feature comparison of the HPCC system architecture versus Hadoop, 
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and the ECL programming language versus Pig. Results of head-to-head system performance tests based on the 
Terabyte sort benchmark are presented and show that HPCC is up to 4 times faster than Hadoop when using the 
same hardware configuration. This paper concludes that the advantages of selecting a LexisNexis HPCC architecture 
for data-intensive computing include: (1) an architecture which implements a highly integrated system environment 
with capabilities from raw data processing to high-performance queries and data analysis using a common language; 
(2) an architecture which provides equivalent performance at a much lower system cost based on the number of 
processing nodes required resulting in significantly lower total cost of ownership (TCO); (3) an architecture which 
has been proven to be stable and reliable on high-performance data processing production applications for varied 
organizations over a 10-year period; (4) an architecture that uses a mature, declarative, dataflow programming 
language (ECL) with extensive built-in capabilities for data-parallel processing, allows complex operations without 
the need for extensive user-defined functions significantly increasing programmer productivity (an important 
performance factor in application development), and automatically optimizes execution graphs with hundreds of 
processing steps into single efficient workunits; (5) an architecture with a high-level of fault resilience and language 
capabilities which reduce the need for re-processing in case of system failures; and (6) an architecture which is 
available from and supported by a well-known leader in information services and risk solutions (LexisNexis) who is 
part of one of the world’s largest publishers of information ReedElsevier.
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Introduction
Parallel processing approaches can be generally classified as either compute-intensive, or data-intensive (Gorton, 
Greenfield, Szalay, & Williams, 2008; Johnston, 1998; Skillicorn & Talia, 1998). Compute-intensive is used to 
describe application programs that are compute bound. Such applications devote most of their execution time to 
computational requirements as opposed to I/O, and typically require small volumes of data. Parallel processing of 
compute-intensive applications typically involves parallelizing individual algorithms within an application process, 
and decomposing the overall application process into separate tasks, which can then be executed in parallel on an 
appropriate computing platform to achieve overall higher performance than serial processing. In compute-intensive 
applications, multiple operations are performed simultaneously, with each operation addressing a particular part of 
the problem. This is often referred to as functional parallelism or control parallelism (Abbas, 2004).

Data-Intensive Computing Applications

Data-intensive is used to describe applications that are I/O bound or with a need to process large volumes of data 
(Gokhale, Cohen, Yoo, & Miller, 2008; Gorton et al., 2008; Johnston, 1998). Such applications devote most of their 
processing time to I/O and movement of data. Parallel processing of data-intensive applications typically involves 
partitioning or subdividing the data into multiple segments which can be processed independently using the same 
executable application program in parallel on an appropriate computing platform, then reassembling the results to 
produce the completed output data (Nyland, Prins, Goldberg, & Mills, 2000). The greater the aggregate distribution of 
the data, the more benefit there is in parallel processing of the data. Gorton et al. state that data-intensive processing 
requirements normally scale linearly according to the size of the data and are very amenable to straightforward 
parallelization. The fundamental challenges for data-intensive computing according to Gorton et al. are managing 
and processing exponentially growing data volumes, significantly reducing associated data analysis cycles to support 
practical, timely applications, and developing new algorithms which can scale to search and process massive 
amounts of data.

Data-Parallelism.

Computer system architectures which can support data-parallel applications are a potential solution to terabyte 
scale data processing requirements (Nyland et al., 2000; Ravichandran, Pantel, & Hovy, 2004). According to 
(Agichtein, 2004), parallelization is an attractive alternative for processing extremely large collections of data such as 
the billions of documents on the Web. Nyland et al. define data-parallelism as a computation applied independently 
to each data item of a set of data which allows the degree of parallelism to be scaled with the volume of data. 
According to Nyland et al., the most important reason for developing data-parallel applications is the potential for 
scalable performance, and may result in several orders of magnitude performance improvement. The key issues with 
developing applications using data-parallelism are the choice of the algorithm, the strategy for data decomposition, 
load balancing on processing nodes, message passing communications between nodes, and the overall accuracy 
of the results (Nyland et al., 2000; Rencuzogullari & Dwarkadas, 2001). Nyland et al. also note that the development 
of a data-parallel application can involve substantial programming complexity to define the problem in the context 
of available programming tools, and to address limitations of the target architecture. Information extraction from 
and indexing of Web documents is typical of data-intensive processing which can derive significant performance 
benefits from data-parallel implementations since Web and other types of document collections can typically then 
be processed in parallel (Agichtein, 2004).

The “Data Gap”.

The rapid growth of the Internet and World Wide Web has led to vast amounts of information available online. 
In addition, business and government organizations create large amounts of both structured and unstructured 
information which needs to be processed, analyzed, and linked. Vinton Cerf of Google has described this as an 
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“Information Avalanche” and has stated “we must harness the Internet’s energy before the information it has 
unleashed buries us.” (Cerf, 2007) An IDC white paper sponsored by EMC estimates the amount of information 
currently stored in a digital form at 281 exabytes and the overall compound growth rate at 57% (Figure 1) with 
information in organizations growing at even a faster rate (Gantz, Reinsel, Chute, Schlichting, McArthur, Minton, 
Xheneti, Toncheva, & Manfrediz, 2007). In another study of the so-called information explosion it was estimated that 
95% of all current information exists in unstructured form with increased data processing requirements compared 
to structured information (Lyman & Varian, 2003). The storing, managing, accessing, and processing of this vast 
amount of data represents a fundamental need and an immense challenge in order to satisfy needs to search, 
analyze, mine, and visualize this data as information (Berman, 2008). LexisNexis has defined this issue as the “Data 
Gap”: the ability to gather information is far outpacing organizational capacity to use it effectively.

Figure 1. The Information Explosion (IDC).

Organizations build the applications to fill the storage they have available, and build the storage to fit the applications 
and data they have. But will organizations be able to do useful things with the information they have to gain full 
and innovative use of their untapped data resources? As organizational data grows, how will the “Data Gap” be 
addressed and bridged? LexisNexis believes that the answer is a scalable computer systems hardware and software 
architecture designed for data-intensive computing applications which can scale to processing billions of records 
per second (BORPS). What are the characteristics of data-intensive computing systems and what commercially 
available system architectures are available to organizations to implement data-intensive computing applications? 
This paper will explore those issues and offer a comparison of commercially available system architectures including 
the LexisNexis Data Analytics Supercomputer (DAS) also referred to as the LexisNexis High-Performance Computing 
Cluster (HPCC).

Characteristics of Data-Intensive Computing Systems
The National Science Foundation believes that data-intensive computing requires a “fundamentally different set 
of principles” than current computing approaches (NSF, 2009). Through a funding program within the Computer 
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and Information Science and Engineering area, the NSF is seeking to “increase understanding of the capabilities and 
limitations of data-intensive computing.” The key areas of focus are:

•	 Approaches	to	parallel	programming	to	address	the	parallel	processing	of	data	on	data-intensive	systems

•	 Programming	abstractions	including	models,	languages,	and	algorithms	which	allow	a	natural	expression	of	
parallel processing of data

•	 Design	of	data-intensive	computing	platforms	to	provide	high	levels	of	reliability,	efficiency,	availability,	and	
scalability.

•	 Identifying	applications	that	can	exploit	this	computing	paradigm	and	determining	how	it	should	evolve	to	
support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as “capturing, managing, analyzing, and 
understanding data at volumes and rates that push the frontiers of current technologies.” (PNNL, 2008) They believe 
that to address the rapidly growing data volumes and complexity requires “epochal advances in software, hardware, 
and algorithm development” which can scale readily with size of the data and provide effective and timely analysis 
and processing results.

Processing Approach.

Current data-intensive computing platforms use a “divide and conquer” parallel processing approach combining 
multiple processors and disks in large computing clusters connected using high-speed communications switches 
and networks which allows the data to be partitioned among the available computing resources and processed 
independently to achieve performance and scalability based on the amount of data (Figure 2). This approach to 
parallel processing is often referred to as a “shared nothing” approach since each node consisting of processor, local 
memory, and disk resources shares nothing with other nodes in the cluster. In parallel computing this approach is 
considered suitable for data processing problems which are “embarrassingly parallel” , i.e. where it is relatively easy 
to separate the problem into a number of parallel tasks and there is no dependency or communication required 
between the tasks other than overall management of the tasks. These types of data processing problems are 
inherently adaptable to various forms of distributed computing including clusters and data grids.

Figure 2. Shared Nothing Computing Cluster.
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Common Characteristics.

There are several important common characteristics of data-intensive computing systems that distinguish them 
from other forms of computing. First is the principle of collocation of the data and programs or algorithms to 
perform the computation. To achieve high performance in data-intensive computing, it is important to minimize 
the movement of data. In direct contrast to other types of computing and supercomputing which utilize data stored 
in a separate repository or servers and transfer the data to the processing system for computation, data-intensive 
computing uses distributed data and distributed file systems in which data is located across a cluster of processing 
nodes, and instead of moving the data, the program or algorithm is transferred to the nodes with the data that needs 
to be processed. This principle – “Move the code to the data” – is extremely effective since program size is usually 
small in comparison to the large datasets processed by data-intensive systems and results in much less network 
traffic since data can be read locally instead of across the network. This characteristic allows processing algorithms 
to execute on the nodes where the data resides reducing system overhead and increasing performance (Gorton et 
al., 2008).

A second important characteristic of data-intensive computing systems is the programming model utilized. Data-
intensive computing systems utilize a machine-independent approach in which applications are expressed in terms 
of high-level operations on data, and the runtime system transparently controls the scheduling, execution, load 
balancing, communications, and movement of programs and data across the distributed computing cluster (Bryant, 
2008). The programming abstraction and language tools allow the processing to be expressed in terms of data flows 
and transformations incorporating new dataflow programming languages and shared libraries of common data 
manipulation algorithms such as sorting. Conventional supercomputing and distributed computing systems typically 
utilize machine dependent programming models which can require low-level programmer control of processing 
and node communications using conventional imperative programming languages and specialized software 
packages which adds complexity to the parallel programming task and reduces programmer productivity. A machine 
dependent programming model also requires significant tuning and is more susceptible to single points of failure.

A third important characteristic of data-intensive computing systems is the focus on reliability and availability. Large-
scale systems with hundreds or thousands of processing nodes are inherently more susceptible to hardware failures, 
communications errors, and software bugs. Data-intensive computing systems are designed to be fault resilient. 
This includes redundant copies of all data files on disk, storage of intermediate processing results on disk, automatic 
detection of node or processing failures, and selective re-computation of results. A processing cluster configured for 
data-intensive computing is typically able to continue operation with a reduced number of nodes following a node 
failure with automatic and transparent recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the inherent scalability of the underlying 
hardware and software architecture. Data-intensive computing systems can typically be scaled in a linear fashion 
to accommodate virtually any amount of data, or to meet time-critical performance requirements by simply adding 
additional processing nodes to a system configuration in order to achieve billions of records per second processing 
rates (BORPS). The number of nodes and processing tasks assigned for a specific application can be variable or fixed 
depending on the hardware, software, communications, and distributed file system architecture. This scalability 
allows computing problems once considered to be intractable due to the amount of data required or amount of 
processing time required to now be feasible and affords opportunities for new breakthroughs in data analysis and 
information processing.
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Grid Computing.

