
White Paper

HPCC Systems: Data Intensive
Supercomputing Solutions

Author: Anthony M. Middleton, Ph.D. LexisNexis Risk Solutions

Date: April 7, 2011

2 HPCC Systems: Data Intensive Supercomputing Solutions

Executive Summary
As a result of the continuing information explosion, many organizations are drowning in data and the resulting “data
gap” or inability to process this information and use it effectively is increasing at an alarming rate. Data-intensive
computing represents a new computing paradigm which can address the data gap using scalable parallel processing
and allow government and commercial organizations and research environments to process massive amounts of
data and implement applications previously thought to be impractical or infeasible.

The fundamental challenges of data-intensive computing are managing and processing exponentially growing
data volumes, significantly reducing associated data analysis cycles to support practical, timely applications, and
developing new algorithms which can scale to search and process massive amounts of data. LexisNexis believes
that the answer to these challenges is a scalable, integrated computer systems hardware and software architecture
designed for parallel processing of data-intensive computing applications. This paper explores the challenges of
data-intensive computing and offers an in-depth comparison of commercially available system architectures
including the LexisNexis Data Analytics Supercomputer (DAS) also referred to as the LexisNexis High-Performance
Computing Cluster (HPCC), and Hadoop, an open source implementation of Google’s MapReduce architecture.

The MapReduce architecture and programming model pioneered by Google is an example of a systems architecture
specifically designed for processing and analyzing large datasets. This architecture was designed to run on large
clusters of commodity machines and utilizes a distributed file system in which files are divided into blocks and
stored on nodes in the cluster. In a MapReduce application, input data blocks are processed in parallel by Map
tasks assigned to each data block to perform specific operations and transformations on the data and Reduce
tasks which aggregate results and write output data blocks. Multiple MapReduce sequences are typically required
to implement more complex data processing procedures. The Hadoop architecture is functionally similar to the
Google implementation but uses Java as the base programming language instead of C++. Both Google and Hadoop
implemented high-level parallel dataflow languages for data analysis to improve programmer productivity. For
Hadoop, this language is called Pig Latin and the associated execution environment is called Pig.

LexisNexis, an industry leader in data content, data aggregation, and information services independently developed
and implemented a solution for data-intensive computing called HPCC. The LexisNexis approach also utilizes
commodity clusters of hardware running the Linux operating system and includes custom system software and
middleware components developed and layered on the base Linux operating system to provide the execution
environment and distributed filesystem support required for data-intensive computing. Because LexisNexis
recognized the need for a new computing paradigm to address its growing volumes of data, the design approach
included the definition of a new high-level dataflow language for parallel data processing called ECL (Enterprise Data
Control Language). The power, flexibility, advanced capabilities, speed of development, and ease of use of the ECL
programming language is the primary distinguishing factor between the LexisNexis HPCC and other data-intensive
computing solutions.

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an
optimum manner required the design and implementation of two distinct processing environments, each of which
could be optimized independently for its parallel data processing purpose. The first of these platforms is called a
Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data (extract, transform, load),
record linking and entity resolution, large-scale ad-hoc analysis of data, and creation of keyed data and indexes
to support high-performance structured queries and data warehouse applications. The second platform is called
the Data Delivery Engine. This platform is designed as an online high-performance structured query and analysis
platform or data warehouse delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and users with sub-second
response times. Both platforms can be integrated in the same processing environment, and both platforms utilize
the same ECL programming language increasing continuity and programmer productivity.

This paper presents a detailed analysis and feature comparison of the HPCC system architecture versus Hadoop,

3 HPCC Systems: Data Intensive Supercomputing Solutions

and the ECL programming language versus Pig. Results of head-to-head system performance tests based on the
Terabyte sort benchmark are presented and show that HPCC is up to 4 times faster than Hadoop when using the
same hardware configuration. This paper concludes that the advantages of selecting a LexisNexis HPCC architecture
for data-intensive computing include: (1) an architecture which implements a highly integrated system environment
with capabilities from raw data processing to high-performance queries and data analysis using a common language;
(2) an architecture which provides equivalent performance at a much lower system cost based on the number of
processing nodes required resulting in significantly lower total cost of ownership (TCO); (3) an architecture which
has been proven to be stable and reliable on high-performance data processing production applications for varied
organizations over a 10-year period; (4) an architecture that uses a mature, declarative, dataflow programming
language (ECL) with extensive built-in capabilities for data-parallel processing, allows complex operations without
the need for extensive user-defined functions significantly increasing programmer productivity (an important
performance factor in application development), and automatically optimizes execution graphs with hundreds of
processing steps into single efficient workunits; (5) an architecture with a high-level of fault resilience and language
capabilities which reduce the need for re-processing in case of system failures; and (6) an architecture which is
available from and supported by a well-known leader in information services and risk solutions (LexisNexis) who is
part of one of the world’s largest publishers of information ReedElsevier.

4 HPCC Systems: Data Intensive Supercomputing Solutions

Table of Contents

Executive Summary ... 2

List of Figures ... 5

List of Tables .. 5

Introduction ..6

 Data-Intensive Computing Applications ...6

 Data-Parallelism ..6

 The “Data Gap” ..6

Characteristics of Data-Intensive Computing Systems 7

 Processing Approach ...8

 Common Characteristics ...9

 Grid Computing ... 10

Data-Intensive System Architectures .. 10

 Google MapReduce ... 10

 Hadoop ... 13

 LexisNexis HPCC ..17

 ECL ...22

Hadoop vs. HPCC Comparison ...25

 Terabyte Sort Benchmark ..25

 Pig vs. ECL ..27

 Architecture Comparison ..37

Conclusions ... 42

Reference List ... 43

5 HPCC Systems: Data Intensive Supercomputing Solutions

Figures

1. The Information Explosion (IDC) .. 7

2. Shared Nothing Computing Cluster ..8

3. MapReduce Processing Architecture .. 11

4. MapReduce Key-Value Processing .. 12

5. Commodity Hardware Cluster .. 14

6. Hadoop MapReduce ... 14

7. HDFS Architecture .. 15

8. Sample Pig Latin Program ... 16

9. Pig Program Translation to MapReduce ..17

10. LexisNexis Vision for a Data Analytics Supercomputer 18

11. Roxie Cluster Client Access Methods ... 21

12. HPCC Environment System Component Relationships....................22

13. ECL Sample Syntax for JOIN operation ..23

14. ECL Code Example ... 24

15. Hadoop Terabyte Sort Benchmark Results .. 26

16. HPCC Terabyte Sort Benchmark Results ...27

17. ECL Code Example Execution Graph ... 29

Tables

1. Pig vs. ECL Feature Comparison ... 36

2. Hadoop vs. HPCC Feature Comparison ... 41

List of Figures

6 HPCC Systems: Data Intensive Supercomputing Solutions

Introduction
Parallel processing approaches can be generally classified as either compute-intensive, or data-intensive (Gorton,
Greenfield, Szalay, & Williams, 2008; Johnston, 1998; Skillicorn & Talia, 1998). Compute-intensive is used to
describe application programs that are compute bound. Such applications devote most of their execution time to
computational requirements as opposed to I/O, and typically require small volumes of data. Parallel processing of
compute-intensive applications typically involves parallelizing individual algorithms within an application process,
and decomposing the overall application process into separate tasks, which can then be executed in parallel on an
appropriate computing platform to achieve overall higher performance than serial processing. In compute-intensive
applications, multiple operations are performed simultaneously, with each operation addressing a particular part of
the problem. This is often referred to as functional parallelism or control parallelism (Abbas, 2004).

Data-Intensive Computing Applications

Data-intensive is used to describe applications that are I/O bound or with a need to process large volumes of data
(Gokhale, Cohen, Yoo, & Miller, 2008; Gorton et al., 2008; Johnston, 1998). Such applications devote most of their
processing time to I/O and movement of data. Parallel processing of data-intensive applications typically involves
partitioning or subdividing the data into multiple segments which can be processed independently using the same
executable application program in parallel on an appropriate computing platform, then reassembling the results to
produce the completed output data (Nyland, Prins, Goldberg, & Mills, 2000). The greater the aggregate distribution of
the data, the more benefit there is in parallel processing of the data. Gorton et al. state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very amenable to straightforward
parallelization. The fundamental challenges for data-intensive computing according to Gorton et al. are managing
and processing exponentially growing data volumes, significantly reducing associated data analysis cycles to support
practical, timely applications, and developing new algorithms which can scale to search and process massive
amounts of data.

Data-Parallelism.

Computer system architectures which can support data-parallel applications are a potential solution to terabyte
scale data processing requirements (Nyland et al., 2000; Ravichandran, Pantel, & Hovy, 2004). According to
(Agichtein, 2004), parallelization is an attractive alternative for processing extremely large collections of data such as
the billions of documents on the Web. Nyland et al. define data-parallelism as a computation applied independently
to each data item of a set of data which allows the degree of parallelism to be scaled with the volume of data.
According to Nyland et al., the most important reason for developing data-parallel applications is the potential for
scalable performance, and may result in several orders of magnitude performance improvement. The key issues with
developing applications using data-parallelism are the choice of the algorithm, the strategy for data decomposition,
load balancing on processing nodes, message passing communications between nodes, and the overall accuracy
of the results (Nyland et al., 2000; Rencuzogullari & Dwarkadas, 2001). Nyland et al. also note that the development
of a data-parallel application can involve substantial programming complexity to define the problem in the context
of available programming tools, and to address limitations of the target architecture. Information extraction from
and indexing of Web documents is typical of data-intensive processing which can derive significant performance
benefits from data-parallel implementations since Web and other types of document collections can typically then
be processed in parallel (Agichtein, 2004).

The “Data Gap”.

The rapid growth of the Internet and World Wide Web has led to vast amounts of information available online.
In addition, business and government organizations create large amounts of both structured and unstructured
information which needs to be processed, analyzed, and linked. Vinton Cerf of Google has described this as an

7 HPCC Systems: Data Intensive Supercomputing Solutions

“Information Avalanche” and has stated “we must harness the Internet’s energy before the information it has
unleashed buries us.” (Cerf, 2007) An IDC white paper sponsored by EMC estimates the amount of information
currently stored in a digital form at 281 exabytes and the overall compound growth rate at 57% (Figure 1) with
information in organizations growing at even a faster rate (Gantz, Reinsel, Chute, Schlichting, McArthur, Minton,
Xheneti, Toncheva, & Manfrediz, 2007). In another study of the so-called information explosion it was estimated that
95% of all current information exists in unstructured form with increased data processing requirements compared
to structured information (Lyman & Varian, 2003). The storing, managing, accessing, and processing of this vast
amount of data represents a fundamental need and an immense challenge in order to satisfy needs to search,
analyze, mine, and visualize this data as information (Berman, 2008). LexisNexis has defined this issue as the “Data
Gap”: the ability to gather information is far outpacing organizational capacity to use it effectively.

Figure 1. The Information Explosion (IDC).

Organizations build the applications to fill the storage they have available, and build the storage to fit the applications
and data they have. But will organizations be able to do useful things with the information they have to gain full
and innovative use of their untapped data resources? As organizational data grows, how will the “Data Gap” be
addressed and bridged? LexisNexis believes that the answer is a scalable computer systems hardware and software
architecture designed for data-intensive computing applications which can scale to processing billions of records
per second (BORPS). What are the characteristics of data-intensive computing systems and what commercially
available system architectures are available to organizations to implement data-intensive computing applications?
This paper will explore those issues and offer a comparison of commercially available system architectures including
the LexisNexis Data Analytics Supercomputer (DAS) also referred to as the LexisNexis High-Performance Computing
Cluster (HPCC).

Characteristics of Data-Intensive Computing Systems
The National Science Foundation believes that data-intensive computing requires a “fundamentally different set
of principles” than current computing approaches (NSF, 2009). Through a funding program within the Computer

Information Created, Captured and Replicated

6-Fold Growth
in Four Years

2010
988 Exabytes

Source: IDC, 2007

2006
161 Exabytes

8 HPCC Systems: Data Intensive Supercomputing Solutions

Node

Local
Memory

Hard
Drive

CPU

Node

Local
Memory

Hard
Drive

CPU

Node

Local
Memory

Hard
Drive

CPU

Network Fabric / Interconnect

and Information Science and Engineering area, the NSF is seeking to “increase understanding of the capabilities and
limitations of data-intensive computing.” The key areas of focus are:

•	 Approaches	to	parallel	programming	to	address	the	parallel	processing	of	data	on	data-intensive	systems

•	 Programming	abstractions	including	models,	languages,	and	algorithms	which	allow	a	natural	expression	of	
parallel processing of data

•	 Design	of	data-intensive	computing	platforms	to	provide	high	levels	of	reliability,	efficiency,	availability,	and	
scalability.