A similar computing paradigm known as grid computing has gained popularity primarily in research environments 
(Abbas, 2004). A computing grid is typically heterogeneous in nature (nodes can have different processor, memory, 
and disk resources), and consists of multiple disparate computers distributed across organizations and often 
geographically using wide-area networking communications usually with relatively low-bandwidth. Grids are typically 
used to solve complex computational problems which are compute-intensive requiring only small amounts of data 
for each processing node. A variation known as data grids allow shared repositories of data to be accessed by a grid 
and utilized in application processing, however the low-bandwidth of data grids limit their effectiveness for large-
scale data-intensive applications. In contrast, data-intensive computing systems are typically homogeneous in 
nature (nodes in the computing cluster have identical processor, memory, and disk resources), use high-bandwidth 
communications between nodes such as gigabit Ethernet switches, and are located in close proximity in a data 
center using high-density hardware such as rack-mounted blade servers. The logical file system typically includes 
all the disks available on the nodes in the cluster and data files are distributed across the nodes as opposed to a 
separate shared data repository such as a storage area network which would require data to be moved to nodes for 
processing. Geographically dispersed grid systems are more difficult to manage, less reliable, and less secure than 
data-intensive computing systems which are usually located in secure data center environments.

Data-Intensive System Architectures
A variety of system architectures have been implemented for data-intensive and large-scale data analysis 
applications including parallel and distributed relational database management systems which have been available 
to run on shared nothing clusters of processing nodes for more than two decades (Pavlo, Paulson, Rasin, Abadi, 
Dewitt, Madden, & Stonebraker, 2009). These include database systems from Teradata, Netezza, Vertica, and 
Exadata/Oracle and others which provide high-performance parallel database platforms. Although these systems 
have the ability to run parallel applications and queries expressed in the SQL language, they are typically not 
general-purpose processing platforms and usually run as a back-end to a separate front-end application processing 
system. Although this approach offers benefits when the data utilized is primarily structured in nature and fits easily 
into the constraints of a relational database, and often excels for transaction processing applications, most data 
growth is with data in unstructured form (Gantz et al., 2007) and new processing paradigms with more flexible data 
models were needed. Internet companies such as Google, Yahoo, Microsoft, Facebook, and others required a new 
processing approach to effectively deal with the enormous amount of Web data for applications such as search 
engines and social networking. In addition, many government and business organizations were overwhelmed with 
data that could not be effectively processed, linked, and analyzed with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered by Google and now available in an 
open-source implementation called Hadoop used by Yahoo, Facebook, and others. LexisNexis, an acknowledged 
industry leader in information services, also developed and implemented a scalable platform for data-intensive 
computing which is used by LexisNexis and other commercial and government organizations to process large 
volumes of structured and unstructured data. These approaches will be explained and contrasted in terms of their 
overall structure, programming model, file systems in the following sections.

Google MapReduce.

The MapReduce architecture and programming model pioneered by Google is an example of a modern systems 
architecture designed for processing and analyzing large datasets and is being used successfully by Google in many 
applications to process massive amounts of raw Web data (Dean & Ghemawat, 2004). The MapReduce architecture 
allows programmers to use a functional programming style to create a map function that processes a key-value 
pair associated with the input data to generate a set of intermediate key-value pairs, and a reduce function that 
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merges all intermediate values associated with the same intermediate key (Dean & Ghemawat, 2004). According 
to Dean and Ghemawat, the MapReduce programs can be used to compute derived data from documents such as 
inverted indexes and the processing is automatically parallelized by the system which executes on large clusters of 
commodity type machines, highly scalable to thousands of machines. Since the system automatically takes care of 
details like partitioning the input data, scheduling and executing tasks across a processing cluster, and managing the 
communications between nodes, programmers with no experience in parallel programming can easily use a large 
distributed processing environment.

Figure 3. MapReduce Processing Architecture (O’Malley, 2008).

The programming model for MapReduce architecture is a simple abstraction where the computation takes a set of 
input key-value pairs associated with the input data and produces a set of output key-value pairs. The overall model 
for this process is shown in Figure 3. In the map phase, the input data is partitioned into input splits and assigned 
to Map tasks associated with processing nodes in the cluster. The Map task typically executes on the same node 
containing its assigned partition of data in the cluster. These Map tasks perform user-specified computations on 
each input key-value pair from the partition of input data assigned to the task, and generates a set of intermediate 
results for each key. The shuffle and sort phase then takes the intermediate data generated by each Map task, sorts 
this data with intermediate data from other nodes, divides this data into regions to be processed by the reduce tasks, 
and distributes this data as needed to nodes where the Reduce tasks will execute. All Map tasks must complete prior 
to the shuffle and sort and reduce phases. The number of Reduce tasks does not need to be the same as the number 
of Map tasks. The Reduce tasks perform additional user-specified operations on the intermediate data possibly 
merging values associated with a key to a smaller set of values to produce the output data. For more complex data 
processing procedures, multiple MapReduce calls may be linked together in sequence.
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Figure 4. MapReduce Key-Value Processing (Nicosia, 2009).

Figure 4 shows the MapReduce architecture and key-value processing in more detail. The input data can consist of 
multiple input files. Each Map task will produce an intermediate output file for each key region assigned based on 
the number of Reduce tasks R assigned to the process (hash(key) modulus R). The reduce function then “pulls” the 
intermediate files, sorting and merging the files for a specific region from all the Map tasks. To minimize the amount 
of data transferred across the network, an optional Combiner function can be specified which is executed on the 
same node that performs a Map task. The combiner code is usually the same as the reducer function code which 
does partial merging and reducing of data for the local partition, then writes the intermediate files to be distributed to 
the Reduce tasks. The output of the Reduce function is written as the final output file. In the Google implementation 
of MapReduce, functions are coded in the C++ programming language.

Underlying and overlayed with the MapReduce architecture is the Google File System (GFS). GFS was designed to 
be a high-performance, scalable distributed file system for very large data files and data-intensive applications 
providing fault tolerance and running on clusters of commodity hardware (Ghemawat, Gobioff, & Leung, 2003). GFS 
is oriented to very large files dividing and storing them in fixed-size chunks of 64 Mb by default which are managed 
by nodes in the cluster called chunkservers. Each GFS consists of a single master node acting as a nameserver and 
multiple nodes in the cluster acting as chunkservers using a commodity Linux-based machine (node in a cluster) 
running a user-level server process. Chunks are stored in plain Linux files which are extended only as needed and 
replicated on multiple nodes to provide high-availability and improve performance. Secondary nameservers provide 
backup for the master node. The large chunk size reduces the need for MapReduce clients programs to interact with 
the master node, allows filesystem metadata to be kept in memory in the master node improving performance, and 
allows many operations to be performed with a single read on a chunk of data by the MapReduce client. Ideally, input 
splits for MapReduce operations are the size of a GFS chunk. GFS has proven to be highly effective for data-intensive 
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computing on very large files, but is less effective for small files which can cause hot spots if many MapReduce tasks 
are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS architecture to improve programmer 
productivity and to enhance data analysis and processing of structured and unstructured data. Since the GFS 
filesystem is primarily oriented to sequential processing of large files, Google has also implemented a scalable, high-
availability distributed storage system for structured data with dynamic control over data format with keyed random 
access capabilities (Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber, 2006). Data is 
stored in Bigtable as a sparse, distributed, persistent multi-dimensional sorted map structured which is indexed by a 
row key, column, key and a timestamp. Rows in a Bigtable are maintained in order by row key, and row ranges become 
the unit of distribution and load balancing called a tablet. Each cell of data in a Bigtable can contain multiple instances 
of the same data indexed by the timestamp. Bigtable uses GFS to store both data and log files. The API for Bigtable is 
flexible providing data management functions like creating and deleting tables, and data manipulation functions by 
row key including operations to read, write, and modify data. Index information for Bigtables utilize tablet information 
stored in structures similar to a B+Tree. MapReduce applications can be used with Bigtable to process and transform 
data, and Google has implemented many large-scale applications which utilize Bigtable for storage including Google 
Earth.

Google has also implemented a high-level language for performing parallel data analysis and data mining using 
the MapReduce and GFS architecture called Sawzall and a workflow management and scheduling infrastructure 
for Sawzall jobs called Workqueue (Pike, Dorward, Griesemer, & Quinlan, 2004). According to Pike et al., although 
C++ in standard MapReduce jobs is capable of handling data analysis tasks, it is more difficult to use and requires 
considerable effort by programmers. For most applications implemented using Sawzall, the code is much simpler 
and smaller than the equivalent C++ by a factor of 10 or more. A Sawzall program defines operations on a single 
record of the data, the language does not allow examining multiple input records simultaneously and one input 
record cannot influence the processing of another. An emit statement allows processed data to be output to an 
external aggregator which provides the capability for entire files of records and data to be processed using a Sawzall 
program. The system operates in a batch mode in which a user submits a job which executes a Sawzall program 
on a fixed set of files and data and collects the output at the end of a run. Sawzall jobs can be chained to support 
more complex procedures. Sawzall programs are compiled into an intermediate code which is interpreted during 
runtime execution. Pike et al. cite several reasons why a new language is beneficial for data analysis and data mining 
applications: (1) a programming language customized for a specific problem domain makes resulting programs 
“clearer, more compact, and more expressive”; (2) aggregations are specified in the Sawzall language so that the 
programmer does not have to provide one in the Reduce task of a standard MapReduce program; (3) a programming 
language oriented to data analysis provides a more natural way to think about data processing problems for large 
distributed datasets; and (4) Sawzall programs are significantly smaller that equivalent C++ MapReduce programs 
and significantly easier to program.

Hadoop.

Hadoop is an open source software project sponsored by The Apache Software Foundation (http://www.apache.
org). Following the publication in 2004 of the research paper describing Google MapReduce (Dean & Ghemawat, 
2004), an effort was begun in conjunction with the existing Nutch project to create an open source implementation 
of the MapReduce architecture (White, 2009). It later became an independent subproject of Lucene, was 
embraced by Yahoo! after the lead developer for Hadoop became an employee, and became an official Apache 
top-level project in February of 2006. Hadoop now encompasses multiple subprojects in addition to the base 
core, MapReduce, and HDFS distributed filesystem. These additional subprojects provide enhanced application 
processing capabilities to the base Hadoop implementation and currently include Avro, Pig, HBase, ZooKeeper, Hive, 
and Chukwa. More information can be found at the Apache Web site.
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Figure 5. Commodity Hardware Cluster (O’Malley, 2008).

The Hadoop MapReduce architecture is functionally similar to the Google implementation except that the base programming 
language for Hadoop is Java instead of C++. The implementation is intended to execute on clusters of commodity 
processors (Figure 5) utilizing Linux as the operating system environment, but can also be run on a single system as a learning 
environment. Hadoop clusters also utilize the “shared nothing” distributed processing paradigm linking individual systems 
with local processor, memory, and disk resources using high-speed communications switching capabilities typically in 
rack-mounted configurations. The flexibility of Hadoop configurations allows small clusters to be created for testing and 
development using desktop systems or any system running Unix/Linux providing a JVM environment, however production 
clusters typically use homogeneous rack-mounted processors in a data center environment.

 

Figure 6. Hadoop MapReduce (White, 2008).
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The Hadoop MapReduce architecture is similar to the Google implementation creating fixed-size input splits from 
the input data and assigning the splits to Map tasks. The local output from the Map tasks is copied to Reduce nodes 
where it is sorted and merged for processing by Reduce tasks which produce the final output as shown in Figure 
6. Hadoop implements a distributed data processing scheduling and execution environment and framework for 
MapReduce jobs. A MapReduce job is a unit of work that consists of the input data, the associated Map and Reduce 
programs, and user-specified configuration information (White, 2009). The Hadoop framework utilizes a master/
slave architecture with a single master server called a jobtracker and slave servers called tasktrackers, one per node 
in the cluster. The jobtracker is the communications interface between users and the framework and coordinates 
the execution of MapReduce jobs. Users submit jobs to the jobtracker, which puts them in a job queue and executes 
them on a first-come/first-served basis. The jobtracker manages the assignment of Map and Reduce tasks to the 
tasktracker nodes which then execute these tasks. The tasktrackers also handle data movement between the 
Map and Reduce phases of job execution. The Hadoop framework assigns the Map tasks to every node where the 
input data splits are located through a process called data locality optimization. The number of Reduce tasks is 
determined independently and can be user-specified and can be zero if all of the work can be accomplished by the 
Map tasks. As with the Google MapReduce implementation, all Map tasks must complete before the shuffle and sort 
phase can occur and Reduce tasks initiated. The Hadoop framework also supports Combiner functions which can 
reduce the amount of data movement in a job. The Hadoop framework also provides an API called Streaming to 
allow Map and Reduce functions to be written in languages other than Java such as Ruby and Python and provides an 
interface called Pipes for C++.

 

Figure 7. HDFS Architecture (Borthakur, 2008).

Hadoop includes a distributed file system called HDFS which is analogous to GFS in the Google MapReduce 
implementation. A block in HDFS is equivalent to a chunk in GFS and is also very large, 64 Mb by default but 128 
Mb is used in some installations. The large block size is intended to reduce the number of seeks and improve data 
transfer times. Each block is an independent unit stored as a dynamically allocated file in then Linux local filesystem 
in a datanode directory. If the node has multiple disk drives, multiple datanode directories can be specified. An 
additional local file per block stores metadata for the block. HDFS also follows a master/slave architecture which 
consists of a single master server that manages the distributed filesystem namespace and regulates access to files 
by clients called the Namenode. In addition, there are multiple Datanodes, one per node in the cluster, which manage 
the disk storage attached to the nodes and assigned to Hadoop. The Namenode determines the mapping of blocks 
to Datanodes. The Datanodes are responsible for serving read and write requests from filesystem clients such as 
MapReduce tasks, and they also perform block creation, deletion, and replication based on commands from the 
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Hadoop configuration

visits  =  load  ‘/data/visits’  as (user, url, time) ;
gVisits  =  grou p visits by url ;
visitCounts  =  foreac h gVisits  generate  url, count(urlVisits);

urlInfo = load ‘/data/urlInfo’  as (url, category, pRank);

visitCounts = join  visitCounts by url, urlInfo  by url;
gCategories = grou p visitCounts  by category;
topUrls = foreac h gCategories generate  top(visitCounts,10);

store topUrls into ‘/data/topUrls’ ;

Namenode. An HDFS system can include additional secondary Namenodes which replicate the filesystem metadata, 
however there are no hot failover services. Each datanode block also has replicas on other nodes based on system 
configuration parameters (by default there are 3 replicas for each datanode block). In the Hadoop MapReduce 
execution environment it is common for a node in a physical cluster to function as both a Tasktracker and a 
datanode (Venner, 2009). The HDFS system architecture is shown in Figure 7.

The Hadoop execution environment supports additional distributed data processing capabilities which are designed 
to run using the Hadoop MapReduce architecture. Several of these have become official Hadoop subprojects within 
the Apache Software Foundation. These include HBase, a distributed column-oriented database which provides 
similar random access read/write capabilities as and is modeled after Bigtable implemented by Google. HBase is not 
relational, and does not support SQL, but provides a Java API and a command-line shell for table management. Hive 
is a data warehouse system built on top of Hadoop that provides SQL-like query capabilities for data summarization, 
ad-hoc queries, and analysis of large datasets. Other Apache sanctioned projects for Hadoop include Avro – A data 
serialization system that provides dynamic integration with scripting languages, Chukwa – a data collection system 
for managing large distributed systems, ZooKeeper – a high-performance coordination service for distributed 
applications, and Pig – a high-level data-flow language and execution framework for parallel computation.

Pig is high-level dataflow-oriented language and execution environment originally developed at Yahoo! ostensibly 
for the same reasons that Google developed the Sawzall language for its MapReduce implementation – to provide 
a specific language notation for data analysis applications and to improve programmer productivity and reduce 
development cycles when using the Hadoop MapReduce environment. Working out how to fit many data analysis and 
processing applications into the MapReduce paradigm can be a challenge, and often requires multiple MapReduce 
jobs (White, 2009). Pig programs are automatically translated into sequences of MapReduce programs if needed 
in the execution environment. In addition Pig supports a much richer data model which supports multi-valued, 
nested data structures with tuples, bags, and maps. Pig supports a high-level of user customization including user-
defined special purpose functions and provides capabilities in the language for loading, storing, filtering, grouping, 
de-duplication, ordering, sorting, aggregation, and joining operations on the data (Olston, Reed, Srivastava, Kumar, 
& Tomkins, 2008a). Pig is an imperative dataflow-oriented language (language statements define a dataflow for 
processing). An example program is shown in Figure 8. Pig runs as a client-side application which translates Pig 
programs into MapReduce jobs and then runs them on an Hadoop cluster. Figure 9 shows how the program listed 
in Figure 8 is translated into a sequence of MapReduce jobs. Pig compilation and execution stages include a parser, 
logical optimizer, MapReduce compiler, MapReduce optimizer, and the Hadoop Job Manager (Gates, Natkovich, 
Chopra, Kamath, Narayanamurthy, Olston, Reed, Srinivasan, & Srivastava, 2009).

 

Figure 8. Sample Pig Latin Program (Olston et al., 2008a).



17 HPCC Systems: Data Intensive Supercomputing Solutions

 
Figure 9. Pig Program Translation to MapReduce (Olston et al., 2008a).

According to Yahoo! where more than 40% of Hadoop production jobs and 60% of ad-hoc queries are now 
implemented using Pig, Pig programs are 1/20th the size of the equivalent MapReduce program and take 1/16th the 
time to develop (Olston, 2009). Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig performance 
versus equivalent MapReduce performance from release to release. With the current release, Pig programs take 
approximately 1.5 times longer than the equivalent MapReduce (http://wiki.apache.org/pig/PigMix). Additional 
optimizations are being implemented that should reduce this performance gap further.

LexisNexis HPCC.

LexisNexis, an industry leader in data content, data aggregation, and information services independently developed 
and implemented a solution for data-intensive computing called the HPCC (High-Performance Computing Cluster) 
which is also referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for this computing 
platform is depicted in Figure 10. The development of this computing platform by the Seisint subsidiary of LexisNexis 
began in 1999 and applications were in production by late 2000. The LexisNexis approach also utilizes commodity 
clusters of hardware running the Linux operating system as shown in Figure 2 and Figure 5. Custom system software 
and middleware components were developed and layered on the base Linux operating system to provide the 
execution environment and distributed filesystem support required for data-intensive computing. Because 
LexisNexis recognized the need for a new computing paradigm to address its growing volumes of data, the design 
approach included the definition of a new high-level language for parallel data processing called ECL (Enterprise Data 
Control Language). The power, flexibility, advanced capabilities, speed of development, and ease of use of the ECL 
programming language is the primary distinguishing factor between the LexisNexis HPCC and other data-intensive 
computing solutions. The following will provide an overview of the HPCC systems architecture and the ECL language 
and a general comparison to the Hadoop MapReduce architecture and platform.
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HPCC

Figure 10. LexisNexis Vision for a Data Analytics Supercomputer.

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an 
optimum manner required the design and implementation of two distinct processing environments, each of which 
could be optimized independently for its parallel data processing purpose. The first of these platforms is called a 
Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any 
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data (extract, transform, load), 
record linking and entity resolution, large-scale ad-hoc analysis of data, and creation of keyed data and indexes 
to support high-performance structured queries and data warehouse applications. The Data Refinery is also 
referred to as Thor, a reference to the mythical Norse god of thunder with the large hammer symbolic of crushing 
large amounts of raw data into useful information. A Thor system is similar in its function, execution environment, 
filesystem, and capabilities to the Hadoop MapReduce platform, but offers significantly higher performance in 
equivalent configurations. The second of the parallel data processing platforms designed and implemented by 
LexisNexis is called the Data Delivery Engine. This platform is designed as an online high-performance structured 
query and analysis platform or data warehouse delivering the parallel data access processing requirements of 
online applications through Web services interfaces supporting thousands of simultaneous queries and users with 
sub-second response times. High-profile online applications developed by LexisNexis such as Accurint utilize this 
platform. The Data Delivery Engine is also referred to as Roxie, which is an acronym for Rapid Online XML Information 
Exchange. Roxie uses a special distributed indexed filesystem to provide parallel processing of queries. A Roxie 
system is similar in its function and capabilities to Hadoop with HBase and Hive capabilities added, but provides 
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significantly higher throughput since it uses a more optimized execution environment and filesystem for high-
performance online processing. Most importantly, both Thor and Roxie systems utilize the same ECL programming 
language for implementing applications, increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a single master node and multiple slave 
nodes for data parallel processing. Each of the slave nodes is also a data node within the distributed file system 
for the cluster. This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop configuration. 
Multiple Thor clusters can exist in an HPCC environment, and job queues can span multiple clusters in an 
environment if needed. Jobs executing on a Thor cluster in a multi-cluster environment can also read files from the 
distributed file system on foreign clusters if needed. The middleware layer provides additional server processes to 
support the execution environment including ECL Agents and ECL Servers. A client process submits an ECL job to 
the ECL Agent which coordinates the overall job execution on behalf of the client process. An ECL Job is compiled by 
the ECL server which interacts with an additional server called the ECL Repository which is a source code repository 
and contains shared ECL code. ECL programs are compiled into optimized C++ source code, which is subsequently 
compiled into executable code and distributed to the slave nodes of a Thor cluster by the Thor master node. The 
Thor master monitors and coordinates the processing activities of the slave nodes and communicates status 
information monitored by the ECL Agent processes. When the job completes, the ECL Agent and client process are 
notified, and the output of the process is available for viewing or subsequent processing. Output can be stored in the 
distributed filesystem for the cluster or returned to the client process. ECL is analogous to the Pig language which can 
be used in the Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is different from the block format used by 
Hadoop clusters. Records can be fixed or variable length, and support a variety of standard (fixed record size, CSV, 
XML) and custom formats including nested child datasets. Record I/O is buffered in large blocks to reduce latency and 
improve data transfer rates to and from disk Files to be loaded to a Thor cluster are typically first transferred to a landing 
zone from some external location, then a process called “spraying” is used to partition the file and load it to the nodes 
of a Thor cluster. The initial spraying process divides the file on user-specified record boundaries and distributes the 
data as evenly as possible in order across the available nodes in the cluster. Files can also be “desprayed” when needed 
to transfer output files to another system or can be directly copied between Thor clusters in the same environment. 
Nameservices and storage of metadata about files including record format information in the Thor DFS are maintained 
in a special server called the Dali server (named for the developer’s pet Chinchilla), which is analogous to the Namenode 
in HDFS. Thor users have complete control over distribution of data in a Thor cluster, and can re-distribute the data 
as needed in an ECL job by specific keys, fields, or combinations of fields to facilitate the locality characteristics of 
parallel processing. The Dali nameserver uses a dynamic datastore for filesystem metadata organized in a hierarchical 
structure corresponding to the scope of files in the system. The Thor DFS utilizes the local Linux filesystem for physical 
file storage, and file scopes are created using file directory structures of the local file system. Parts of a distributed 
file are named according to the node number in a cluster, such that a file in a 400-node cluster will always have 400 
parts regardless of the file size. The Hadoop fixed block size can end up splitting logical records between nodes which 
means a node may need to read some data from another node during Map task processing. With the Thor DFS, logical 
record integrity is maintained, and processing I/O is completely localized to the processing node for local processing 
operations. In addition, if the file size in Hadoop is less than some multiple of the block size times the number of nodes 
in the cluster, Hadoop processing will be less evenly distributed and node to node disk accesses will be needed. If input 
splits assigned to Map tasks in Hadoop are not allocated in whole block sizes, additional node to node I/O will result. 
The ability to easily redistribute the data evenly to nodes based on processing requirements and the characteristics of 
the data during a Thor job can provide a significant performance improvement over the Hadoop approach. The Thor 
DFS also supports the concept of “superfiles” which are processed as a single logical file when accessed, but consist 
of multiple Thor DFS files. Each file which makes up a superfile must have the same record structure. New files can be 
added and old files deleted from a superfile dynamically facilitating update processes without the need to rewrite a 
new file. Thor clusters are fault resilient and a minimum of one replica of each file part in a Thor DFS file is stored on a 
different node within the cluster.
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Roxie clusters consist of a configurable number of peer-coupled nodes functioning as a high-performance, high 
availability parallel processing query platform. ECL source code for structured queries is pre-compiled and deployed 
to the cluster. The Roxie distributed filesystem is a distributed indexed-based filesystem which uses a custom 
B+Tree structure for data storage. Indexes and data supporting queries are pre-built on Thor clusters and deployed 
to the Roxie DFS with portions of the index and data stored on each node. Typically the data associated with index 
logical keys is embedded in the index structure as a payload. Index keys can be multi-field and multivariate, and 
payloads can contain any type of structured or unstructured data supported by the ECL language. Queries can use 
as many indexes as required for a query and contain joins and other complex transformations on the data with the 
full expression and processing capabilities of the ECL language. For example, the Accurint comprehensive person 
report which produces many pages of output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie cluster runs Server and Agent 
processes which are configurable by a System Administrator depending on the processing requirements for the 
cluster. A Server process waits for a query request from a Web services interface then determines the nodes and 
associated Agent processes that have the data locally that is needed for a query, or portion of the query. Roxie query 
requests can be submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a Web 
application, or through a direct socket connection. Each Roxie query request is associated with a specific deployed 
ECL query program. Roxie queries can also be executed from programs running on Thor clusters. The Roxie Server 
process that receives the request owns the processing of the ECL program for the query until it is completed. The 
Server sends portions of the query job to the nodes in the cluster and Agent processes which have data needed 
for the query stored locally as needed, and waits for results. When a Server receives all the results needed from all 
nodes, it collates them, performs any additional processing, and then returns the result set to the client requestor. 
The performance of query processing varies depending on factors such as machine speed, data complexity, number 
of nodes, and the nature of the query, but production results have shown throughput of a thousand results a second 
or more. Roxie clusters have flexible data storage options with indexes and data stored locally on the cluster, as well 
as being able to use indexes stored remotely in the same environment on a Thor cluster. Nameservices for Roxie 
clusters are also provided by the Dali server. Roxie clusters are fault-resilient and data redundancy is built-in using 
a peer system where replicas of data are stored on two or more nodes, all data including replicas are available to be 
used in the processing of queries by Agent processes. The Roxie cluster provides automatic failover in case of node 
failure, and the cluster will continue to perform even if one or more nodes are down. Additional redundancy can be 
provided by including multiple Roxie clusters in an environment.
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Figure 11. Roxie Cluster Client Access Methods.