•	 Identifying	applications	that	can	exploit	this	computing	paradigm	and	determining	how	it	should	evolve	to	
support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as “capturing, managing, analyzing, and
understanding data at volumes and rates that push the frontiers of current technologies.” (PNNL, 2008) They believe
that to address the rapidly growing data volumes and complexity requires “epochal advances in software, hardware,
and algorithm development” which can scale readily with size of the data and provide effective and timely analysis
and processing results.

Processing Approach.

Current data-intensive computing platforms use a “divide and conquer” parallel processing approach combining
multiple processors and disks in large computing clusters connected using high-speed communications switches
and networks which allows the data to be partitioned among the available computing resources and processed
independently to achieve performance and scalability based on the amount of data (Figure 2). This approach to
parallel processing is often referred to as a “shared nothing” approach since each node consisting of processor, local
memory, and disk resources shares nothing with other nodes in the cluster. In parallel computing this approach is
considered suitable for data processing problems which are “embarrassingly parallel” , i.e. where it is relatively easy
to separate the problem into a number of parallel tasks and there is no dependency or communication required
between the tasks other than overall management of the tasks. These types of data processing problems are
inherently adaptable to various forms of distributed computing including clusters and data grids.

Figure 2. Shared Nothing Computing Cluster.

9 HPCC Systems: Data Intensive Supercomputing Solutions

Common Characteristics.

There are several important common characteristics of data-intensive computing systems that distinguish them
from other forms of computing. First is the principle of collocation of the data and programs or algorithms to
perform the computation. To achieve high performance in data-intensive computing, it is important to minimize
the movement of data. In direct contrast to other types of computing and supercomputing which utilize data stored
in a separate repository or servers and transfer the data to the processing system for computation, data-intensive
computing uses distributed data and distributed file systems in which data is located across a cluster of processing
nodes, and instead of moving the data, the program or algorithm is transferred to the nodes with the data that needs
to be processed. This principle – “Move the code to the data” – is extremely effective since program size is usually
small in comparison to the large datasets processed by data-intensive systems and results in much less network
traffic since data can be read locally instead of across the network. This characteristic allows processing algorithms
to execute on the nodes where the data resides reducing system overhead and increasing performance (Gorton et
al., 2008).

A second important characteristic of data-intensive computing systems is the programming model utilized. Data-
intensive computing systems utilize a machine-independent approach in which applications are expressed in terms
of high-level operations on data, and the runtime system transparently controls the scheduling, execution, load
balancing, communications, and movement of programs and data across the distributed computing cluster (Bryant,
2008). The programming abstraction and language tools allow the processing to be expressed in terms of data flows
and transformations incorporating new dataflow programming languages and shared libraries of common data
manipulation algorithms such as sorting. Conventional supercomputing and distributed computing systems typically
utilize machine dependent programming models which can require low-level programmer control of processing
and node communications using conventional imperative programming languages and specialized software
packages which adds complexity to the parallel programming task and reduces programmer productivity. A machine
dependent programming model also requires significant tuning and is more susceptible to single points of failure.

A third important characteristic of data-intensive computing systems is the focus on reliability and availability. Large-
scale systems with hundreds or thousands of processing nodes are inherently more susceptible to hardware failures,
communications errors, and software bugs. Data-intensive computing systems are designed to be fault resilient.
This includes redundant copies of all data files on disk, storage of intermediate processing results on disk, automatic
detection of node or processing failures, and selective re-computation of results. A processing cluster configured for
data-intensive computing is typically able to continue operation with a reduced number of nodes following a node
failure with automatic and transparent recovery of incomplete processing.

A final important characteristic of data-intensive computing systems is the inherent scalability of the underlying
hardware and software architecture. Data-intensive computing systems can typically be scaled in a linear fashion
to accommodate virtually any amount of data, or to meet time-critical performance requirements by simply adding
additional processing nodes to a system configuration in order to achieve billions of records per second processing
rates (BORPS). The number of nodes and processing tasks assigned for a specific application can be variable or fixed
depending on the hardware, software, communications, and distributed file system architecture. This scalability
allows computing problems once considered to be intractable due to the amount of data required or amount of
processing time required to now be feasible and affords opportunities for new breakthroughs in data analysis and
information processing.

10 HPCC Systems: Data Intensive Supercomputing Solutions

Grid Computing.

A similar computing paradigm known as grid computing has gained popularity primarily in research environments
(Abbas, 2004). A computing grid is typically heterogeneous in nature (nodes can have different processor, memory,
and disk resources), and consists of multiple disparate computers distributed across organizations and often
geographically using wide-area networking communications usually with relatively low-bandwidth. Grids are typically
used to solve complex computational problems which are compute-intensive requiring only small amounts of data
for each processing node. A variation known as data grids allow shared repositories of data to be accessed by a grid
and utilized in application processing, however the low-bandwidth of data grids limit their effectiveness for large-
scale data-intensive applications. In contrast, data-intensive computing systems are typically homogeneous in
nature (nodes in the computing cluster have identical processor, memory, and disk resources), use high-bandwidth
communications between nodes such as gigabit Ethernet switches, and are located in close proximity in a data
center using high-density hardware such as rack-mounted blade servers. The logical file system typically includes
all the disks available on the nodes in the cluster and data files are distributed across the nodes as opposed to a
separate shared data repository such as a storage area network which would require data to be moved to nodes for
processing. Geographically dispersed grid systems are more difficult to manage, less reliable, and less secure than
data-intensive computing systems which are usually located in secure data center environments.

Data-Intensive System Architectures
A variety of system architectures have been implemented for data-intensive and large-scale data analysis
applications including parallel and distributed relational database management systems which have been available
to run on shared nothing clusters of processing nodes for more than two decades (Pavlo, Paulson, Rasin, Abadi,
Dewitt, Madden, & Stonebraker, 2009). These include database systems from Teradata, Netezza, Vertica, and
Exadata/Oracle and others which provide high-performance parallel database platforms. Although these systems
have the ability to run parallel applications and queries expressed in the SQL language, they are typically not
general-purpose processing platforms and usually run as a back-end to a separate front-end application processing
system. Although this approach offers benefits when the data utilized is primarily structured in nature and fits easily
into the constraints of a relational database, and often excels for transaction processing applications, most data
growth is with data in unstructured form (Gantz et al., 2007) and new processing paradigms with more flexible data
models were needed. Internet companies such as Google, Yahoo, Microsoft, Facebook, and others required a new
processing approach to effectively deal with the enormous amount of Web data for applications such as search
engines and social networking. In addition, many government and business organizations were overwhelmed with
data that could not be effectively processed, linked, and analyzed with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered by Google and now available in an
open-source implementation called Hadoop used by Yahoo, Facebook, and others. LexisNexis, an acknowledged
industry leader in information services, also developed and implemented a scalable platform for data-intensive
computing which is used by LexisNexis and other commercial and government organizations to process large
volumes of structured and unstructured data. These approaches will be explained and contrasted in terms of their
overall structure, programming model, file systems in the following sections.

Google MapReduce.

The MapReduce architecture and programming model pioneered by Google is an example of a modern systems
architecture designed for processing and analyzing large datasets and is being used successfully by Google in many
applications to process massive amounts of raw Web data (Dean & Ghemawat, 2004). The MapReduce architecture
allows programmers to use a functional programming style to create a map function that processes a key-value
pair associated with the input data to generate a set of intermediate key-value pairs, and a reduce function that

11 HPCC Systems: Data Intensive Supercomputing Solutions

MapReduce architecture

Input Map Shufle & Sort Reduce Output

Input
Data

Output
Data

Map

Reduce

Reduce

Map

Map

merges all intermediate values associated with the same intermediate key (Dean & Ghemawat, 2004). According
to Dean and Ghemawat, the MapReduce programs can be used to compute derived data from documents such as
inverted indexes and the processing is automatically parallelized by the system which executes on large clusters of
commodity type machines, highly scalable to thousands of machines. Since the system automatically takes care of
details like partitioning the input data, scheduling and executing tasks across a processing cluster, and managing the
communications between nodes, programmers with no experience in parallel programming can easily use a large
distributed processing environment.

Figure 3. MapReduce Processing Architecture (O’Malley, 2008).

The programming model for MapReduce architecture is a simple abstraction where the computation takes a set of
input key-value pairs associated with the input data and produces a set of output key-value pairs. The overall model
for this process is shown in Figure 3. In the map phase, the input data is partitioned into input splits and assigned
to Map tasks associated with processing nodes in the cluster. The Map task typically executes on the same node
containing its assigned partition of data in the cluster. These Map tasks perform user-specified computations on
each input key-value pair from the partition of input data assigned to the task, and generates a set of intermediate
results for each key. The shuffle and sort phase then takes the intermediate data generated by each Map task, sorts
this data with intermediate data from other nodes, divides this data into regions to be processed by the reduce tasks,
and distributes this data as needed to nodes where the Reduce tasks will execute. All Map tasks must complete prior
to the shuffle and sort and reduce phases. The number of Reduce tasks does not need to be the same as the number
of Map tasks. The Reduce tasks perform additional user-specified operations on the intermediate data possibly
merging values associated with a key to a smaller set of values to produce the output data. For more complex data
processing procedures, multiple MapReduce calls may be linked together in sequence.

12 HPCC Systems: Data Intensive Supercomputing Solutions

MapReduce - KeyValue

(Key Value)
m1 for r1

(Key Value)
m1 for r2

(Key Value)
m2 for r1

(Key Value)
m2 for r2

(Key Value)
m3 for r1

(Key Value)
m3 for r2

(Key Value)
m4 for r1

(Key Value)
m4 for r2

(Key Value)
m5 for r1

(Key Value)
m5 for r2

Input File 1
(Key Value)

Output File 1
(Key Value)

Output File 2
(Key Value)

Input File 2
(Key Value)

Input File 3
(Key Value)

Map 1 Map 2 Map 5Map 4Map 3

Reduce 1 Reduce 2

(Key Value)(Key Value)

Sort 2Sort 1

Figure 4. MapReduce Key-Value Processing (Nicosia, 2009).

Figure 4 shows the MapReduce architecture and key-value processing in more detail. The input data can consist of
multiple input files. Each Map task will produce an intermediate output file for each key region assigned based on
the number of Reduce tasks R assigned to the process (hash(key) modulus R). The reduce function then “pulls” the
intermediate files, sorting and merging the files for a specific region from all the Map tasks. To minimize the amount
of data transferred across the network, an optional Combiner function can be specified which is executed on the
same node that performs a Map task. The combiner code is usually the same as the reducer function code which
does partial merging and reducing of data for the local partition, then writes the intermediate files to be distributed to
the Reduce tasks. The output of the Reduce function is written as the final output file. In the Google implementation
of MapReduce, functions are coded in the C++ programming language.

Underlying and overlayed with the MapReduce architecture is the Google File System (GFS). GFS was designed to
be a high-performance, scalable distributed file system for very large data files and data-intensive applications
providing fault tolerance and running on clusters of commodity hardware (Ghemawat, Gobioff, & Leung, 2003). GFS
is oriented to very large files dividing and storing them in fixed-size chunks of 64 Mb by default which are managed
by nodes in the cluster called chunkservers. Each GFS consists of a single master node acting as a nameserver and
multiple nodes in the cluster acting as chunkservers using a commodity Linux-based machine (node in a cluster)
running a user-level server process. Chunks are stored in plain Linux files which are extended only as needed and
replicated on multiple nodes to provide high-availability and improve performance. Secondary nameservers provide
backup for the master node. The large chunk size reduces the need for MapReduce clients programs to interact with
the master node, allows filesystem metadata to be kept in memory in the master node improving performance, and
allows many operations to be performed with a single read on a chunk of data by the MapReduce client. Ideally, input
splits for MapReduce operations are the size of a GFS chunk. GFS has proven to be highly effective for data-intensive

13 HPCC Systems: Data Intensive Supercomputing Solutions

computing on very large files, but is less effective for small files which can cause hot spots if many MapReduce tasks
are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS architecture to improve programmer
productivity and to enhance data analysis and processing of structured and unstructured data. Since the GFS
filesystem is primarily oriented to sequential processing of large files, Google has also implemented a scalable, high-
availability distributed storage system for structured data with dynamic control over data format with keyed random
access capabilities (Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, & Gruber, 2006). Data is
stored in Bigtable as a sparse, distributed, persistent multi-dimensional sorted map structured which is indexed by a
row key, column, key and a timestamp. Rows in a Bigtable are maintained in order by row key, and row ranges become
the unit of distribution and load balancing called a tablet. Each cell of data in a Bigtable can contain multiple instances
of the same data indexed by the timestamp. Bigtable uses GFS to store both data and log files. The API for Bigtable is
flexible providing data management functions like creating and deleting tables, and data manipulation functions by
row key including operations to read, write, and modify data. Index information for Bigtables utilize tablet information
stored in structures similar to a B+Tree. MapReduce applications can be used with Bigtable to process and transform
data, and Google has implemented many large-scale applications which utilize Bigtable for storage including Google
Earth.

Google has also implemented a high-level language for performing parallel data analysis and data mining using
the MapReduce and GFS architecture called Sawzall and a workflow management and scheduling infrastructure
for Sawzall jobs called Workqueue (Pike, Dorward, Griesemer, & Quinlan, 2004). According to Pike et al., although
C++ in standard MapReduce jobs is capable of handling data analysis tasks, it is more difficult to use and requires
considerable effort by programmers. For most applications implemented using Sawzall, the code is much simpler
and smaller than the equivalent C++ by a factor of 10 or more. A Sawzall program defines operations on a single
record of the data, the language does not allow examining multiple input records simultaneously and one input
record cannot influence the processing of another. An emit statement allows processed data to be output to an
external aggregator which provides the capability for entire files of records and data to be processed using a Sawzall
program. The system operates in a batch mode in which a user submits a job which executes a Sawzall program
on a fixed set of files and data and collects the output at the end of a run. Sawzall jobs can be chained to support
more complex procedures. Sawzall programs are compiled into an intermediate code which is interpreted during
runtime execution. Pike et al. cite several reasons why a new language is beneficial for data analysis and data mining
applications: (1) a programming language customized for a specific problem domain makes resulting programs
“clearer, more compact, and more expressive”; (2) aggregations are specified in the Sawzall language so that the
programmer does not have to provide one in the Reduce task of a standard MapReduce program; (3) a programming
language oriented to data analysis provides a more natural way to think about data processing problems for large
distributed datasets; and (4) Sawzall programs are significantly smaller that equivalent C++ MapReduce programs
and significantly easier to program.

Hadoop.

Hadoop is an open source software project sponsored by The Apache Software Foundation (http://www.apache.
org). Following the publication in 2004 of the research paper describing Google MapReduce (Dean & Ghemawat,
2004), an effort was begun in conjunction with the existing Nutch project to create an open source implementation
of the MapReduce architecture (White, 2009). It later became an independent subproject of Lucene, was
embraced by Yahoo! after the lead developer for Hadoop became an employee, and became an official Apache
top-level project in February of 2006. Hadoop now encompasses multiple subprojects in addition to the base
core, MapReduce, and HDFS distributed filesystem. These additional subprojects provide enhanced application
processing capabilities to the base Hadoop implementation and currently include Avro, Pig, HBase, ZooKeeper, Hive,
and Chukwa. More information can be found at the Apache Web site.

14 HPCC Systems: Data Intensive Supercomputing Solutions

MapReduce - HDFS

map
split 0

part 0

part 1

split 1

split 2

split 3

split 4

input HDFS copy sort/merge output HDFS

reduce

reduce

map

map

Figure 5. Commodity Hardware Cluster (O’Malley, 2008).

The Hadoop MapReduce architecture is functionally similar to the Google implementation except that the base programming
language for Hadoop is Java instead of C++. The implementation is intended to execute on clusters of commodity
processors (Figure 5) utilizing Linux as the operating system environment, but can also be run on a single system as a learning
environment. Hadoop clusters also utilize the “shared nothing” distributed processing paradigm linking individual systems
with local processor, memory, and disk resources using high-speed communications switching capabilities typically in
rack-mounted configurations. The flexibility of Hadoop configurations allows small clusters to be created for testing and
development using desktop systems or any system running Unix/Linux providing a JVM environment, however production
clusters typically use homogeneous rack-mounted processors in a data center environment.

Figure 6. Hadoop MapReduce (White, 2008).

Hadoop configuration

Node Node Node Node Node Node

8 gigabit
1 gigabit

15 HPCC Systems: Data Intensive Supercomputing Solutions

The Hadoop MapReduce architecture is similar to the Google implementation creating fixed-size input splits from
the input data and assigning the splits to Map tasks. The local output from the Map tasks is copied to Reduce nodes
where it is sorted and merged for processing by Reduce tasks which produce the final output as shown in Figure
6. Hadoop implements a distributed data processing scheduling and execution environment and framework for
MapReduce jobs. A MapReduce job is a unit of work that consists of the input data, the associated Map and Reduce
programs, and user-specified configuration information (White, 2009). The Hadoop framework utilizes a master/
slave architecture with a single master server called a jobtracker and slave servers called tasktrackers, one per node
in the cluster. The jobtracker is the communications interface between users and the framework and coordinates
the execution of MapReduce jobs. Users submit jobs to the jobtracker, which puts them in a job queue and executes
them on a first-come/first-served basis. The jobtracker manages the assignment of Map and Reduce tasks to the
tasktracker nodes which then execute these tasks. The tasktrackers also handle data movement between the
Map and Reduce phases of job execution. The Hadoop framework assigns the Map tasks to every node where the
input data splits are located through a process called data locality optimization. The number of Reduce tasks is
determined independently and can be user-specified and can be zero if all of the work can be accomplished by the
Map tasks. As with the Google MapReduce implementation, all Map tasks must complete before the shuffle and sort
phase can occur and Reduce tasks initiated. The Hadoop framework also supports Combiner functions which can
reduce the amount of data movement in a job. The Hadoop framework also provides an API called Streaming to
allow Map and Reduce functions to be written in languages other than Java such as Ruby and Python and provides an
interface called Pipes for C++.

Figure 7. HDFS Architecture (Borthakur, 2008).

Hadoop includes a distributed file system called HDFS which is analogous to GFS in the Google MapReduce
implementation. A block in HDFS is equivalent to a chunk in GFS and is also very large, 64 Mb by default but 128
Mb is used in some installations. The large block size is intended to reduce the number of seeks and improve data
transfer times. Each block is an independent unit stored as a dynamically allocated file in then Linux local filesystem
in a datanode directory. If the node has multiple disk drives, multiple datanode directories can be specified. An
additional local file per block stores metadata for the block. HDFS also follows a master/slave architecture which
consists of a single master server that manages the distributed filesystem namespace and regulates access to files
by clients called the Namenode. In addition, there are multiple Datanodes, one per node in the cluster, which manage
the disk storage attached to the nodes and assigned to Hadoop. The Namenode determines the mapping of blocks
to Datanodes. The Datanodes are responsible for serving read and write requests from filesystem clients such as
MapReduce tasks, and they also perform block creation, deletion, and replication based on commands from the

Hadoop configuration

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Metadata ops

Read

Write

Datanodes

Replication

Datanodes

Namenode

Rack 1 Rack 2

Client

Client

16 HPCC Systems: Data Intensive Supercomputing Solutions

Hadoop configuration

visits = load ‘/data/visits’ as (user, url, time) ;
gVisits = grou p visits by url ;
visitCounts = foreac h gVisits generate url, count(urlVisits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;
gCategories = grou p visitCounts by category;
topUrls = foreac h gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’ ;

Namenode. An HDFS system can include additional secondary Namenodes which replicate the filesystem metadata,
however there are no hot failover services. Each datanode block also has replicas on other nodes based on system
configuration parameters (by default there are 3 replicas for each datanode block). In the Hadoop MapReduce
execution environment it is common for a node in a physical cluster to function as both a Tasktracker and a
datanode (Venner, 2009). The HDFS system architecture is shown in Figure 7.

The Hadoop execution environment supports additional distributed data processing capabilities which are designed
to run using the Hadoop MapReduce architecture. Several of these have become official Hadoop subprojects within
the Apache Software Foundation. These include HBase, a distributed column-oriented database which provides
similar random access read/write capabilities as and is modeled after Bigtable implemented by Google. HBase is not
relational, and does not support SQL, but provides a Java API and a command-line shell for table management. Hive
is a data warehouse system built on top of Hadoop that provides SQL-like query capabilities for data summarization,
ad-hoc queries, and analysis of large datasets. Other Apache sanctioned projects for Hadoop include Avro – A data
serialization system that provides dynamic integration with scripting languages, Chukwa – a data collection system
for managing large distributed systems, ZooKeeper – a high-performance coordination service for distributed
applications, and Pig – a high-level data-flow language and execution framework for parallel computation.

Pig is high-level dataflow-oriented language and execution environment originally developed at Yahoo! ostensibly
for the same reasons that Google developed the Sawzall language for its MapReduce implementation – to provide
a specific language notation for data analysis applications and to improve programmer productivity and reduce
development cycles when using the Hadoop MapReduce environment. Working out how to fit many data analysis and
processing applications into the MapReduce paradigm can be a challenge, and often requires multiple MapReduce
jobs (White, 2009). Pig programs are automatically translated into sequences of MapReduce programs if needed
in the execution environment. In addition Pig supports a much richer data model which supports multi-valued,
nested data structures with tuples, bags, and maps. Pig supports a high-level of user customization including user-
defined special purpose functions and provides capabilities in the language for loading, storing, filtering, grouping,
de-duplication, ordering, sorting, aggregation, and joining operations on the data (Olston, Reed, Srivastava, Kumar,
& Tomkins, 2008a). Pig is an imperative dataflow-oriented language (language statements define a dataflow for
processing). An example program is shown in Figure 8. Pig runs as a client-side application which translates Pig
programs into MapReduce jobs and then runs them on an Hadoop cluster. Figure 9 shows how the program listed
in Figure 8 is translated into a sequence of MapReduce jobs. Pig compilation and execution stages include a parser,
logical optimizer, MapReduce compiler, MapReduce optimizer, and the Hadoop Job Manager (Gates, Natkovich,
Chopra, Kamath, Narayanamurthy, Olston, Reed, Srinivasan, & Srivastava, 2009).

Figure 8. Sample Pig Latin Program (Olston et al., 2008a).

17 HPCC Systems: Data Intensive Supercomputing Solutions

Figure 9. Pig Program Translation to MapReduce (Olston et al., 2008a).

According to Yahoo! where more than 40% of Hadoop production jobs and 60% of ad-hoc queries are now
implemented using Pig, Pig programs are 1/20th the size of the equivalent MapReduce program and take 1/16th the
time to develop (Olston, 2009). Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig performance
versus equivalent MapReduce performance from release to release. With the current release, Pig programs take
approximately 1.5 times longer than the equivalent MapReduce (http://wiki.apache.org/pig/PigMix). Additional
optimizations are being implemented that should reduce this performance gap further.

LexisNexis HPCC.

LexisNexis, an industry leader in data content, data aggregation, and information services independently developed
and implemented a solution for data-intensive computing called the HPCC (High-Performance Computing Cluster)
which is also referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for this computing
platform is depicted in Figure 10. The development of this computing platform by the Seisint subsidiary of LexisNexis
began in 1999 and applications were in production by late 2000. The LexisNexis approach also utilizes commodity
clusters of hardware running the Linux operating system as shown in Figure 2 and Figure 5. Custom system software
and middleware components were developed and layered on the base Linux operating system to provide the
execution environment and distributed filesystem support required for data-intensive computing. Because
LexisNexis recognized the need for a new computing paradigm to address its growing volumes of data, the design
approach included the definition of a new high-level language for parallel data processing called ECL (Enterprise Data
Control Language). The power, flexibility, advanced capabilities, speed of development, and ease of use of the ECL
programming language is the primary distinguishing factor between the LexisNexis HPCC and other data-intensive
computing solutions. The following will provide an overview of the HPCC systems architecture and the ECL language
and a general comparison to the Hadoop MapReduce architecture and platform.