Load balancing of query requests across Roxie clusters is typically implemented using external load balancing 
communications devices. Roxie clusters can be sized as needed to meet query processing throughput and response 
time requirements, but are typically smaller that Thor clusters. Figure 11 shows the various methods of accessing a 
Roxie cluster.

SOAP or HTTP/HTTPS

SOAP or HTTP Connection
End-User Services

Enterprise Services Platform (ESP)
HTTP or SOAP interfaces

Rapid Data Delivery Engine
(ROXIE)

ECL Direct
(via SOAP)

WS-ECL
(via IE6-http)

Web Browser
(IE6)

Client Application
(using SOAP)



22 HPCC Systems: Data Intensive Supercomputing Solutions

HPCC Environment System Component Relationships
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Figure 12. HPCC Environment System Component Relationships.

The implementation of two types of parallel data processing platforms (Thor and Roxie) in the HPCC processing 
environment serving different data processing needs allows these platforms to be optimized and tuned for their 
specific purposes to provide the highest level of system performance possible to users. This is a distinct advantage 
when compared to the Hadoop MapReduce platform and architecture which must be overlayed with different 
systems such as HBase, Hive, and Pig which have different processing goals and requirements, and don’t always 
map readily into the MapReduce paradigm. In addition, the LexisNexis HPCC approach incorporates the notion of a 
processing environment which can integrate Thor and Roxie clusters as needed to meet the complete processing 
needs of an organization. As a result, scalability can be defined not only in terms of the number of nodes in a cluster, 
but in terms of how many clusters and of what type are needed to meet system performance goals and user 
requirements. This provides a distinct advantage when compared to Hadoop clusters which tend to be independent 
islands of processing. The basic relationships between Thor and Roxie clusters and various middleware components 
of the HPCC architecture is shown in Figure 12.

ECL.

The ECL programming language is a key factor in the flexibility and capabilities of the HPCC processing environment. 
ECL was designed to be a transparent and implicitly parallel programming language for data-intensive applications. 
It is a high-level, declarative, non-procedural dataflow-oriented language that allows the programmer to define 
what the data processing result should be and the dataflows and transformations that are necessary to achieve the 
result. Execution is not determined by the order of the language statements, but from the sequence of dataflows 
and transformations represented by the language statements. It combines data representation with algorithm 
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implementation, and is the fusion of both a query language and a parallel data processing language. ECL uses an 
intuitive syntax which has taken cues from other familiar languages, supports modular code organization with a high 
degree of reusability and extensibility, and supports high-productivity for programmers in terms of the amount of 
code required for typical applications compared to traditional languages like Java and C++. Similar to the benefits 
Sawzall provides in the Google environment, and Pig provides to Hadoop users, a 20 times increase in programmer 
productivity is typical. ECL is compiled into optimized C++ code for execution on the HPCC system platforms, and 
can be used for complex data processing and analysis jobs on a Thor cluster or for comprehensive query and report 
processing on a Roxie cluster. ECL allows inline C++ functions to be incorporated into ECL programs, and external 
programs in other languages can be incorporated and parallelized through a PIPE facility. External services written in 
C++ and other languages which generate DLLs can also be incorporated in the ECL system library, and ECL programs 
can access external Web services through a standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a complete executable query or 
program, or a shareable and reusable code fragment such as a function, record definition, dataset definition, macro, 
filter definition, etc. Attributes can reference other attributes which in turn can reference other attributes so that 
ECL code can be nested and combined as needed in a reusable manner. Attributes are stored in ECL code repository 
which is subdivided into modules typically associated with a project or process. Each ECL attribute added to the 
repository effectively extends the ECL language like adding a new word to a dictionary, and attributes can be reused 
as part of multiple ECL queries and programs. With ECL a rich set of programming tools is provided including an 
interactive IDE similar to Visual C++, Eclipse and other code development environments.

 

Figure 13. ECL Sample Syntax for JOIN operation.
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The ECL language includes extensive capabilities for data definition, filtering, data management, and data 
transformation, and provides an extensive set of built-in functions to operate on records in datasets which can 
include user-defined transformation functions. Transform functions operate on a single record or a pair of records at 
a time depending on the operation. Built-in transform operations in the ECL language which process through entire 
datasets include PROJECT, ITERATE, ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and PROCESS. 
The transform function defined for a JOIN operation for example receives two records, one from each dataset being 
joined, and can perform any operations on the fields in the pair of records, and returns an output record which can be 
completely different from either of the input records. Example syntax for the JOIN operation from the ECL Language 
Reference Manual is shown in Figure 13. Other important data operations included in ECL which operate across 
datasets and indexes include TABLE, SORT, MERGE, MERGEJOIN, DEDUP, GROUP, APPLY, ASSERT, AVE, BUILD, 
BUILDINDEX, CHOOSESETS, CORRELATION, COUNT, COVARIANCE, DISTRIBUTE, DISTRIBUTION, ENTH, EXISTS, 
GRAPH, HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP, MAX, MIN, NONEMPTY, OUTPUT, PARSE, PIPE, PRELOAD, PULL, 
RANGE, REGROUP, SAMPLE, SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP, and VARIANCE.

The Thor system allows data transformation operations to be performed either locally on each node independently 
in the cluster, or globally across all the nodes in a cluster, which can be user-specified in the ECL language. Some 
operations such as PROJECT for example are inherently local operations on the part of a distributed file stored 
locally on a node. Others such as SORT can be performed either locally or globally if needed. This is a significant 
difference from the MapReduce architecture in which Map and Reduce operations are only performed locally on the 
input split assigned to the task. A local SORT operation in an HPCC cluster would sort the records by the specified 
key in the file part on the local node, resulting in the records being in sorted order on the local node, but not in full file 
order spanning all nodes. In contrast, a global SORT operation would result in the full distributed file being in sorted 
order by the specified key spanning all nodes. This requires node to node data movement during the SORT operation. 
Figure 14 shows a sample ECL program using the LOCAL mode of operation which is the equivalent of the sample PIG 
program for Hadoop shown in Figure 8. Note the explicit programmer control over distribution of data across nodes. 
The colon-equals “:=”operator in an ECL program is read as “is defined as”. The only action in this program is the 
OUTPUT statement, the other statements are definitions.

 

Figure 14. ECL Code Example.
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An additional important capability provided in the ECL programming language is support for natural language 
processing with PATTERN statements and the built-in PARSE operation. PATTERN statements allow matching 
patterns including regular expressions to be defined and used to parse information from unstructured data such as 
raw text. PATTERN statements can be combined to implement complex parsing operations or complete grammars 
from BNF definitions. The PARSE operation operates across a dataset of records on a specific field within a record, 
this field could be an entire line in a text file for example. Using this capability of the ECL language is possible to 
implement parallel processing form information extraction applications across document files including XML-based 
documents or Web pages. The key benefits of ECL can be summarized as follows:

•	ECL	incorporates	transparent	and	implicit	data	parallelism	regardless	of	the	size	of	the	computing	cluster	
and reduces the complexity of parallel programming increasing the productivity of application developers.

•	ECL	enables	implementation	of	data-intensive	applications	with	huge	volumes	of	data	previously	thought	
to be intractable or infeasible. ECL was specifically designed for manipulation of data and query processing. 
Order of magnitude performance increases over other approaches are possible.

•	ECL	provides	a	comprehensive	IDE	and	programming	tools	that	provide	a	highly-interactive	environment	for	
rapid development and implementation of ECL applications.

•	ECL	is	a	powerful,	high-level,	parallel	programming	language	ideal	for	implementation	of	ETL,	Information	
Retrieval, Information Extraction, and other data-intensive applications.

•	ECL	is	a	mature	and	proven	language	but	still	evolving	as	new	advancements	in	parallel	processing	and	data-
intensive computing occur.

 

Hadoop vs. HPCC Comparison
Hadoop and HPCC can be compared directly since it is possible for both systems to be executed on identical cluster 
hardware configurations. This permits head-to-head system performance benchmarking using a standard workload 
or set of application programs designed to test the parallel data processing capabilities of each system. Currently 
the only standard benchmark available for data-intensive computing platforms is the Terasort benchmark managed 
by an industry group led by Microsoft and HP. The Terabyte sort has evolved to be the GraySort which measures the 
number of terabytes per minute that can be sorted on a platform which allows clusters with any number of nodes to 
be utilized. However, in comparing the effectiveness and equivalent cost/performance of systems, it is useful to run 
benchmarks on identical system hardware configurations. A head-to-head comparison of the original Terabyte sort 
on a 400-node cluster will be presented here. An additional method of comparing system platforms is a feature and 
functionality comparison, which is a subjective evaluation based on factors determined by the evaluator. Although 
such a comparison contains inherent bias, it is useful in determining strengths and weaknesses of systems. 

Terabyte Sort Benchmark.