MapReduce architecture

Map 1

Reduce 1 Map 2

Reduce 2

Reduce 3

Map 3

Every group or join operation
forms a map-reduce boundary

Other operations
pipelined into map
and reduce phases

Load Visit s

Grou p by ur l

Foreac h url
generate count

Load Url Inf o

Join on ur l

Group by category

Foreac h categor y
generate top10(urls)

18 HPCC Systems: Data Intensive Supercomputing Solutions

HPCC

Figure 10. LexisNexis Vision for a Data Analytics Supercomputer.

LexisNexis developers recognized that to meet all the requirements of data-intensive computing applications in an
optimum manner required the design and implementation of two distinct processing environments, each of which
could be optimized independently for its parallel data processing purpose. The first of these platforms is called a
Data Refinery whose overall purpose is the general processing of massive volumes of raw data of any type for any
purpose but typically used for data cleansing and hygiene, ETL processing of the raw data (extract, transform, load),
record linking and entity resolution, large-scale ad-hoc analysis of data, and creation of keyed data and indexes
to support high-performance structured queries and data warehouse applications. The Data Refinery is also
referred to as Thor, a reference to the mythical Norse god of thunder with the large hammer symbolic of crushing
large amounts of raw data into useful information. A Thor system is similar in its function, execution environment,
filesystem, and capabilities to the Hadoop MapReduce platform, but offers significantly higher performance in
equivalent configurations. The second of the parallel data processing platforms designed and implemented by
LexisNexis is called the Data Delivery Engine. This platform is designed as an online high-performance structured
query and analysis platform or data warehouse delivering the parallel data access processing requirements of
online applications through Web services interfaces supporting thousands of simultaneous queries and users with
sub-second response times. High-profile online applications developed by LexisNexis such as Accurint utilize this
platform. The Data Delivery Engine is also referred to as Roxie, which is an acronym for Rapid Online XML Information
Exchange. Roxie uses a special distributed indexed filesystem to provide parallel processing of queries. A Roxie
system is similar in its function and capabilities to Hadoop with HBase and Hive capabilities added, but provides

19 HPCC Systems: Data Intensive Supercomputing Solutions

significantly higher throughput since it uses a more optimized execution environment and filesystem for high-
performance online processing. Most importantly, both Thor and Roxie systems utilize the same ECL programming
language for implementing applications, increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a single master node and multiple slave
nodes for data parallel processing. Each of the slave nodes is also a data node within the distributed file system
for the cluster. This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop configuration.
Multiple Thor clusters can exist in an HPCC environment, and job queues can span multiple clusters in an
environment if needed. Jobs executing on a Thor cluster in a multi-cluster environment can also read files from the
distributed file system on foreign clusters if needed. The middleware layer provides additional server processes to
support the execution environment including ECL Agents and ECL Servers. A client process submits an ECL job to
the ECL Agent which coordinates the overall job execution on behalf of the client process. An ECL Job is compiled by
the ECL server which interacts with an additional server called the ECL Repository which is a source code repository
and contains shared ECL code. ECL programs are compiled into optimized C++ source code, which is subsequently
compiled into executable code and distributed to the slave nodes of a Thor cluster by the Thor master node. The
Thor master monitors and coordinates the processing activities of the slave nodes and communicates status
information monitored by the ECL Agent processes. When the job completes, the ECL Agent and client process are
notified, and the output of the process is available for viewing or subsequent processing. Output can be stored in the
distributed filesystem for the cluster or returned to the client process. ECL is analogous to the Pig language which can
be used in the Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is different from the block format used by
Hadoop clusters. Records can be fixed or variable length, and support a variety of standard (fixed record size, CSV,
XML) and custom formats including nested child datasets. Record I/O is buffered in large blocks to reduce latency and
improve data transfer rates to and from disk Files to be loaded to a Thor cluster are typically first transferred to a landing
zone from some external location, then a process called “spraying” is used to partition the file and load it to the nodes
of a Thor cluster. The initial spraying process divides the file on user-specified record boundaries and distributes the
data as evenly as possible in order across the available nodes in the cluster. Files can also be “desprayed” when needed
to transfer output files to another system or can be directly copied between Thor clusters in the same environment.
Nameservices and storage of metadata about files including record format information in the Thor DFS are maintained
in a special server called the Dali server (named for the developer’s pet Chinchilla), which is analogous to the Namenode
in HDFS. Thor users have complete control over distribution of data in a Thor cluster, and can re-distribute the data
as needed in an ECL job by specific keys, fields, or combinations of fields to facilitate the locality characteristics of
parallel processing. The Dali nameserver uses a dynamic datastore for filesystem metadata organized in a hierarchical
structure corresponding to the scope of files in the system. The Thor DFS utilizes the local Linux filesystem for physical
file storage, and file scopes are created using file directory structures of the local file system. Parts of a distributed
file are named according to the node number in a cluster, such that a file in a 400-node cluster will always have 400
parts regardless of the file size. The Hadoop fixed block size can end up splitting logical records between nodes which
means a node may need to read some data from another node during Map task processing. With the Thor DFS, logical
record integrity is maintained, and processing I/O is completely localized to the processing node for local processing
operations. In addition, if the file size in Hadoop is less than some multiple of the block size times the number of nodes
in the cluster, Hadoop processing will be less evenly distributed and node to node disk accesses will be needed. If input
splits assigned to Map tasks in Hadoop are not allocated in whole block sizes, additional node to node I/O will result.
The ability to easily redistribute the data evenly to nodes based on processing requirements and the characteristics of
the data during a Thor job can provide a significant performance improvement over the Hadoop approach. The Thor
DFS also supports the concept of “superfiles” which are processed as a single logical file when accessed, but consist
of multiple Thor DFS files. Each file which makes up a superfile must have the same record structure. New files can be
added and old files deleted from a superfile dynamically facilitating update processes without the need to rewrite a
new file. Thor clusters are fault resilient and a minimum of one replica of each file part in a Thor DFS file is stored on a
different node within the cluster.

20 HPCC Systems: Data Intensive Supercomputing Solutions

Roxie clusters consist of a configurable number of peer-coupled nodes functioning as a high-performance, high
availability parallel processing query platform. ECL source code for structured queries is pre-compiled and deployed
to the cluster. The Roxie distributed filesystem is a distributed indexed-based filesystem which uses a custom
B+Tree structure for data storage. Indexes and data supporting queries are pre-built on Thor clusters and deployed
to the Roxie DFS with portions of the index and data stored on each node. Typically the data associated with index
logical keys is embedded in the index structure as a payload. Index keys can be multi-field and multivariate, and
payloads can contain any type of structured or unstructured data supported by the ECL language. Queries can use
as many indexes as required for a query and contain joins and other complex transformations on the data with the
full expression and processing capabilities of the ECL language. For example, the Accurint comprehensive person
report which produces many pages of output is generated by a single Roxie query.

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie cluster runs Server and Agent
processes which are configurable by a System Administrator depending on the processing requirements for the
cluster. A Server process waits for a query request from a Web services interface then determines the nodes and
associated Agent processes that have the data locally that is needed for a query, or portion of the query. Roxie query
requests can be submitted from a client application as a SOAP call, HTTP or HTTPS protocol request from a Web
application, or through a direct socket connection. Each Roxie query request is associated with a specific deployed
ECL query program. Roxie queries can also be executed from programs running on Thor clusters. The Roxie Server
process that receives the request owns the processing of the ECL program for the query until it is completed. The
Server sends portions of the query job to the nodes in the cluster and Agent processes which have data needed
for the query stored locally as needed, and waits for results. When a Server receives all the results needed from all
nodes, it collates them, performs any additional processing, and then returns the result set to the client requestor.
The performance of query processing varies depending on factors such as machine speed, data complexity, number
of nodes, and the nature of the query, but production results have shown throughput of a thousand results a second
or more. Roxie clusters have flexible data storage options with indexes and data stored locally on the cluster, as well
as being able to use indexes stored remotely in the same environment on a Thor cluster. Nameservices for Roxie
clusters are also provided by the Dali server. Roxie clusters are fault-resilient and data redundancy is built-in using
a peer system where replicas of data are stored on two or more nodes, all data including replicas are available to be
used in the processing of queries by Agent processes. The Roxie cluster provides automatic failover in case of node
failure, and the cluster will continue to perform even if one or more nodes are down. Additional redundancy can be
provided by including multiple Roxie clusters in an environment.

21 HPCC Systems: Data Intensive Supercomputing Solutions

Figure 11. Roxie Cluster Client Access Methods.

Load balancing of query requests across Roxie clusters is typically implemented using external load balancing
communications devices. Roxie clusters can be sized as needed to meet query processing throughput and response
time requirements, but are typically smaller that Thor clusters. Figure 11 shows the various methods of accessing a
Roxie cluster.

SOAP or HTTP/HTTPS

SOAP or HTTP Connection
End-User Services

Enterprise Services Platform (ESP)
HTTP or SOAP interfaces

Rapid Data Delivery Engine
(ROXIE)

ECL Direct
(via SOAP)

WS-ECL
(via IE6-http)

Web Browser
(IE6)

Client Application
(using SOAP)

22 HPCC Systems: Data Intensive Supercomputing Solutions

HPCC Environment System Component Relationships

Data Refinery
(THOR)

Rapid Data Delivery
Engine (ROXIE)

ECL Agent(s)

SOAPCALL

Direct Connect - End-User Services

Query
Builder

ECL
Plus

The System Data Store
Dali ECL Server

ECL
Attribute

Repository

Web Units Job Server

Environment
Configuration

Name Servers
DPU Data Store

Data Delivery
Engine

Attribute
Server

DLL Server

Named
Queue (2)

Figure 12. HPCC Environment System Component Relationships.

The implementation of two types of parallel data processing platforms (Thor and Roxie) in the HPCC processing
environment serving different data processing needs allows these platforms to be optimized and tuned for their
specific purposes to provide the highest level of system performance possible to users. This is a distinct advantage
when compared to the Hadoop MapReduce platform and architecture which must be overlayed with different
systems such as HBase, Hive, and Pig which have different processing goals and requirements, and don’t always
map readily into the MapReduce paradigm. In addition, the LexisNexis HPCC approach incorporates the notion of a
processing environment which can integrate Thor and Roxie clusters as needed to meet the complete processing
needs of an organization. As a result, scalability can be defined not only in terms of the number of nodes in a cluster,
but in terms of how many clusters and of what type are needed to meet system performance goals and user
requirements. This provides a distinct advantage when compared to Hadoop clusters which tend to be independent
islands of processing. The basic relationships between Thor and Roxie clusters and various middleware components
of the HPCC architecture is shown in Figure 12.

ECL.

The ECL programming language is a key factor in the flexibility and capabilities of the HPCC processing environment.
ECL was designed to be a transparent and implicitly parallel programming language for data-intensive applications.
It is a high-level, declarative, non-procedural dataflow-oriented language that allows the programmer to define
what the data processing result should be and the dataflows and transformations that are necessary to achieve the
result. Execution is not determined by the order of the language statements, but from the sequence of dataflows
and transformations represented by the language statements. It combines data representation with algorithm

23 HPCC Systems: Data Intensive Supercomputing Solutions

implementation, and is the fusion of both a query language and a parallel data processing language. ECL uses an
intuitive syntax which has taken cues from other familiar languages, supports modular code organization with a high
degree of reusability and extensibility, and supports high-productivity for programmers in terms of the amount of
code required for typical applications compared to traditional languages like Java and C++. Similar to the benefits
Sawzall provides in the Google environment, and Pig provides to Hadoop users, a 20 times increase in programmer
productivity is typical. ECL is compiled into optimized C++ code for execution on the HPCC system platforms, and
can be used for complex data processing and analysis jobs on a Thor cluster or for comprehensive query and report
processing on a Roxie cluster. ECL allows inline C++ functions to be incorporated into ECL programs, and external
programs in other languages can be incorporated and parallelized through a PIPE facility. External services written in
C++ and other languages which generate DLLs can also be incorporated in the ECL system library, and ECL programs
can access external Web services through a standard SOAPCALL interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a complete executable query or
program, or a shareable and reusable code fragment such as a function, record definition, dataset definition, macro,
filter definition, etc. Attributes can reference other attributes which in turn can reference other attributes so that
ECL code can be nested and combined as needed in a reusable manner. Attributes are stored in ECL code repository
which is subdivided into modules typically associated with a project or process. Each ECL attribute added to the
repository effectively extends the ECL language like adding a new word to a dictionary, and attributes can be reused
as part of multiple ECL queries and programs. With ECL a rich set of programming tools is provided including an
interactive IDE similar to Visual C++, Eclipse and other code development environments.

Figure 13. ECL Sample Syntax for JOIN operation.

24 HPCC Systems: Data Intensive Supercomputing Solutions

The ECL language includes extensive capabilities for data definition, filtering, data management, and data
transformation, and provides an extensive set of built-in functions to operate on records in datasets which can
include user-defined transformation functions. Transform functions operate on a single record or a pair of records at
a time depending on the operation. Built-in transform operations in the ECL language which process through entire
datasets include PROJECT, ITERATE, ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and PROCESS.
The transform function defined for a JOIN operation for example receives two records, one from each dataset being
joined, and can perform any operations on the fields in the pair of records, and returns an output record which can be
completely different from either of the input records. Example syntax for the JOIN operation from the ECL Language
Reference Manual is shown in Figure 13. Other important data operations included in ECL which operate across
datasets and indexes include TABLE, SORT, MERGE, MERGEJOIN, DEDUP, GROUP, APPLY, ASSERT, AVE, BUILD,
BUILDINDEX, CHOOSESETS, CORRELATION, COUNT, COVARIANCE, DISTRIBUTE, DISTRIBUTION, ENTH, EXISTS,
GRAPH, HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP, MAX, MIN, NONEMPTY, OUTPUT, PARSE, PIPE, PRELOAD, PULL,
RANGE, REGROUP, SAMPLE, SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP, and VARIANCE.

The Thor system allows data transformation operations to be performed either locally on each node independently
in the cluster, or globally across all the nodes in a cluster, which can be user-specified in the ECL language. Some
operations such as PROJECT for example are inherently local operations on the part of a distributed file stored
locally on a node. Others such as SORT can be performed either locally or globally if needed. This is a significant
difference from the MapReduce architecture in which Map and Reduce operations are only performed locally on the
input split assigned to the task. A local SORT operation in an HPCC cluster would sort the records by the specified
key in the file part on the local node, resulting in the records being in sorted order on the local node, but not in full file
order spanning all nodes. In contrast, a global SORT operation would result in the full distributed file being in sorted
order by the specified key spanning all nodes. This requires node to node data movement during the SORT operation.
Figure 14 shows a sample ECL program using the LOCAL mode of operation which is the equivalent of the sample PIG
program for Hadoop shown in Figure 8. Note the explicit programmer control over distribution of data across nodes.
The colon-equals “:=”operator in an ECL program is read as “is defined as”. The only action in this program is the
OUTPUT statement, the other statements are definitions.

Figure 14. ECL Code Example.

25 HPCC Systems: Data Intensive Supercomputing Solutions

An additional important capability provided in the ECL programming language is support for natural language
processing with PATTERN statements and the built-in PARSE operation. PATTERN statements allow matching
patterns including regular expressions to be defined and used to parse information from unstructured data such as
raw text. PATTERN statements can be combined to implement complex parsing operations or complete grammars
from BNF definitions. The PARSE operation operates across a dataset of records on a specific field within a record,
this field could be an entire line in a text file for example. Using this capability of the ECL language is possible to
implement parallel processing form information extraction applications across document files including XML-based
documents or Web pages. The key benefits of ECL can be summarized as follows:

•	ECL	incorporates	transparent	and	implicit	data	parallelism	regardless	of	the	size	of	the	computing	cluster	
and reduces the complexity of parallel programming increasing the productivity of application developers.

•	ECL	enables	implementation	of	data-intensive	applications	with	huge	volumes	of	data	previously	thought	
to be intractable or infeasible. ECL was specifically designed for manipulation of data and query processing.
Order of magnitude performance increases over other approaches are possible.

•	ECL	provides	a	comprehensive	IDE	and	programming	tools	that	provide	a	highly-interactive	environment	for	
rapid development and implementation of ECL applications.

•	ECL	is	a	powerful,	high-level,	parallel	programming	language	ideal	for	implementation	of	ETL,	Information	
Retrieval, Information Extraction, and other data-intensive applications.

•	ECL	is	a	mature	and	proven	language	but	still	evolving	as	new	advancements	in	parallel	processing	and	data-
intensive computing occur.

Hadoop vs. HPCC Comparison
Hadoop and HPCC can be compared directly since it is possible for both systems to be executed on identical cluster
hardware configurations. This permits head-to-head system performance benchmarking using a standard workload
or set of application programs designed to test the parallel data processing capabilities of each system. Currently
the only standard benchmark available for data-intensive computing platforms is the Terasort benchmark managed
by an industry group led by Microsoft and HP. The Terabyte sort has evolved to be the GraySort which measures the
number of terabytes per minute that can be sorted on a platform which allows clusters with any number of nodes to
be utilized. However, in comparing the effectiveness and equivalent cost/performance of systems, it is useful to run
benchmarks on identical system hardware configurations. A head-to-head comparison of the original Terabyte sort
on a 400-node cluster will be presented here. An additional method of comparing system platforms is a feature and
functionality comparison, which is a subjective evaluation based on factors determined by the evaluator. Although
such a comparison contains inherent bias, it is useful in determining strengths and weaknesses of systems.

Terabyte Sort Benchmark.

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted on computer systems since the
1980s. More recently, a Web site originally sponsored by Microsoft and one of its research scientists Jim Gray has
conducted formal competitions each year with the results presented at the SIGMOD (Special Interest Group for
Management of Data) conference sponsored by the ACM each year (http://sortbenchmark.org). Several categories
for sorting on systems exist including the Terabyte sort which was to measure how fast a file of 1 Terabyte of data
formatted in 100 byte records (10,000,000 total records) could be sorted. Two categories were allowed called
Daytona (a standard commercial computer system and software with no modifications) and Indy (a custom
computer system with any type of modification). No restrictions existed on the size of the system so the sorting
benchmark could be conducted on as large a system as desired. The current 2009 record holder for the Daytona

26 HPCC Systems: Data Intensive Supercomputing Solutions

category is Yahoo! using a Hadoop configuration with 1460 nodes with 8GB Ram per node, 8000 Map tasks, and
2700 Reduce tasks which sorted 1 TB in 62 seconds (O’Malley & Murthy, 2009). In 2008 using 910 nodes, Yahoo!
performed the benchmark in 3 minutes 29 seconds. In 2008, LexisNexis using the HPCC architecture on only a 400-
node system performed the Terabyte sort benchmark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a
400-node configuration performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive computer system and software
architectures using computing clusters would be to conduct this benchmark on the same hardware configuration.
Other factors should also be evaluated such as the amount of code required to perform the benchmark which
is a strong indication of programmer productivity, which in itself is a significant performance factor in the
implementation of data-intensive computing applications.

Figure 15. Hadoop Terabyte Sort Benchmark Results.

27 HPCC Systems: Data Intensive Supercomputing Solutions

Figure 16. HPCC Terabyte Sort Benchmark Results.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a development configuration located at
LexisNexis Risk Solutions offices in Boca Raton, FL in conjunction with and verified by Lawrence Livermore National
Labs (LLNL). The test cluster included 400 processing nodes each with two local 300MB SCSI disk drives, Dual Intel
Xeon single core processors running at 3.00 GHz, 4GB memory per node, all connected to a single Gigabit ethernet
switch with 1.4 Terabytes/sec throughput. Hadoop Release 0.19 was deployed to the cluster and the standard
Terasort benchmark written in Java included with the release was used for the benchmark. Hadoop required 6
minutes 45 seconds to create the test data, and the Terasort benchmark required a total of 25 minutes 28 seconds
to complete the sorting test as shown in Figure 15. The HPCC system software deployed to the same platform and
using standard ECL required 2 minutes and 35 seconds to create the test data, and a total of 6 minutes and 27
seconds to complete the sorting test as shown in Figure 16. Thus the Hadoop implementation using Java running on
the same hardware configuration took 3.95 times longer than the HPCC implementation using ECL.

The Hadoop version of the benchmark used hand-tuned Java code including custom TeraSort, TeraInputFormat and
TeraOutputFormat classes with a total of 562 lines of code required for the sort. The HPCC system required only 10
lines of ECL code for the sort, a 50-times reduction in the amount of code required.

Pig vs. ECL.

Although many Hadoop installations implement applications directly in Java, the Pig Latin language is now being used to
increase programmer productivity and further simplify the programming of data-intensive applications at Yahoo! and other
major users of Hadoop (Gates et al., 2009). Google also added a high-level language for similar reasons called Sawzall to its
implementation of MapReduce to facilitate data analysis and data mining (Pike et al., 2004). The HPCC platform includes
a high-level language discussed previously which is analogous to Pig and Sawzall called ECL. ECL is the base programming
language used for applications on the HPCC platform even though it is compiled into C++ for execution. When comparing the
Hadoop and HPCC platforms, it is useful to compare the features and functionality of these high-level languages.

28 HPCC Systems: Data Intensive Supercomputing Solutions

Both Pig and ECL are intrinsically parallel, supporting transparent data-parallelism on the underlying platform. Pig and
ECL are translated into programs that automatically process input data for a process in parallel with data distributed
across a cluster of nodes. Programmers of both languages do not need to know the underlying cluster size or use
this to accomplish data-parallel execution of jobs. Both Pig and ECL are dataflow-oriented, but Pig is an imperative
programming language and ECL is a declarative programming language. A declarative language allows programmers
to focus on the data transformations required to solve an application problem and hides the complexity of the
underlying platform and implementation details, reduces side effects, and facilitates compiler optimization of the
code and execution plan. An imperative programming language dictates the control flow of the program which
may not result in an ideal execution plan in a parallel environment. Declarative programming languages allow
the programmer to specify “what” a program should accomplish, instead of “how” to accomplish it. For more
information, refer to the discussions of declarative (http://en.wikipedia.org/wiki/Declarative_programming) and
imperative (http://en.wikipedia.org/wiki/Imperative_programming) programming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another language – Pig source programs are
translated into Java language MapReduce jobs for execution and ECL programs are translated into C++ source
code which is then compiled into a DLL for execution. Pig programs are restricted to the MapReduce architecture
and HDFS of Hadoop, but ECL has no fixed framework other than the DFS (Distributed File System) used for HPCC
and therefore can be more flexible in implementation of data operations. This is evident in two key areas: (1) ECL
allows operations to be either global or local, where standard MapReduce is restricted to local operations only in
both the Map and Reduce phases. Global operations process the records in a dataset in order across all nodes and
associated file parts in sequence maintaining the records in sorted order as opposed to only the records contained
in each local node which may be important to the data processing procedure; (2) ECL has the flexibility to implement
operations which can process more than one record at a time such as its ITERATE operation which uses a sliding
window and passes two records at a time to an associated transform function. This allows inter-record field-by-field
dependencies and decisions which are not available in Pig. For example the DISTINCT operation in Pig which is used
to remove duplicates does not allow this on a subset of fields. ECL provides both DEDUP and ROLLUP operations
which are usually preceded by a SORT and operate on adjacent records in a sliding window mode and any condition
relating to the field contents of the left and right record of adjacent records can be used to determine if the record is
removed. ROLLUP allows a custom transformation to be applied to the de-duplication process.

An important consideration of any software architecture for data is the underlying data model. Pig incorporates a
very flexible nested data model which allows non-atomic data types (atomic data types include numbers and strings)
such as set, map, and tuple to occur as fields of a table (Olston, Reed, Srivastava, Kumar, & Tomkins, 2008b). Tuples
are sequences of fields, bags are collections of tuples, and maps are a collection of data items where each data item
has a key with which it can be looked up. A data record within Pig is called a relation which is an outer bag, the bag is
a collection of tuples, each tuple is an ordered set of fields, and a field is a piece of data. Relations are referenced
by a name assigned by a user. Types can be assigned by the user to each field, but if not assigned will default to a
bytearray and conversions are applied depending on the context in which the field is used. The ECL data model also
offers a nested data structure using child datasets. A user-specified RECORD definition defines the content of each
record in a dataset which can contain fixed or variable length fields or child datasets which in turn contain fields or
child datasets etc. With this format any type of data structure can be represented. ECL offers specific support for
CSV and XML formats in addition to flat file formats. Each field in a record has a user-specified identifier and data
type and an optional default value and optional field modifiers such as MAXLENGTH that enhance type and use
checking during compilation. ECL will perform implicit casting and conversion depending on the context in which a
field is used, and explicit user casting is also supported. ECL also allows in-line datasets allowing sample data to be
easily defined and included in the code for testing rather than separately in a file.