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted on computer systems since the 
1980s. More recently, a Web site originally sponsored by Microsoft and one of its research scientists Jim Gray has 
conducted formal competitions each year with the results presented at the SIGMOD (Special Interest Group for 
Management of Data) conference sponsored by the ACM each year (http://sortbenchmark.org). Several categories 
for sorting on systems exist including the Terabyte sort which was to measure how fast a file of 1 Terabyte of data 
formatted in 100 byte records (10,000,000 total records) could be sorted. Two categories were allowed called 
Daytona (a standard commercial computer system and software with no modifications) and Indy (a custom 
computer system with any type of modification). No restrictions existed on the size of the system so the sorting 
benchmark could be conducted on as large a system as desired. The current 2009 record holder for the Daytona 
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category is Yahoo! using a Hadoop configuration with 1460 nodes with 8GB Ram per node, 8000 Map tasks, and 
2700 Reduce tasks which sorted 1 TB in 62 seconds (O’Malley & Murthy, 2009). In 2008 using 910 nodes, Yahoo! 
performed the benchmark in 3 minutes 29 seconds. In 2008, LexisNexis using the HPCC architecture on only a 400-
node system performed the Terabyte sort benchmark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a 
400-node configuration performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive computer system and software 
architectures using computing clusters would be to conduct this benchmark on the same hardware configuration. 
Other factors should also be evaluated such as the amount of code required to perform the benchmark which 
is a strong indication of programmer productivity, which in itself is a significant performance factor in the 
implementation of data-intensive computing applications.

 

Figure 15. Hadoop Terabyte Sort Benchmark Results.
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Figure 16. HPCC Terabyte Sort Benchmark Results.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a development configuration located at 
LexisNexis Risk Solutions offices in Boca Raton, FL in conjunction with and verified by Lawrence Livermore National 
Labs (LLNL). The test cluster included 400 processing nodes each with two local 300MB SCSI disk drives, Dual Intel 
Xeon single core processors running at 3.00 GHz, 4GB memory per node, all connected to a single Gigabit ethernet 
switch with 1.4 Terabytes/sec throughput. Hadoop Release 0.19 was deployed to the cluster and the standard 
Terasort benchmark written in Java included with the release was used for the benchmark. Hadoop required 6 
minutes 45 seconds to create the test data, and the Terasort benchmark required a total of 25 minutes 28 seconds 
to complete the sorting test as shown in Figure 15. The HPCC system software deployed to the same platform and 
using standard ECL required 2 minutes and 35 seconds to create the test data, and a total of 6 minutes and 27 
seconds to complete the sorting test as shown in Figure 16. Thus the Hadoop implementation using Java running on 
the same hardware configuration took 3.95 times longer than the HPCC implementation using ECL.

The Hadoop version of the benchmark used hand-tuned Java code including custom TeraSort, TeraInputFormat and 
TeraOutputFormat classes with a total of 562 lines of code required for the sort. The HPCC system required only 10 
lines of ECL code for the sort, a 50-times reduction in the amount of code required.

Pig vs. ECL.

Although many Hadoop installations implement applications directly in Java, the Pig Latin language is now being used to 
increase programmer productivity and further simplify the programming of data-intensive applications at Yahoo! and other 
major users of Hadoop (Gates et al., 2009). Google also added a high-level language for similar reasons called Sawzall to its 
implementation of MapReduce to facilitate data analysis and data mining (Pike et al., 2004). The HPCC platform includes 
a high-level language discussed previously which is analogous to Pig and Sawzall called ECL. ECL is the base programming 
language used for applications on the HPCC platform even though it is compiled into C++ for execution. When comparing the 
Hadoop and HPCC platforms, it is useful to compare the features and functionality of these high-level languages.
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Both Pig and ECL are intrinsically parallel, supporting transparent data-parallelism on the underlying platform. Pig and 
ECL are translated into programs that automatically process input data for a process in parallel with data distributed 
across a cluster of nodes. Programmers of both languages do not need to know the underlying cluster size or use 
this to accomplish data-parallel execution of jobs. Both Pig and ECL are dataflow-oriented, but Pig is an imperative 
programming language and ECL is a declarative programming language. A declarative language allows programmers 
to focus on the data transformations required to solve an application problem and hides the complexity of the 
underlying platform and implementation details, reduces side effects, and facilitates compiler optimization of the 
code and execution plan. An imperative programming language dictates the control flow of the program which 
may not result in an ideal execution plan in a parallel environment. Declarative programming languages allow 
the programmer to specify “what” a program should accomplish, instead of “how” to accomplish it. For more 
information, refer to the discussions of declarative (http://en.wikipedia.org/wiki/Declarative_programming) and 
imperative (http://en.wikipedia.org/wiki/Imperative_programming) programming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another language – Pig source programs are 
translated into Java language MapReduce jobs for execution and ECL programs are translated into C++ source 
code which is then compiled into a DLL for execution. Pig programs are restricted to the MapReduce architecture 
and HDFS of Hadoop, but ECL has no fixed framework other than the DFS (Distributed File System) used for HPCC 
and therefore can be more flexible in implementation of data operations. This is evident in two key areas: (1) ECL 
allows operations to be either global or local, where standard MapReduce is restricted to local operations only in 
both the Map and Reduce phases. Global operations process the records in a dataset in order across all nodes and 
associated file parts in sequence maintaining the records in sorted order as opposed to only the records contained 
in each local node which may be important to the data processing procedure; (2) ECL has the flexibility to implement 
operations which can process more than one record at a time such as its ITERATE operation which uses a sliding 
window and passes two records at a time to an associated transform function. This allows inter-record field-by-field 
dependencies and decisions which are not available in Pig. For example the DISTINCT operation in Pig which is used 
to remove duplicates does not allow this on a subset of fields. ECL provides both DEDUP and ROLLUP operations 
which are usually preceded by a SORT and operate on adjacent records in a sliding window mode and any condition 
relating to the field contents of the left and right record of adjacent records can be used to determine if the record is 
removed. ROLLUP allows a custom transformation to be applied to the de-duplication process.

An important consideration of any software architecture for data is the underlying data model. Pig incorporates a 
very flexible nested data model which allows non-atomic data types (atomic data types include numbers and strings) 
such as set, map, and tuple to occur as fields of a table (Olston, Reed, Srivastava, Kumar, & Tomkins, 2008b). Tuples 
are sequences of fields, bags are collections of tuples, and maps are a collection of data items where each data item 
has a key with which it can be looked up. A data record within Pig is called a relation which is an outer bag, the bag is 
a collection of tuples, each tuple is an ordered set of fields, and a field is a piece of data. Relations are referenced 
by a name assigned by a user. Types can be assigned by the user to each field, but if not assigned will default to a 
bytearray and conversions are applied depending on the context in which the field is used. The ECL data model also 
offers a nested data structure using child datasets. A user-specified RECORD definition defines the content of each 
record in a dataset which can contain fixed or variable length fields or child datasets which in turn contain fields or 
child datasets etc. With this format any type of data structure can be represented. ECL offers specific support for 
CSV and XML formats in addition to flat file formats. Each field in a record has a user-specified identifier and data 
type and an optional default value and optional field modifiers such as MAXLENGTH that enhance type and use 
checking during compilation. ECL will perform implicit casting and conversion depending on the context in which a 
field is used, and explicit user casting is also supported. ECL also allows in-line datasets allowing sample data to be 
easily defined and included in the code for testing rather than separately in a file.

The Pig environment offers several programmer tools for development, execution, and debugging of Pig Latin 
programs (Pig Latin is the formal name for the language, and the execution environment is called Pig, although 
both are commonly referred to as Pig). Pig provides command line execution of scripts and an interactive shell 
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called Grunt that allows you to execute individual Pig commands or execute a Pig script. Pig programs can also 
be embedded in Java programs. Although Pig does not provide a specific IDE for developing and executing PIG 
programs, add-ins are available for several program editing environments including Eclipse, Vim, and Textmate to 
perform syntax checking and highlighting (White, 2009). PigPen is an Eclipse plug-in that provides program editing, 
an example data generator, and the capability to run a Pig script on a Hadoop cluster. The HPCC platform provides an 
extensive set of tools for ECL development including a comprehensive IDE called QueryBuilder which allows program 
editing, execution, and interactive graph visualization for debugging and profiling ECL programs. The common code 
repository tree is displayed in QueryBuilder and tools are provided for source control, accessing and searching the 
repository. ECL jobs can be launched to an HPCC environment or specific cluster, and execution can be monitored 
directly from QueryBuilder. External tools are also provided including ECLWatch which provides complete access 
to current and historical workunits (jobs executed in the HPCC environment are packaged into workunits), queue 
management and monitoring, execution graph visualization, distributed filesystem utility functions, and system 
performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic high-level language environment for data-
intensive processing and analysis and increases the productivity of developers and users of the Hadoop MapReduce 
environment, ECL is a significantly more comprehensive and mature language that generates highly optimized code, 
offers more advanced capabilities in a robust, proven, integrated data-intensive processing architecture. Table 1 
provides a feature to feature comparison between the Pig and ECL languages and their execution environments.

 

Figure 17. ECL Code Example Execution Graph.
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Pig

Data-flow oriented, imperative, parallel 
language for data-intensive computing. All Pig 
statements perform actions in sequentially 
ordered steps. Pig programs define a 
sequence of actions on the data.

Translated into a sequence of MapReduce 
Java programs for execution on a Hadoop 
Cluster. Runs as a client application.

Written in Java to perform custom 
processing and transformations as needed in 
Pig language statements. REGISTER is used to 
register a JAR file so that UDFs can be used.

Not supported

Nested data model with named relations to 
define data records. Relations can include 
nested combinations of bags, tuples, and 
fields. Atomic data types include int, long, 
float, double, chararray, bytearray, tuple, bag, 
and map. If types not specified, default to 
bytearray then converted during expressions 
evaluation depending on the context as 
needed.

Controlled by Hadoop MapReduce architecture 
and HDFS, no explicit programmer control 
provided. PARALLEL allows number of Reduce 
tasks to be specified. Local operations only are 
supported, global operations require custom 
Java MapReduce programs.

Standard comparison operators; standard 
arithmetic operators and modulus division, 
Boolean operators AND, OR, NOT; null 
operators (is null, is not null); dereference 
operators for tuples and maps; explicit cast 
operator; minus and plus sign operators; 
matches operator.

Language Feature or Capability

Language type

Compiler

User-defined Functions

Macros

Data model

Distribution of data

Operators

ECL

Data-flow oriented, declarative, non-procedural, 
parallel language for data-intensive computing. 
Most ECL statements are definitions of the desired 
result which allows the execution plan to be highly 
optimized by the compiler. ECL actions such as 
OUTPUT cause execution of the dataflows to 
produce the result defined by the ECL program.

Compiled and optimized into C++ source code 
which is compiled into DLL for execution on an 
HPCC cluster. Runs as a server application.

Processing functions or TRANSFORM functions 
are written in ECL. ECL supports inline C++ in 
functions and external Services compiled into 
DLL libraries written in any language

Extensive support for ECL macros to improve 
code reuse of common procedures. Additional 
template language for use in macros provides 
unique naming and conditional capabilities.

Nested data model using child datasets. Datasets 
contain fields or child datasets containing fields 
or additional child datasets. Record definitions 
describe the fields in datasets and child datasets. 
Indexes are special datasets supporting keyed 
access to data. Data types can be specified for 
fields in record definitions and include Boolean, 
integer, real, decimal, string, qstring, Unicode, 
data, varstring, varunicode, and related operators 
including set of (type), typeof(expression) and 
recordof(dataset) and ENUM (enumeration). 
Explicit type casting is available and implicit type 
casting may occur during evaluation of expressions 
by ECL depending on the context . Type transfer 
between types is also supported. All datasets can 
have an associated filter express to include only 
records which meet the filter condition, in ECL a 
filtered physical dataset is called a recordset.

Explicit programmer control over distribution of 
data across cluster using DISTRIBUTE function. 
Helps avoid data skew. ECL supports both local 
(operations are performed on data local to node) 
and global (operations performed across nodes) 
modes.