The Pig environment offers several programmer tools for development, execution, and debugging of Pig Latin
programs (Pig Latin is the formal name for the language, and the execution environment is called Pig, although
both are commonly referred to as Pig). Pig provides command line execution of scripts and an interactive shell

29 HPCC Systems: Data Intensive Supercomputing Solutions

called Grunt that allows you to execute individual Pig commands or execute a Pig script. Pig programs can also
be embedded in Java programs. Although Pig does not provide a specific IDE for developing and executing PIG
programs, add-ins are available for several program editing environments including Eclipse, Vim, and Textmate to
perform syntax checking and highlighting (White, 2009). PigPen is an Eclipse plug-in that provides program editing,
an example data generator, and the capability to run a Pig script on a Hadoop cluster. The HPCC platform provides an
extensive set of tools for ECL development including a comprehensive IDE called QueryBuilder which allows program
editing, execution, and interactive graph visualization for debugging and profiling ECL programs. The common code
repository tree is displayed in QueryBuilder and tools are provided for source control, accessing and searching the
repository. ECL jobs can be launched to an HPCC environment or specific cluster, and execution can be monitored
directly from QueryBuilder. External tools are also provided including ECLWatch which provides complete access
to current and historical workunits (jobs executed in the HPCC environment are packaged into workunits), queue
management and monitoring, execution graph visualization, distributed filesystem utility functions, and system
performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic high-level language environment for data-
intensive processing and analysis and increases the productivity of developers and users of the Hadoop MapReduce
environment, ECL is a significantly more comprehensive and mature language that generates highly optimized code,
offers more advanced capabilities in a robust, proven, integrated data-intensive processing architecture. Table 1
provides a feature to feature comparison between the Pig and ECL languages and their execution environments.

Figure 17. ECL Code Example Execution Graph.

30 HPCC Systems: Data Intensive Supercomputing Solutions

Pig

Data-flow oriented, imperative, parallel
language for data-intensive computing. All Pig
statements perform actions in sequentially
ordered steps. Pig programs define a
sequence of actions on the data.

Translated into a sequence of MapReduce
Java programs for execution on a Hadoop
Cluster. Runs as a client application.

Written in Java to perform custom
processing and transformations as needed in
Pig language statements. REGISTER is used to
register a JAR file so that UDFs can be used.

Not supported

Nested data model with named relations to
define data records. Relations can include
nested combinations of bags, tuples, and
fields. Atomic data types include int, long,
float, double, chararray, bytearray, tuple, bag,
and map. If types not specified, default to
bytearray then converted during expressions
evaluation depending on the context as
needed.

Controlled by Hadoop MapReduce architecture
and HDFS, no explicit programmer control
provided. PARALLEL allows number of Reduce
tasks to be specified. Local operations only are
supported, global operations require custom
Java MapReduce programs.

Standard comparison operators; standard
arithmetic operators and modulus division,
Boolean operators AND, OR, NOT; null
operators (is null, is not null); dereference
operators for tuples and maps; explicit cast
operator; minus and plus sign operators;
matches operator.

Language Feature or Capability

Language type

Compiler

User-defined Functions

Macros

Data model

Distribution of data

Operators

ECL

Data-flow oriented, declarative, non-procedural,
parallel language for data-intensive computing.
Most ECL statements are definitions of the desired
result which allows the execution plan to be highly
optimized by the compiler. ECL actions such as
OUTPUT cause execution of the dataflows to
produce the result defined by the ECL program.

Compiled and optimized into C++ source code
which is compiled into DLL for execution on an
HPCC cluster. Runs as a server application.

Processing functions or TRANSFORM functions
are written in ECL. ECL supports inline C++ in
functions and external Services compiled into
DLL libraries written in any language

Extensive support for ECL macros to improve
code reuse of common procedures. Additional
template language for use in macros provides
unique naming and conditional capabilities.

Nested data model using child datasets. Datasets
contain fields or child datasets containing fields
or additional child datasets. Record definitions
describe the fields in datasets and child datasets.
Indexes are special datasets supporting keyed
access to data. Data types can be specified for
fields in record definitions and include Boolean,
integer, real, decimal, string, qstring, Unicode,
data, varstring, varunicode, and related operators
including set of (type), typeof(expression) and
recordof(dataset) and ENUM (enumeration).
Explicit type casting is available and implicit type
casting may occur during evaluation of expressions
by ECL depending on the context . Type transfer
between types is also supported. All datasets can
have an associated filter express to include only
records which meet the filter condition, in ECL a
filtered physical dataset is called a recordset.

Explicit programmer control over distribution of
data across cluster using DISTRIBUTE function.
Helps avoid data skew. ECL supports both local
(operations are performed on data local to node)
and global (operations performed across nodes)
modes.

Supports arithmetic operators including normal
division, integer division, and modulus division;
bitwise operators for AND, OR, and XOR; standard
comparison operators; Boolean operators NOT,
AND, OR; explicit cast operator; minus and plus
sign operators; set and record set operators;
string concatenation operator; sort descending
and ascending operator; special operators IN,
BETWEEN, WITHIN.

31 HPCC Systems: Data Intensive Supercomputing Solutions

PigLanguage Feature or Capability ECL

The bincond operator is provided (condition
? true_value : false_value)

No capability exists other than the standard
relation operations across a dataset.
FOREACH … GENERATE provides nested
capability to combine specific relation
operations.

Not supported directly by Pig. HBase and Hive
provide indexed data capability for Hadoop
MapReduce which are accessible through
custom user-defined functions in Pig.

Grouped into relational operators, diagnostic
operators, UDF (user-defined function)
statements, Eval functions, and load/store
functions. The Grunt shell offers additional
interactive file commands.

PIG includes the STREAM statement to send
data to an external script or program. The
SHIP statement can be used to ship program
binaries, jar files, or data to the Hadoop cluster
compute nodes. The DEFINE statement, with
INPUT, OUTPUT, SHIP, and CACHE clauses allow
functions and commands to be associated with
STREAM to access external programs.

Not supported directly by the Pig language.
User-defined functions written in Java can
provide this capability.

Implemented in Pig using the GROUP,
and FOREACH … GENERATE statements
performing EVAL functions on fields. Built-in
EVAL functions include AVG, CONCAT,
COUNT, DIFF, ISEMPTY, MAX, MIN, SIZE, SUM,
TOKENIZE.

Conditional Expression Evaluation

Program Loops

Indexes

Language Statement Types

External Program Calls

External Web Services Access

Data Aggregation

ECL includes an IF statement for single expression
conditional evaluation, and MAP, CASE, CHOOSE,
WHICH, and REJECTED for multiple expression
evaluation. The ASSERT statement can be used to
test a condition across a dataset. EXISTS can be
used to determine if records meeting the specified
condition exist in a dataset. ISVALID determines if a
field contains a valid value.

In addition to built-in data transform functions,
ECL provides LOOP and GRAPH statements which
allow looping of dataset operations or iteration of
a specified process on a dataset until a loopfilter
condition is met or a loopcount is satisfied.

Indexes can be created on datasets to support
keyed access to data to improve data processing
performance and for use on the Roxie data delivery
engine for query applications.

Grouped into dataset, index and record definitions,
built-in functions to define processing and
dataflows, and actions which trigger execution.
Functions include transform functions such as JOIN
which operate on data records, and aggregation
functions such as SUM. Action statements result
in execution based on specified ECL definitions
describing the dataflows and results for a process.

ECL includes PIPE option on DATASET and
OUTPUT and a PIPE function to execute external
3rd-party programs in parallel on nodes across the
cluster. Most programs which receive an input file
and parameters can adapted to run in the HPCC
environment.

Built-in ECL function SOAPCALL for SOAP calls to
access external Web Services. An entire dataset can be
processed by a single SOAPCALL in an ECL program.

Implemented in ECL using the TABLE statement
with group by fields specified and an output
record definition that includes computed fields
using expressions with aggregation functions
performed across the specified group. Built-in
aggregation functions which work across datasets
or groups include AVE, CORRELATION, COUNT,
COVARIANCE, MAX, MIN, SUM, VARIANCE.

32 HPCC Systems: Data Intensive Supercomputing Solutions

The TOKENIZE statement splits a string
and outputs a bag of words. Otherwise no
direct language support for parsing and other
natural language processing. User-defined
functions are required.

Not supported directly by the Pig language.
Requires the definition and use of a user-
defined function.

No explicit programmer control for dataset
distribution. PARALLEL option on relational
operations allows the number of Reduce
tasks to be specified.

The SAMPLE operation selects a random
data sample with a specified sample size.

No language statements in Pig directly affect
Workflow. The Hadoop cluster does allow
Java MapReduce programs access to specific
workflow information and scheduling options
to manage execution.

The COGROUP operation is similar to the
JOIN operation and groups the data in two or
more relations (datasets) based on common
field values. COGROUP creates a nested set
of output tuples while JOIN creates a flat set
of output tuples. INNER and OUTER joins
are supported. Fields from each relation are
specified as the join key. No support exists for
conditional processing other than field equality.

Creates the cross product of two or more
relations (datasets).

Natural Language Processing

Scientific Function Support

Hashing Functions for Dataset
Distribution

Creating Sample Datasets

Workflow Management

PIG Relation Operations:

COGROUP

CROSS

Includes PATTERN, RULE, TOKEN, and DEFINE
statements for defining parsing patterns, rules,
and grammars. Patterns can include regular
expression definitions and user-defined validation
functions. The PARSE statement provides both
regular expression type parsing or Tomita parsing
capability and recursive grammars. Special parsing
syntax is included specifically for XML data.

ECL provides built-in functions for ABS, ACOS,
ASIN, ATAN, ATAN2, COS, COSH, EXP, LN, LOG,
ROUND, ROUNDUP,SIN, SINH, SQRT, TAN, TANH.

Hashing functions available for use with the
DISTRIBUTE statement include HASH, HASH32
(32-bit FNV), HASH64 (64-bit FNV), HASHCRC,
HASHMD5 (128-bit MD5)

ECL provides ENTH which selects every nth
record of a dataset, SAMPLE which provides the
capability to select non-overlapping samples on a
specified interval, CHOOSEN which selects the first
n records of a dataset and CHOOSESETS which
allows multiple conditions to be specified and
the number of records that meet the condition or
optionally a number of records that meet none of
the conditions specified. The base dataset for each
of the ENTH, SAMPLE, CHOOSEN, and CHOOSETS
can have a associated filter expression.

Workflow Services in ECL include the CHECKPOINT
and PERSIST statements allow the dataflow to be
captured at specific points in the execution of an
ECL program. If a program must be rerun because
of a cluster failure, it will resume at last Checkpoint
which is deleted after completion. The PERSIST files
are stored permanently in the filesystem. If a job
is repeated, persisted steps are only recalculated
if the code has changed, or any underlying data
has changed. Other workflow statements include
FAILURE to trap expression evaluation failures,
PRIORITY, RECOVERY, STORED, SUCCESS, WHEN
for processing events, GLOBAL and INDEPENDENT.

In ECL, this is accomplished using the
DENORMALIZE function joining to each dataset
and adding all records matching the join key to a
new record format with a child dataset for each
child file. The DENORMALIZE function is similar to a
JOIN and is used to form a combined record out of
a parent and any number of children.

In ECL the JOIN operation can be used to create
cross products using a join condition that is always
true.

PigLanguage Feature or Capability ECL

33 HPCC Systems: Data Intensive Supercomputing Solutions

Removes duplicate tuples in a relation. All
fields in the tuple must match. The tuples
are sorted prior to this operation. Cannot
be used on a subset of fields. A FOREACH
… GENERATE statement must be used
to generate the fields prior to a DISTINCT
operation in this case.

Displays the contents of a relation.

Selects tuples from a relation based on a
condition. Used to select the data you want
or conversely to filter out remove the data
you don’t want.

Generates data transformations based on
columns of data. This action can be used for
projection, aggregation, and transformation,
and can include other operations in the
generation clause such as FILTER, DISTINCT,
GROUP, etc.

Groups together the tuples in a single relation
that have the same group key fields.

DISTINCT

DUMP

FILTER

FOREACH … GENERATE

GROUP

The ECL DEDUP statement compares adjacent
records to determine if a specified conditional
expression is met, in which case the duplicate
record is dropped and the remaining record is
compared to the next record in a sliding window
manner. This provides a much more flexible
deduplication capability than the Pig DISTINCT
operation. A SORT is required prior to a DEDUP
unless using the ALL option. Conditions can use
any expression and can reference values from the
left and right adjacent records. DEDUP can use any
subset of fields.

ECL provides an OUTPUT statement that can either
write files to the filesystem or for display. Display
files can be named and are stored in the Workunit
associated with the job. Workunits are archived on a
management server in the HPCC platform.

Filter expressions can be used any time a dataset
or recordset is referenced in any ECL statement
with the filter expression in parenthesis following
the dataset name as dataset_name(filter_
expression). The ECL compiler optimizes filtering
of the data during execution based on the
combination of filtering expressions.

Each ECL transform operation such as PROJECT,
JOIN, ROLLUP, etc. include a TRANSFORM
function which implicitly provides the FOREACH
…GENERATE operation as records are processed
by the TRANSFORM function. Depending on the
function, the output record of the transform can
include fields from the input and computed fields
selectively as needed and does not have to be
identical to the input record.

The GROUP operation in ECL fragments a dataset
into a set of sets based on the break criteria which
is a list of fields or expressions based on fields in
the record which function as the group by keys.
This allows aggregations and transform operations
such as ITERATE, SORT, DEDUP, ROLLUP and
others to occur within defined subsets of the data
as it executes on each subset individually.

PigLanguage Feature or Capability ECL

34 HPCC Systems: Data Intensive Supercomputing Solutions

Joins two or more relations based on
common field values. The JOIN operator
always performs an inner join. If one relation
is small and can be held in memory, the
“replicated” option can be used to improve
performance.

Used to limit the number of output tuples in
a relation. However, there is no guarantee of
which tuples will be output unless preceded
by an ORDER statement.

Loads data from the filesystem.

Sorts a relation based on one or more fields.
Both ascending and descending sorts are
supported. Relations will be in order for a
DUMP, but if the result of an ORDER is further
processed by another relation operation, there
is no guarantee the results will be processed in
the order specified. Relations are considered to
be unordered in Pig.

Partitions a relation into two or more
relations.

Stores data to the file system.

JOIN

LIMIT

LOAD

ORDER

SPLIT

STORE

The ECL JOIN operation works on two datasets or
a set of datasets. For two datasets INNER, FULL
OUTER, LEFT OUTER, RIGHT OUTER, LEFT ONLY
and RIGHT ONLY joins are permitted. For the set of
datasets JOIN, INNER, LEFT OUTER, LEFT ONLY,
and MOFN(min, max) joins are permitted. Any
type of conditional expression referencing fields
in the datasets to be joined can be used as a join
condition. JOIN can be used in both a global and
local modes also provides additional options for
distribution including HASH which distributes the
datasets by the specified join keys, and LOOKUP
which copies one dataset if small to all nodes and is
similar to the “replicated” join feature of Pig. Joins
can also use keyed indexes to improve performance
and self-joins (joining the same dataset to itself) is
supported. Additional join-type operations provided
by ECL include MERGEJOIN which joins and merges
in a single operation, and smart stepping using
STEPPED which provides a method of doing n-ary
join/merge-join operations.

The LIMIT function in ECL is to restrict the
output of a recordset resulting from processing
to a maximum number or records, or to fail the
operation if the limit is exceeded. The CHOOSEN
function can be use to select a specified number
of records in a dataset.

Since ECL is declarative, the equivalent of the Pig
LOAD operation is a DATASET definition which also
includes a RECORD definition. The examples shown in
Figure 8 and Figure 14 demonstrate this difference.

The ECL SORT function sorts a dataset according
to a list of expressions or key fields. The SORT
can be global in which the dataset will be ordered
across the nodes in a cluster, or local in which
the dataset will be ordered on each node in the
cluster individually. For grouped datasets, the
SORT applies to each group individually. Sorting
operations can be performed using a quicksort,
insertionsort, or heapsort, and can be stable or
unstable for duplicates.

Since ECL is declarative, partitions are created by
simply specifying filter expressions on the base
dataset. Example for dataset DS1, you could define
DS2 := DS1(filter_expression _1), DS3 := DS1(filter_
expression _2), etc.

The OUTPUT function in ECL is used to write
a dataset to the filesystem or to store it in
the workunit for display. Output files can be
compressed using LZW compression. Variations
of OUTPUT support flat file, CSV, and XML formats.
Output can also be written to a PIPE as the standard
input to the command specified for the PIPE
operation. Output can write not only the filesystem
on the local cluster, but to any cluster filesystem in
the HPCC processing environment.

PigLanguage Feature or Capability ECL

35 HPCC Systems: Data Intensive Supercomputing Solutions

The UNION operator is used to merge the
contents of two or more relations into a single
relation. Order of tuples is not preserved, both
input and output relations are interpreted
as an unordered bag of tuples. Does not
eliminate duplicate tuples.

Not available

Not available

Not available

Use of FOREACH … GENERATE is required

Not available

Use of FOREACH … GENERATE is required

UNION

Additional ECL Transformation
Functions

COMBINE

FETCH

ITERATE

NORMALIZE

PROCESS

PROJECT

The MERGE function returns a single dataset
or index containing all the datasets or indexes
specified in a list of datasets. Datasets must
have the same record format. A SORTED option
allows the merge to be ordered according to a
field list that specifies the sort order. A DEDUP
option causes only records with unique keys to be
included. The REGROUP function allows multiple
datasets which have been grouped using the same
fields to be merged into a single dataset.

ECL includes many additional functions providing
important data transformations that are not
available in Pig without implementing custom
user-defined processing.

The COMBINE function combines two datasets
into a single dataset on a record-by-record basis
in the order in which they appear in each. Records
from each are passed to the specified transform
function, and the record format of the output
dataset can contain selected fields from both
input datasets and additional fields as needed.

The FETCH function processes through all the
records in an index dataset in the order specified by
the index fetching the corresponding record from
the base dataset and passing it through a specified
transform function to create a new dataset.

The ITERATE function processes through all
records in a dataset one pair of records at a
time using a sliding window method performing
the transform record on each pair in turn. If the
dataset is grouped, the ITERATE processes each
group individually. The ITERATE function is useful
in propagating information and calculating new
information such as running totals since it allows
inter-record dependencies to be considered.

The NORMALIZE function normalizes child
records out of a dataset into a separate dataset.
The associated transform and output record
format does not have to be the same as the input.

The PROCESS function is similar to ITERATE and
processes through all records in a dataset one pair
of records at a time (left record, right record) using
a sliding window method performing the associated
transform function on each pair of records in turn.
A second transform function is also specified that
constructs the right record for the next comparison.

The PROJECT processes through all the records in
a dataset performing the specified transform on
each record in turn.

PigLanguage Feature or Capability ECL

36 HPCC Systems: Data Intensive Supercomputing Solutions

Not available

Pig includes diagnostic operators to aid in
the visualization of data structures. The
DESCRIBE operator returns the schema of a
relation. The EXPLAIN operator allows you to
review the logical, physical, and MapReduce
execution plans that are used to compute
an operation in a Pig script. The ILLUSTRATE
operator displays a step-by-step execution
of a sequence of statements allow you to see
how data is transformed through a sequence
of Pig Latin statements essentially dumping
the output of each statement in the script.

ROLLUP

Diagnostic Operators

The ROLLUP function is similar to the DEDUP
function but includes a specified transform
function to process each pair of duplicate records.
This allows you to retrieve and use valuable
information from the duplicate record before it
is thrown away. Depending on how the ROLLUP is
defined, either the left or right record passed to
the transform can be retained, or any mixture of
data from both.

The DISTRIBUTION action produces a crosstab
report in XML format indicating how many
records there are in a dataset for each value in
each field in the dataset to aid in the analysis
of data distribution in order to avoid skews.
The QueryBuilder and ECLWatch program
development environment tools provide a
complete visualization tool for analyzing,
debugging, and profiling execution of ECL jobs.
During the execution of a job, the ECL graph
can be viewed which shows the execution plan,
dataflows as they occur, and the results of each
processing step. Users can double click on the
graph to drill down for additional information. An
example of the graph corresponding to the ECL
code shown in Figure 14 is shown in Figure 17.

Table 1. Pig vs. ECL Feature Comparison.

PigLanguage Feature or Capability ECL

37 HPCC Systems: Data Intensive Supercomputing Solutions

Architecture Comparison.

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable architectures directed towards data-
intensive computing solutions. Each of these system platforms has strengths and weaknesses and their overall
effectiveness for any application problem or domain is subjective in nature and can only be determined through
careful evaluation of application requirements versus the capabilities of the solution. Hadoop is an open source
platform which increases its flexibility and adaptability to many problem domains since new capabilities can be
readily added by users adopting this technology. However, as with other open source platforms, reliability and
support can become issues when many different users are contributing new code and changes to the system.
Hadoop has found favor with many large Web-oriented companies including Yahoo!, Facebook, and others where
data-intensive computing capabilities are critical to the success of their business. A company called Cloudera was
recently formed to provide training, support and consulting services to the Hadoop user community and to provide
packaged and tested releases. Although many different application tools have been built on top of the Hadoop
platform like Pig, HBase, Hive, etc., these tools tend not to be well-integrated offering different command shells,
languages, and operating characteristics that make it more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source software including readily available
online software distributions and documentation, easy installation, flexible configurations based on commodity
hardware, an execution environment based on a proven MapReduce computing paradigm, ability to schedule jobs
using a configurable number of Map and Reduce tasks, availability of add-on capabilities such as Pig, HBase, and
Hive to extend the capabilities of the base platform and improve programmer productivity, and a rapidly expanding
user community committed to open source. This has resulted in dramatic growth and acceptance of the Hadoop
platform and its implementation to support data-intensive computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and other architectural components
designed to provide data-intensive computing capabilities from raw data processing and ETL applications, to
high-performance query processing and data mining. The ECL language was specifically implemented to provide a
high-level dataflow parallel processing language that is consistent across all system components and has extensive
capabilities developed and optimized over a period of almost 10 years. The LexisNexis HPCC is a mature, reliable,
well-proven, commercially supported system platform used in government installations, research labs, and
commercial enterprises. The comparison of the Pig Latin language and execution system available on the Hadoop
MapReduce platform to the ECL language used on the HPCC platform presented here reveals that ECL provides
significantly more advanced capabilities and functionality without the need for extensive user-defined functions
written in another language or resorting to a native MapReduce application coded in Java.

The following comparison of overall features provided by the Hadoop and HPCC system architectures reveals that
the HPCC architecture offers a higher level of integration of system components, an execution environment not
limited by a specific computing paradigm such as MapReduce, flexible configurations and optimized processing
environments which can provide data-intensive applications from data analysis to data warehousing and high-
performance online query processing, and high programmer productivity utilizing the ECL programming language
and tools. Table 2 provides a summary comparison of the key features of the hardware and software architectures of
both system platforms based on the analysis of each architecture presented in this paper.

38 HPCC Systems: Data Intensive Supercomputing Solutions

Hadoop

Processing clusters using commodity off-the-
shelf (COTS) hardware. Typically rack-mounted
blade servers with Intel or AMD processors,
local memory and disk connected to a
high-speed communications switch (usually
Gigabit Ethernet connections) or hierarchy of
communications switches depending on the
total size of the cluster. Clusters are usually
homogenous (all processors are configured
identically), but this is not a requirement.

Unix/Linux

Hadoop system software implements cluster
with MapReduce processing paradigm. The
cluster also functions as a distributed file
system running HDFS. Other capabilities are
layered on top of the Hadoop MapReduce
and HDFS system software including HBase,
Hive, etc.

None. Hadoop is an open source platform
and can be freely downloaded and used.