Supports arithmetic operators including normal 
division, integer division, and modulus division; 
bitwise operators for AND, OR, and XOR; standard 
comparison operators; Boolean operators NOT, 
AND, OR; explicit cast operator; minus and plus 
sign operators; set and record set operators; 
string concatenation operator; sort descending 
and ascending operator; special operators IN, 
BETWEEN, WITHIN.
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PigLanguage Feature or Capability ECL

The bincond operator is provided (condition 
? true_value : false_value)

No capability exists other than the standard 
relation operations across a dataset. 
FOREACH … GENERATE provides nested 
capability to combine specific relation 
operations.

Not supported directly by Pig. HBase and Hive 
provide indexed data capability for Hadoop 
MapReduce which are accessible through 
custom user-defined functions in Pig.

Grouped into relational operators, diagnostic 
operators, UDF (user-defined function) 
statements, Eval functions, and load/store 
functions. The Grunt shell offers additional 
interactive file commands.

PIG includes the STREAM statement to send 
data to an external script or program. The 
SHIP statement can be used to ship program 
binaries, jar files, or data to the Hadoop cluster 
compute nodes. The DEFINE statement, with 
INPUT, OUTPUT, SHIP, and CACHE clauses allow 
functions and commands to be associated with 
STREAM to access external programs.

Not supported directly by the Pig language. 
User-defined functions written in Java can 
provide this capability.

Implemented in Pig using the GROUP, 
and FOREACH … GENERATE statements 
performing EVAL functions on fields. Built-in 
EVAL functions include AVG, CONCAT, 
COUNT, DIFF, ISEMPTY, MAX, MIN, SIZE, SUM, 
TOKENIZE. 

Conditional Expression Evaluation

Program Loops

Indexes

Language Statement Types

External Program Calls

External Web Services Access

Data Aggregation

ECL includes an IF statement for single expression 
conditional evaluation, and MAP, CASE, CHOOSE, 
WHICH, and REJECTED for multiple expression 
evaluation. The ASSERT statement can be used to 
test a condition across a dataset. EXISTS can be 
used to determine if records meeting the specified 
condition exist in a dataset. ISVALID determines if a 
field contains a valid value.

In addition to built-in data transform functions, 
ECL provides LOOP and GRAPH statements which 
allow looping of dataset operations or iteration of 
a specified process on a dataset until a loopfilter 
condition is met or a loopcount is satisfied.

Indexes can be created on datasets to support 
keyed access to data to improve data processing 
performance and for use on the Roxie data delivery 
engine for query applications.

Grouped into dataset, index and record definitions, 
built-in functions to define processing and 
dataflows, and actions which trigger execution. 
Functions include transform functions such as JOIN 
which operate on data records, and aggregation 
functions such as SUM. Action statements result 
in execution based on specified ECL definitions 
describing the dataflows and results for a process.

ECL includes PIPE option on DATASET and 
OUTPUT and a PIPE function to execute external 
3rd-party programs in parallel on nodes across the 
cluster. Most programs which receive an input file 
and parameters can adapted to run in the HPCC 
environment.

Built-in ECL function SOAPCALL for SOAP calls to 
access external Web Services. An entire dataset can be 
processed by a single SOAPCALL in an ECL program.

Implemented in ECL using the TABLE statement 
with group by fields specified and an output 
record definition that includes computed fields 
using expressions with aggregation functions 
performed across the specified group. Built-in 
aggregation functions which work across datasets 
or groups include AVE, CORRELATION, COUNT, 
COVARIANCE, MAX, MIN, SUM, VARIANCE.
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The TOKENIZE statement splits a string 
and outputs a bag of words. Otherwise no 
direct language support for parsing and other 
natural language processing. User-defined 
functions are required.

Not supported directly by the Pig language. 
Requires the definition and use of a user-
defined function.

No explicit programmer control for dataset 
distribution. PARALLEL option on relational 
operations allows the number of Reduce 
tasks to be specified.

The SAMPLE operation selects a random 
data sample with a specified sample size.

No language statements in Pig directly affect 
Workflow. The Hadoop cluster does allow 
Java MapReduce programs access to specific 
workflow information and scheduling options 
to manage execution.

The COGROUP operation is similar to the 
JOIN operation and groups the data in two or 
more relations (datasets) based on common 
field values. COGROUP creates a nested set 
of output tuples while JOIN creates a flat set 
of output tuples. INNER and OUTER joins 
are supported. Fields from each relation are 
specified as the join key. No support exists for 
conditional processing other than field equality.

Creates the cross product of two or more 
relations (datasets).

Natural Language Processing

Scientific Function Support

Hashing Functions for Dataset 
Distribution

Creating Sample Datasets

Workflow Management

PIG Relation Operations:

COGROUP

CROSS

Includes PATTERN, RULE, TOKEN, and DEFINE 
statements for defining parsing patterns, rules, 
and grammars. Patterns can include regular 
expression definitions and user-defined validation 
functions. The PARSE statement provides both 
regular expression type parsing or Tomita parsing 
capability and recursive grammars. Special parsing 
syntax is included specifically for XML data.

ECL provides built-in functions for ABS, ACOS, 
ASIN, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, 
ROUND, ROUNDUP,SIN, SINH, SQRT, TAN, TANH.

Hashing functions available for use with the 
DISTRIBUTE statement include HASH, HASH32 
(32-bit FNV), HASH64 (64-bit FNV), HASHCRC, 
HASHMD5 (128-bit MD5)

ECL provides ENTH which selects every nth 
record of a dataset, SAMPLE which provides the 
capability to select non-overlapping samples on a 
specified interval, CHOOSEN which selects the first 
n records of a dataset and CHOOSESETS which 
allows multiple conditions to be specified and 
the number of records that meet the condition or 
optionally a number of records that meet none of 
the conditions specified. The base dataset for each 
of the ENTH, SAMPLE, CHOOSEN, and CHOOSETS 
can have a associated filter expression.

Workflow Services in ECL include the CHECKPOINT 
and PERSIST statements allow the dataflow to be 
captured at specific points in the execution of an 
ECL program. If a program must be rerun because 
of a cluster failure, it will resume at last Checkpoint 
which is deleted after completion. The PERSIST files 
are stored permanently in the filesystem. If a job 
is repeated, persisted steps are only recalculated 
if the code has changed, or any underlying data 
has changed. Other workflow statements include 
FAILURE to trap expression evaluation failures, 
PRIORITY, RECOVERY, STORED, SUCCESS, WHEN 
for processing events, GLOBAL and INDEPENDENT.

In ECL, this is accomplished using the 
DENORMALIZE function joining to each dataset 
and adding all records matching the join key to a 
new record format with a child dataset for each 
child file. The DENORMALIZE function is similar to a 
JOIN and is used to form a combined record out of 
a parent and any number of children.

In ECL the JOIN operation can be used to create 
cross products using a join condition that is always 
true.

PigLanguage Feature or Capability ECL
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Removes duplicate tuples in a relation. All 
fields in the tuple must match. The tuples 
are sorted prior to this operation. Cannot 
be used on a subset of fields. A FOREACH 
… GENERATE statement must be used 
to generate the fields prior to a DISTINCT 
operation in this case.

Displays the contents of a relation.

Selects tuples from a relation based on a 
condition. Used to select the data you want 
or conversely to filter out remove the data 
you don’t want.

Generates data transformations based on 
columns of data. This action can be used for 
projection, aggregation, and transformation, 
and can include other operations in the 
generation clause such as FILTER, DISTINCT, 
GROUP, etc.

Groups together the tuples in a single relation 
that have the same group key fields. 

DISTINCT

DUMP

FILTER

FOREACH … GENERATE

GROUP

The ECL DEDUP statement compares adjacent 
records to determine if a specified conditional 
expression is met, in which case the duplicate 
record is dropped and the remaining record is 
compared to the next record in a sliding window 
manner. This provides a much more flexible 
deduplication capability than the Pig DISTINCT 
operation. A SORT is required prior to a DEDUP 
unless using the ALL option. Conditions can use 
any expression and can reference values from the 
left and right adjacent records. DEDUP can use any 
subset of fields.

ECL provides an OUTPUT statement that can either 
write files to the filesystem or for display. Display 
files can be named and are stored in the Workunit 
associated with the job. Workunits are archived on a 
management server in the HPCC platform.

Filter expressions can be used any time a dataset 
or recordset is referenced in any ECL statement 
with the filter expression in parenthesis following 
the dataset name as dataset_name(filter_
expression). The ECL compiler optimizes filtering 
of the data during execution based on the 
combination of filtering expressions.

Each ECL transform operation such as PROJECT, 
JOIN, ROLLUP, etc. include a TRANSFORM 
function which implicitly provides the FOREACH 
…GENERATE operation as records are processed 
by the TRANSFORM function. Depending on the 
function, the output record of the transform can 
include fields from the input and computed fields 
selectively as needed and does not have to be 
identical to the input record.

The GROUP operation in ECL fragments a dataset 
into a set of sets based on the break criteria which 
is a list of fields or expressions based on fields in 
the record which function as the group by keys. 
This allows aggregations and transform operations 
such as ITERATE, SORT, DEDUP, ROLLUP and 
others to occur within defined subsets of the data 
as it executes on each subset individually.

PigLanguage Feature or Capability ECL
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Joins two or more relations based on 
common field values. The JOIN operator 
always performs an inner join. If one relation 
is small and can be held in memory, the 
“replicated” option can be used to improve 
performance.

Used to limit the number of output tuples in 
a relation. However, there is no guarantee of 
which tuples will be output unless preceded 
by an ORDER statement.

Loads data from the filesystem.

Sorts a relation based on one or more fields. 
Both ascending and descending sorts are 
supported. Relations will be in order for a 
DUMP, but if the result of an ORDER is further 
processed by another relation operation, there 
is no guarantee the results will be processed in 
the order specified. Relations are considered to 
be unordered in Pig.

Partitions a relation into two or more 
relations.

Stores data to the file system.

JOIN

LIMIT

LOAD

ORDER

SPLIT

STORE

The ECL JOIN operation works on two datasets or 
a set of datasets. For two datasets INNER, FULL 
OUTER, LEFT OUTER, RIGHT OUTER, LEFT ONLY 
and RIGHT ONLY joins are permitted. For the set of 
datasets JOIN, INNER, LEFT OUTER, LEFT ONLY, 
and MOFN(min, max) joins are permitted. Any 
type of conditional expression referencing fields 
in the datasets to be joined can be used as a join 
condition. JOIN can be used in both a global and 
local modes also provides additional options for 
distribution including HASH which distributes the 
datasets by the specified join keys, and LOOKUP 
which copies one dataset if small to all nodes and is 
similar to the “replicated” join feature of Pig. Joins 
can also use keyed indexes to improve performance 
and self-joins (joining the same dataset to itself) is 
supported. Additional join-type operations provided 
by ECL include MERGEJOIN which joins and merges 
in a single operation, and smart stepping using 
STEPPED which provides a method of doing n-ary 
join/merge-join operations.

The LIMIT function in ECL is to restrict the 
output of a recordset resulting from processing 
to a maximum number or records, or to fail the 
operation if the limit is exceeded. The CHOOSEN 
function can be use to select a specified number 
of records in a dataset.

Since ECL is declarative, the equivalent of the Pig 
LOAD operation is a DATASET definition which also 
includes a RECORD definition. The examples shown in 
Figure 8 and Figure 14 demonstrate this difference.

The ECL SORT function sorts a dataset according 
to a list of expressions or key fields. The SORT 
can be global in which the dataset will be ordered 
across the nodes in a cluster, or local in which 
the dataset will be ordered on each node in the 
cluster individually. For grouped datasets, the 
SORT applies to each group individually. Sorting 
operations can be performed using a quicksort, 
insertionsort, or heapsort, and can be stable or 
unstable for duplicates.

Since ECL is declarative, partitions are created by 
simply specifying filter expressions on the base 
dataset. Example for dataset DS1, you could define 
DS2 := DS1(filter_expression _1), DS3 := DS1(filter_
expression _2), etc.

The OUTPUT function in ECL is used to write 
a dataset to the filesystem or to store it in 
the workunit for display. Output files can be 
compressed using LZW compression. Variations 
of OUTPUT support flat file, CSV, and XML formats. 
Output can also be written to a PIPE as the standard 
input to the command specified for the PIPE 
operation. Output can write not only the filesystem 
on the local cluster, but to any cluster filesystem in 
the HPCC processing environment.

PigLanguage Feature or Capability ECL
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The UNION operator is used to merge the 
contents of two or more relations into a single 
relation. Order of tuples is not preserved, both 
input and output relations are interpreted 
as an unordered bag of tuples. Does not 
eliminate duplicate tuples.

Not available

Not available

Not available

Use of FOREACH … GENERATE is required

Not available

Use of FOREACH … GENERATE is required

UNION

Additional ECL Transformation 
Functions

COMBINE

FETCH

ITERATE

NORMALIZE

PROCESS

PROJECT

The MERGE function returns a single dataset 
or index containing all the datasets or indexes 
specified in a list of datasets. Datasets must 
have the same record format. A SORTED option 
allows the merge to be ordered according to a 
field list that specifies the sort order. A DEDUP 
option causes only records with unique keys to be 
included. The REGROUP function allows multiple 
datasets which have been grouped using the same 
fields to be merged into a single dataset.

ECL includes many additional functions providing 
important data transformations that are not 
available in Pig without implementing custom 
user-defined processing.

The COMBINE function combines two datasets 
into a single dataset on a record-by-record basis 
in the order in which they appear in each. Records 
from each are passed to the specified transform 
function, and the record format of the output 
dataset can contain selected fields from both 
input datasets and additional fields as needed.

The FETCH function processes through all the 
records in an index dataset in the order specified by 
the index fetching the corresponding record from 
the base dataset and passing it through a specified 
transform function to create a new dataset.

The ITERATE function processes through all 
records in a dataset one pair of records at a 
time using a sliding window method performing 
the transform record on each pair in turn. If the 
dataset is grouped, the ITERATE processes each 
group individually. The ITERATE function is useful 
in propagating information and calculating new 
information such as running totals since it allows 
inter-record dependencies to be considered.

The NORMALIZE function normalizes child 
records out of a dataset into a separate dataset. 
The associated transform and output record 
format does not have to be the same as the input.

The PROCESS function is similar to ITERATE and 
processes through all records in a dataset one pair 
of records at a time (left record, right record) using 
a sliding window method performing the associated 
transform function on each pair of records in turn. 
A second transform function is also specified that 
constructs the right record for the next comparison.

The PROJECT processes through all the records in 
a dataset performing the specified transform on 
each record in turn.

PigLanguage Feature or Capability ECL
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Not available

Pig includes diagnostic operators to aid in 
the visualization of data structures. The 
DESCRIBE operator returns the schema of a 
relation. The EXPLAIN operator allows you to 
review the logical, physical, and MapReduce 
execution plans that are used to compute 
an operation in a Pig script. The ILLUSTRATE 
operator displays a step-by-step execution 
of a sequence of statements allow you to see 
how data is transformed through a sequence 
of Pig Latin statements essentially dumping 
the output of each statement in the script.

ROLLUP

Diagnostic Operators

The ROLLUP function is similar to the DEDUP 
function but includes a specified transform 
function to process each pair of duplicate records. 
This allows you to retrieve and use valuable 
information from the duplicate record before it 
is thrown away. Depending on how the ROLLUP is 
defined, either the left or right record passed to 
the transform can be retained, or any mixture of 
data from both.

The DISTRIBUTION action produces a crosstab 
report in XML format indicating how many 
records there are in a dataset for each value in 
each field in the dataset to aid in the analysis 
of data distribution in order to avoid skews. 
The QueryBuilder and ECLWatch program 
development environment tools provide a 
complete visualization tool for analyzing, 
debugging, and profiling execution of ECL jobs. 
During the execution of a job, the ECL graph 
can be viewed which shows the execution plan, 
dataflows as they occur, and the results of each 
processing step. Users can double click on the 
graph to drill down for additional information. An 
example of the graph corresponding to the ECL 
code shown in Figure 14 is shown in Figure 17.

Table 1. Pig vs. ECL Feature Comparison.

PigLanguage Feature or Capability ECL
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Architecture Comparison.

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable architectures directed towards data-
intensive computing solutions. Each of these system platforms has strengths and weaknesses and their overall 
effectiveness for any application problem or domain is subjective in nature and can only be determined through 
careful evaluation of application requirements versus the capabilities of the solution. Hadoop is an open source 
platform which increases its flexibility and adaptability to many problem domains since new capabilities can be 
readily added by users adopting this technology. However, as with other open source platforms, reliability and 
support can become issues when many different users are contributing new code and changes to the system. 
Hadoop has found favor with many large Web-oriented companies including Yahoo!, Facebook, and others where 
data-intensive computing capabilities are critical to the success of their business. A company called Cloudera was 
recently formed to provide training, support and consulting services to the Hadoop user community and to provide 
packaged and tested releases. Although many different application tools have been built on top of the Hadoop 
platform like Pig, HBase, Hive, etc., these tools tend not to be well-integrated offering different command shells, 
languages, and operating characteristics that make it more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source software including readily available 
online software distributions and documentation, easy installation, flexible configurations based on commodity 
hardware, an execution environment based on a proven MapReduce computing paradigm, ability to schedule jobs 
using a configurable number of Map and Reduce tasks, availability of add-on capabilities such as Pig, HBase, and 
Hive to extend the capabilities of the base platform and improve programmer productivity, and a rapidly expanding 
user community committed to open source. This has resulted in dramatic growth and acceptance of the Hadoop 
platform and its implementation to support data-intensive computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and other architectural components 
designed to provide data-intensive computing capabilities from raw data processing and ETL applications, to 
high-performance query processing and data mining. The ECL language was specifically implemented to provide a 
high-level dataflow parallel processing language that is consistent across all system components and has extensive 
capabilities developed and optimized over a period of almost 10 years. The LexisNexis HPCC is a mature, reliable, 
well-proven, commercially supported system platform used in government installations, research labs, and 
commercial enterprises. The comparison of the Pig Latin language and execution system available on the Hadoop 
MapReduce platform to the ECL language used on the HPCC platform presented here reveals that ECL provides 
significantly more advanced capabilities and functionality without the need for extensive user-defined functions 
written in another language or resorting to a native MapReduce application coded in Java. 

The following comparison of overall features provided by the Hadoop and HPCC system architectures reveals that 
the HPCC architecture offers a higher level of integration of system components, an execution environment not 
limited by a specific computing paradigm such as MapReduce, flexible configurations and optimized processing 
environments which can provide data-intensive applications from data analysis to data warehousing and high-
performance online query processing, and high programmer productivity utilizing the ECL programming language 
and tools. Table 2 provides a summary comparison of the key features of the hardware and software architectures of 
both system platforms based on the analysis of each architecture presented in this paper.
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Hadoop

Processing clusters using commodity off-the-
shelf (COTS) hardware. Typically rack-mounted 
blade servers with Intel or AMD processors, 
local memory and disk connected to a 
high-speed communications switch (usually 
Gigabit Ethernet connections) or hierarchy of 
communications switches depending on the 
total size of the cluster. Clusters are usually 
homogenous (all processors are configured 
identically), but this is not a requirement. 

Unix/Linux

Hadoop system software implements cluster 
with MapReduce processing paradigm. The 
cluster also functions as a distributed file 
system running HDFS. Other capabilities are 
layered on top of the Hadoop MapReduce 
and HDFS system software including HBase, 
Hive, etc.

None. Hadoop is an open source platform 
and can be freely downloaded and used.

Core software includes the operating 
system and Hadoop MapReduce cluster and 
HDFS software Each slave node includes a 
Tasktracker service and Datanode service. 
A master node includes a Jobtracker service 
which can be configured as a separate 
hardware node or run on one of the slave 
hardware nodes. Likewise, for HDFS, a master 
Namenode service is also required to provide 
name services and can be run on one of the 
slave nodes or a separate node

Architecture Charasteristic

Hardware Type

Operating System

System Configurations

Licensing Cost

Core Software

HPCC

Same

Linux/Windows. Typically Linux is used due to the 
additional cost of licensing Windows

HPCC clusters can be implemented in two 
configurations: Data Refinery (Thor) is analogous 
to the Hadoop MapReduce Cluster; Data 
Delivery Engine (Roxie) provides separate high-
performance online query processing and data 
warehouse capabilities. Both configurations 
also function as distributed file systems but are 
implemented differently based on the intended 
use to improve performance. HPCC environments 
typically consist of multiple clusters of both 
configuration types. Although filesystems on each 
cluster are independent, a cluster can access files 
the filesystem on any other cluster in the same 
environment.

License fees currently depend on size and type of 
system configurations. Does not preclude a future 
open source offering.

For a Thor configuration, core software includes 
the operating system and various services 
installed on each node of the cluster to provide 
job execution and distributed file system access. 
A separate server called the Dali server provides 
filesystem name services and manages Workunits 
for jobs in the HPCC environment. A Thor cluster 
is also configured with a master node and 
multiple slave nodes. A Roxie cluster is a peer-
coupled cluster where each node runs Server 
and Agent tasks for query execution and key 
and file processing. The filesystem on the Roxie 
cluster uses a distributed B+Tree to store index 
and data and provides keyed access to the data. 
Additional middleware components are required 
for operation of Thor and Roxie clusters.
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None. Client software can submit jobs 
directly to the Jobtracker on the master node 
of the cluster. A Hadoop Workflow Scheduler 
(HWS) which will run as a server is currently 
under development to manage jobs which 
require multiple MapReduce sequences.

The dfsadmin tool provides information 
about the state of the filesystem; fsck is a 
utility for checking the health of files in HDFS; 
datanode block scanner periodically verifies 
all the blocks stored on a datanode; balancer 
re-distributes blocks from over-utilized 
datanodes to underutilized datanodes as 
needed. The MapReduce Web UI includes the 
JobTracker page which displays information 
about running and completed jobs, drilling 
down on a specific job displays detailed 
information about the job. There is also a 
Tasks page that displays info about Map and 
Reduce tasks.

Assisted by online tools provided by Cloudera 
utilizing Wizards. Requires a manual RPM 
deployment.

Block-oriented, uses large 64MB or 128MB 
blocks in most installations. Blocks are stored 
as independent units/local files in the local 
Unix/Linux filesystem for the node. Metadata 
information for blocks is stored in a separate file 
for each block. Master/Slave architecture with 
a single Namenode to provide name services 
and block mapping and multiple Datanodes. 
Files are divided into blocks and spread across 
nodes in the cluster. Multiple local files (1 
containing the block, 1 containing metadata) for 
each logical block stored on a node are required 
to represent a distributed file.

Middleware Components

System Tools

Ease of Deployment

Distributed File System

Middleware components include an ECL code 
repository implemented on a MySQL server, and 
ECL server for compiling of ECL programs and 
queries, an ECLAgent acting on behalf of a client 
program to manage the execution of a job on a 
Thor cluster, an ESPServer (Enterpise Services 
Platform) providing authentication, logging, 
security, and other services for the job execution 
and Web services environment, and the Dali server 
which functions as the system data store for job 
workunit information and provides naming services 
for the distributed filesystems. Flexibility exists for 
running the middleware components on one to 
several nodes. Multiple copies of these servers can 
provide redundancy and improve performance.

HPCC includes a suite of client and operations 
tools for managing, maintaining, and monitoring 
HPCC configurations and environments. These 
include QueryBuilder the program development 
environment, an Attribute Migration Tool, 
Distributed File Utility (DFU), an Environment 
Configuration Utility, Roxie Configuration Utility. 
Command line versions are also available. 
ECLWatch is a Web based utility program for 
monitoring the HPCC environment and includes 
queue management, distributed file system 
management, job monitoring, and system 
performance monitoring tools. Additional tools 
are provided through Web services interfaces.

Environment configuration tool. A Genesis servier 
provides a central repository to distribute OS 
level settings, services, and binaries to all net-
booted nodes in a configuration

The Thor DFS is record-oriented, uses local Linux 
filesystem to store file parts. Files are initially 
loaded (Sprayed) across nodes and each node 
has a single file part which can be empty for each 
distributed file. Files are divided on even record/
document boundaries specified by the user. 
Master/Slave architecture with name services and 
file mapping information stored on a separate 
server. Only one local file per node required to 
represent a distributed file. Read/write access 
is supported between clusters configured in the 
same environment. Utilizing special adaptors 
allows files from external databases such as 
MySQL to be accessed, allowing transactional 
data to be integrated with DFS data and 
incorporated into batch jobs. The Roxie DFS 
utilizes distributed B+Tree index files containing 
key information and data stored in local files on 
each node.

PigLanguage Feature or Capability ECL
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HDFS stores multiple replicas (user-
specified) of data blocks on other nodes 
(configurable) to protect against disk and 
node failure with automatic recovery. 
MapReduce architecture includes 
speculative execution, when a slow or failed 
Map task is detected, additional Map tasks are 
started to recover from node failures

Uses MapReduce processing paradigm with 
input data in key-value pairs. Master/Slave 
processing architecture. A Jobtracker runs 
on the master node, and a TaskTracker runs 
on each of the slave nodes. Map tasks are 
assigned to input splits of the input file, usually 
1 per block. The number of Reduce tasks is 
assigned by the user. Map processing is local 
to assigned node. A shuffle and sort operation 
is done following Map phase to distribute and 
sort key-value pairs to Reduce tasks based 
on key regions so that pairs with identical keys 
are processed by same Reduce tasks. Multiple 
MapReduce processing steps are typically 
required for most procedures and must be 
sequenced and chained separately by the user 
or language such as Pig.

Hadoop MapReduce jobs are usually written 
in Java. Other languages are supported 
through a streaming or pipe interface. Other 
processing environments execute on top 
of Hadoop MapReduce such as HBase and 
Hive which have their own language interface. 
The Pig Latin language and Pig execution 
environment provides a high-level dataflow 
language which is then mapped into multiple 
Java MapReduce jobs.

Hadoop MapReduce utilizes the Java 
programming language and there are 
several excellent program development 
environments for Java including Netbeans 
and Eclipse which offer plug-ins for access 
to Hadoop clusters. The Pig environment 
does not have its own IDE, but instead uses 
Eclipse and other editing environments for 
syntax checking. A PigPen add-in for Eclipse 
provides access to Hadoop Clusters to run 
Pig programs and additional development 
capabilities.

Fault Resilience

Job Execution Environment

Programming Languages

Integrated Program Development 
Environment

The DFS for Thor and Roxie stores replicas of file 
parts on other nodes (configurable) to protect 
against disk and node failure. Thor system offers 
either automatic or manual node swap and warm 
start following a node failure, jobs are restarted 
from last checkpoint or persist. Replicas are 
automatically used while copying data to the new 
node. Roxie system continues running following a 
node failure with a reduced number of nodes.

Thor utilizes a Master/Slave processing architecture. 
Processing steps defined in an ECL job can specify 
local (data processed separately on each node) 
or global (data is processed across all nodes) 
operation. Multiple processing steps for a procedure 
are executed automatically as part of a single 
job based on an optimized execution graph for 
a compiled ECL dataflow program. A single Thor 
cluster can be configured to run multiple jobs 
concurrently reducing latency if adequate CPU 
and memory resources are available on each node. 
Middleware components including an ECLAgent, 
ECLServer, and DaliServer provide the client 
interface and manage execution of the job which 
is packaged as a Workunit. Roxie utilizes a multiple 
Server/Agent architecture to process ECL programs 
accessed by queries using Server tasks acting as a 
manager for each query and multiple Agent tasks as 
needed to retrieve and process data for the query.

ECL is the primary programming language for 
the HPCC environment. ECL is compiled into 
optimized C++ which is then compiled into DLLs 
for execution on the Thor and Roxie platforms. 
ECL can include inline C++ code encapsulated 
in functions. External services can be written in 
any language and compiled into shared libraries 
of functions callable from ECL. A Pipe interface 
allows execution of external programs written in 
any language to be incorporated into jobs.
å
The HPPC platform is provided with QueryBuilder, 
a comprehensive IDE specifically for the ECL 
language. QueryBuilder provides access to 
shared source code repositories and provides a 
complete development and testing environment 
for developing ECL dataflow programs. Access to 
the ECLWatch tool is built-in, allowing developers 
to watch job graphs as they are executing. Access 
to current and historical job Workunits is provided 
allowing developers to easily compare results 
from one job to the next during development 
cycles.

PigLanguage Feature or Capability ECL
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The basic Hadoop MapReduce system 
does not provide any keyed access indexed 
database capabilities. An add-on system for 
Hadoop called HBase provides a column-
oriented database capability with keyed 
access. A custom script language and Java 
interface is provided. Access to HBase is not 
directly supported by the Pig environment 
and requires user-defined functions or 
separate MapReduce procedures.

The basic Hadoop MapReduce system does 
not provide any data warehouse capabilities. 
An add-on system for Hadoop called Hive 
provides data warehouse capabilities and 
allows HDFS data to be loaded into tables 
and accessed with an SQL-like language. 
Access to Hive is not directly supported by 
the Pig environment and requires user-
defined functions or separate MapReduce 
procedures.

1 to thousands of nodes. Yahoo! has 
production clusters as large as 4000 nodes.

Currently the only available standard 
performance benchmarks are the 
sort benchmarks sponsored by http://
sortbenchmark.org. Yahoo! has 
demonstrated sorting 1 TB on 1460 nodes in 
62 seconds, 100 TB using 3452 nodes in 173 
minutes, and 1 PB using 3658 nodes in 975 
minutes.

Hadoop training is offered through Cloudera. 
Both beginning and advanced classes are 
provided. The advanced class includes 
Hadoop add-ons including HBase and Pig. 
Cloudera also provides a VMWare based 
learning environment which can be used on 
a standard laptop or PC. Online tutorials are 
also available.

Database Capabilities

Online Query and Data Warehouse 
Capabilities

Scalability

Performance

Training

The HPCC platform includes the capability to build 
multi-key, multivariate indexes on DFS files. These 
indexes can be used to improve performance and 
provide keyed access for batch jobs on a Thor 
system, or be used to support development of 
queries deployed to Roxie systems. Keyed access 
to data is supported directly in the ECL language.

The Roxie system configuration in the HPCC 
platform is specifically designed to provide data 
warehouse capabilities for structured queries 
and data analysis applications. Roxie is a high-
performance platform capable of supporting 
thousands of users and providing sub-second 
response time depending on the application.

1 to several thousand nodes. In practice, HPCC 
configurations require significantly fewer nodes 
to provide the same processing performance as 
a Hadoop cluster. Sizing of clusters may depend 
however on the overall storage requirements for 
the distributed file system.

The HPPC platform has demonstrated sorting 1TB 
on a high-performance 400-node system in 102 
seconds. In a recent head-to-head benchmark 
versus Hadoop on a another 400-node system 
conducted with LLNL, The HPPC performance 
was 6 minutes 27 seconds and the Hadoop 
performance was 25 minutes 28 seconds. This 
result on the same hardware configuration showed 
that HPCC was 3.95 times faster than Hadoop for 
this benchmark.

Basic and advanced training classes on ECL 
programming are offered monthly in several 
locations or can be conducted on customer 
premises. A system administration class is also 
offered and scheduled as needed. A CD with a 
complete HPCC and ECL learning environment 
which can be used on a single PC or laptop is also 
available.

Table 2. Hadoop vs. HPCC Feature Comparison.

PigLanguage Feature or Capability ECL
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Conclusions
As a result of the continuing information explosion, many organizations are drowning in data and the data gap or 
inability to process this information and use it effectively is increasing at an alarming rate. Data-intensive computing 
represents a new computing paradigm which can address the data gap and allow government and commercial 
organizations and research environments to process massive amounts of data and implement applications 
previously thought to be impractical or infeasible. Some organizations with foresight recognized early that new 
parallel-processing architectures were needed including Google who initially developed the MapReduce architecture 
and LexisNexis who developed the HPCC architecture. More recently the Hadoop platform has emerged as an 
open source alternative for the MapReduce approach. Hadoop has gained momentum quickly, and additional 
add-on capabilities to enhance the platform have been developed including a dataflow programming language and 
execution environment called Pig. These architectures and their relative strengths and weaknesses are described 
in this paper, and a direct comparison of the Pig language of Hadoop to the ECL language used with the LexisNexis 
HPCC platform was presented.

The suitability of a processing platform and architecture for an organization and its application requirements can 
only be determined after careful evaluation of available alternatives. Many organizations have embraced open 
source platforms while others prefer a commercially developed and supported platform by an established industry 
leader. The Hadoop MapReduce platform is now being used successfully at many so-called Web companies whose 
data encompasses massive amounts of Web information as its data source. The LexisNexis HPCC platform is at 
the heart of a premier information services provider and industry leader, and has been adopted by government 
agencies, commercial organizations, and research laboratories because of its high-performance cost-effective 
implementation. Existing HPCC applications include raw data processing, ETL, and linking of enormous amounts of 
data to support online information services such as LexisNexis and industry-leading information search applications 
such as Accurint; entity extraction and entity resolution of unstructured and semi-structured data such as Web 
documents to support information extraction; statistical analysis of Web logs for security applications such as 
intrusion detection; online analytical processing to support business intelligence systems (BIS); and data analysis 
of massive datasets in educational and research environments and by state and federal government agencies. 
There are many tradeoffs in making the right decision in choosing a new computer systems architecture, and often 
the best approach is to conduct a specific benchmark test with a customer application to determine the overall 
system effectiveness and performance. The relative cost-performance characteristics of the system in additional to 
suitability, flexibility, scalability, footprint, and power consumption factors which impact the total cost of ownership 
(TCO) must be considered.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture in this paper reveals many 
similarities between the platforms including the use of a high-level dataflow-oriented programming language 
to implement transparent data-parallel processing. The advantages of choosing a LexisNexis HPCC platform 
include: (1) an architecture which implements a highly integrated system environment with capabilities from raw 
data processing to high-performance queries and data analysis using a common language; (2) an architecture 
which provides equivalent performance at a much lower system cost based on the number of processing nodes 
required as demonstrated with the Terabyte Sort benchmark where the HPCC platform was almost 4 times faster 
than Hadoop running on the same hardware resulting in significantly lower total cost of ownership (TCO); (3) an 
architecture which has been proven to be stable and reliable on high-performance data processing production 
applications for varied organizations over a 10-year period; (4) an architecture that uses a dataflow programming 
language (ECL) with extensive built-in capabilities for data-parallel processing which allows complex operations 
without the need for extensive user-defined functions and automatically optimizes execution graphs with hundreds 
of processing steps into single efficient workunits; (5) an architecture with a high-level of fault resilience and language 
capabilities which reduce the need for re-processing in case of system failures; and (6) an architecture which is 
available from and supported by a well-known leader in information services and risk solutions (LexisNexis) who is 
part of one of the world’s largest publishers of information ReedElsevier.
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