Core software includes the operating
system and Hadoop MapReduce cluster and
HDFS software Each slave node includes a
Tasktracker service and Datanode service.
A master node includes a Jobtracker service
which can be configured as a separate
hardware node or run on one of the slave
hardware nodes. Likewise, for HDFS, a master
Namenode service is also required to provide
name services and can be run on one of the
slave nodes or a separate node

Architecture Charasteristic

Hardware Type

Operating System

System Configurations

Licensing Cost

Core Software

HPCC

Same

Linux/Windows. Typically Linux is used due to the
additional cost of licensing Windows

HPCC clusters can be implemented in two
configurations: Data Refinery (Thor) is analogous
to the Hadoop MapReduce Cluster; Data
Delivery Engine (Roxie) provides separate high-
performance online query processing and data
warehouse capabilities. Both configurations
also function as distributed file systems but are
implemented differently based on the intended
use to improve performance. HPCC environments
typically consist of multiple clusters of both
configuration types. Although filesystems on each
cluster are independent, a cluster can access files
the filesystem on any other cluster in the same
environment.

License fees currently depend on size and type of
system configurations. Does not preclude a future
open source offering.

For a Thor configuration, core software includes
the operating system and various services
installed on each node of the cluster to provide
job execution and distributed file system access.
A separate server called the Dali server provides
filesystem name services and manages Workunits
for jobs in the HPCC environment. A Thor cluster
is also configured with a master node and
multiple slave nodes. A Roxie cluster is a peer-
coupled cluster where each node runs Server
and Agent tasks for query execution and key
and file processing. The filesystem on the Roxie
cluster uses a distributed B+Tree to store index
and data and provides keyed access to the data.
Additional middleware components are required
for operation of Thor and Roxie clusters.

39 HPCC Systems: Data Intensive Supercomputing Solutions

None. Client software can submit jobs
directly to the Jobtracker on the master node
of the cluster. A Hadoop Workflow Scheduler
(HWS) which will run as a server is currently
under development to manage jobs which
require multiple MapReduce sequences.

The dfsadmin tool provides information
about the state of the filesystem; fsck is a
utility for checking the health of files in HDFS;
datanode block scanner periodically verifies
all the blocks stored on a datanode; balancer
re-distributes blocks from over-utilized
datanodes to underutilized datanodes as
needed. The MapReduce Web UI includes the
JobTracker page which displays information
about running and completed jobs, drilling
down on a specific job displays detailed
information about the job. There is also a
Tasks page that displays info about Map and
Reduce tasks.

Assisted by online tools provided by Cloudera
utilizing Wizards. Requires a manual RPM
deployment.

Block-oriented, uses large 64MB or 128MB
blocks in most installations. Blocks are stored
as independent units/local files in the local
Unix/Linux filesystem for the node. Metadata
information for blocks is stored in a separate file
for each block. Master/Slave architecture with
a single Namenode to provide name services
and block mapping and multiple Datanodes.
Files are divided into blocks and spread across
nodes in the cluster. Multiple local files (1
containing the block, 1 containing metadata) for
each logical block stored on a node are required
to represent a distributed file.

Middleware Components

System Tools

Ease of Deployment

Distributed File System

Middleware components include an ECL code
repository implemented on a MySQL server, and
ECL server for compiling of ECL programs and
queries, an ECLAgent acting on behalf of a client
program to manage the execution of a job on a
Thor cluster, an ESPServer (Enterpise Services
Platform) providing authentication, logging,
security, and other services for the job execution
and Web services environment, and the Dali server
which functions as the system data store for job
workunit information and provides naming services
for the distributed filesystems. Flexibility exists for
running the middleware components on one to
several nodes. Multiple copies of these servers can
provide redundancy and improve performance.

HPCC includes a suite of client and operations
tools for managing, maintaining, and monitoring
HPCC configurations and environments. These
include QueryBuilder the program development
environment, an Attribute Migration Tool,
Distributed File Utility (DFU), an Environment
Configuration Utility, Roxie Configuration Utility.
Command line versions are also available.
ECLWatch is a Web based utility program for
monitoring the HPCC environment and includes
queue management, distributed file system
management, job monitoring, and system
performance monitoring tools. Additional tools
are provided through Web services interfaces.

Environment configuration tool. A Genesis servier
provides a central repository to distribute OS
level settings, services, and binaries to all net-
booted nodes in a configuration

The Thor DFS is record-oriented, uses local Linux
filesystem to store file parts. Files are initially
loaded (Sprayed) across nodes and each node
has a single file part which can be empty for each
distributed file. Files are divided on even record/
document boundaries specified by the user.
Master/Slave architecture with name services and
file mapping information stored on a separate
server. Only one local file per node required to
represent a distributed file. Read/write access
is supported between clusters configured in the
same environment. Utilizing special adaptors
allows files from external databases such as
MySQL to be accessed, allowing transactional
data to be integrated with DFS data and
incorporated into batch jobs. The Roxie DFS
utilizes distributed B+Tree index files containing
key information and data stored in local files on
each node.

PigLanguage Feature or Capability ECL

40 HPCC Systems: Data Intensive Supercomputing Solutions

HDFS stores multiple replicas (user-
specified) of data blocks on other nodes
(configurable) to protect against disk and
node failure with automatic recovery.
MapReduce architecture includes
speculative execution, when a slow or failed
Map task is detected, additional Map tasks are
started to recover from node failures

Uses MapReduce processing paradigm with
input data in key-value pairs. Master/Slave
processing architecture. A Jobtracker runs
on the master node, and a TaskTracker runs
on each of the slave nodes. Map tasks are
assigned to input splits of the input file, usually
1 per block. The number of Reduce tasks is
assigned by the user. Map processing is local
to assigned node. A shuffle and sort operation
is done following Map phase to distribute and
sort key-value pairs to Reduce tasks based
on key regions so that pairs with identical keys
are processed by same Reduce tasks. Multiple
MapReduce processing steps are typically
required for most procedures and must be
sequenced and chained separately by the user
or language such as Pig.

Hadoop MapReduce jobs are usually written
in Java. Other languages are supported
through a streaming or pipe interface. Other
processing environments execute on top
of Hadoop MapReduce such as HBase and
Hive which have their own language interface.
The Pig Latin language and Pig execution
environment provides a high-level dataflow
language which is then mapped into multiple
Java MapReduce jobs.

Hadoop MapReduce utilizes the Java
programming language and there are
several excellent program development
environments for Java including Netbeans
and Eclipse which offer plug-ins for access
to Hadoop clusters. The Pig environment
does not have its own IDE, but instead uses
Eclipse and other editing environments for
syntax checking. A PigPen add-in for Eclipse
provides access to Hadoop Clusters to run
Pig programs and additional development
capabilities.

Fault Resilience

Job Execution Environment

Programming Languages

Integrated Program Development
Environment

The DFS for Thor and Roxie stores replicas of file
parts on other nodes (configurable) to protect
against disk and node failure. Thor system offers
either automatic or manual node swap and warm
start following a node failure, jobs are restarted
from last checkpoint or persist. Replicas are
automatically used while copying data to the new
node. Roxie system continues running following a
node failure with a reduced number of nodes.

Thor utilizes a Master/Slave processing architecture.
Processing steps defined in an ECL job can specify
local (data processed separately on each node)
or global (data is processed across all nodes)
operation. Multiple processing steps for a procedure
are executed automatically as part of a single
job based on an optimized execution graph for
a compiled ECL dataflow program. A single Thor
cluster can be configured to run multiple jobs
concurrently reducing latency if adequate CPU
and memory resources are available on each node.
Middleware components including an ECLAgent,
ECLServer, and DaliServer provide the client
interface and manage execution of the job which
is packaged as a Workunit. Roxie utilizes a multiple
Server/Agent architecture to process ECL programs
accessed by queries using Server tasks acting as a
manager for each query and multiple Agent tasks as
needed to retrieve and process data for the query.

ECL is the primary programming language for
the HPCC environment. ECL is compiled into
optimized C++ which is then compiled into DLLs
for execution on the Thor and Roxie platforms.
ECL can include inline C++ code encapsulated
in functions. External services can be written in
any language and compiled into shared libraries
of functions callable from ECL. A Pipe interface
allows execution of external programs written in
any language to be incorporated into jobs.
å
The HPPC platform is provided with QueryBuilder,
a comprehensive IDE specifically for the ECL
language. QueryBuilder provides access to
shared source code repositories and provides a
complete development and testing environment
for developing ECL dataflow programs. Access to
the ECLWatch tool is built-in, allowing developers
to watch job graphs as they are executing. Access
to current and historical job Workunits is provided
allowing developers to easily compare results
from one job to the next during development
cycles.

PigLanguage Feature or Capability ECL

41 HPCC Systems: Data Intensive Supercomputing Solutions

The basic Hadoop MapReduce system
does not provide any keyed access indexed
database capabilities. An add-on system for
Hadoop called HBase provides a column-
oriented database capability with keyed
access. A custom script language and Java
interface is provided. Access to HBase is not
directly supported by the Pig environment
and requires user-defined functions or
separate MapReduce procedures.

The basic Hadoop MapReduce system does
not provide any data warehouse capabilities.
An add-on system for Hadoop called Hive
provides data warehouse capabilities and
allows HDFS data to be loaded into tables
and accessed with an SQL-like language.
Access to Hive is not directly supported by
the Pig environment and requires user-
defined functions or separate MapReduce
procedures.

1 to thousands of nodes. Yahoo! has
production clusters as large as 4000 nodes.

Currently the only available standard
performance benchmarks are the
sort benchmarks sponsored by http://
sortbenchmark.org. Yahoo! has
demonstrated sorting 1 TB on 1460 nodes in
62 seconds, 100 TB using 3452 nodes in 173
minutes, and 1 PB using 3658 nodes in 975
minutes.

Hadoop training is offered through Cloudera.
Both beginning and advanced classes are
provided. The advanced class includes
Hadoop add-ons including HBase and Pig.
Cloudera also provides a VMWare based
learning environment which can be used on
a standard laptop or PC. Online tutorials are
also available.

Database Capabilities

Online Query and Data Warehouse
Capabilities

Scalability

Performance

Training

The HPCC platform includes the capability to build
multi-key, multivariate indexes on DFS files. These
indexes can be used to improve performance and
provide keyed access for batch jobs on a Thor
system, or be used to support development of
queries deployed to Roxie systems. Keyed access
to data is supported directly in the ECL language.

The Roxie system configuration in the HPCC
platform is specifically designed to provide data
warehouse capabilities for structured queries
and data analysis applications. Roxie is a high-
performance platform capable of supporting
thousands of users and providing sub-second
response time depending on the application.

1 to several thousand nodes. In practice, HPCC
configurations require significantly fewer nodes
to provide the same processing performance as
a Hadoop cluster. Sizing of clusters may depend
however on the overall storage requirements for
the distributed file system.

The HPPC platform has demonstrated sorting 1TB
on a high-performance 400-node system in 102
seconds. In a recent head-to-head benchmark
versus Hadoop on a another 400-node system
conducted with LLNL, The HPPC performance
was 6 minutes 27 seconds and the Hadoop
performance was 25 minutes 28 seconds. This
result on the same hardware configuration showed
that HPCC was 3.95 times faster than Hadoop for
this benchmark.

Basic and advanced training classes on ECL
programming are offered monthly in several
locations or can be conducted on customer
premises. A system administration class is also
offered and scheduled as needed. A CD with a
complete HPCC and ECL learning environment
which can be used on a single PC or laptop is also
available.

Table 2. Hadoop vs. HPCC Feature Comparison.

PigLanguage Feature or Capability ECL

42 HPCC Systems: Data Intensive Supercomputing Solutions

Conclusions
As a result of the continuing information explosion, many organizations are drowning in data and the data gap or
inability to process this information and use it effectively is increasing at an alarming rate. Data-intensive computing
represents a new computing paradigm which can address the data gap and allow government and commercial
organizations and research environments to process massive amounts of data and implement applications
previously thought to be impractical or infeasible. Some organizations with foresight recognized early that new
parallel-processing architectures were needed including Google who initially developed the MapReduce architecture
and LexisNexis who developed the HPCC architecture. More recently the Hadoop platform has emerged as an
open source alternative for the MapReduce approach. Hadoop has gained momentum quickly, and additional
add-on capabilities to enhance the platform have been developed including a dataflow programming language and
execution environment called Pig. These architectures and their relative strengths and weaknesses are described
in this paper, and a direct comparison of the Pig language of Hadoop to the ECL language used with the LexisNexis
HPCC platform was presented.

The suitability of a processing platform and architecture for an organization and its application requirements can
only be determined after careful evaluation of available alternatives. Many organizations have embraced open
source platforms while others prefer a commercially developed and supported platform by an established industry
leader. The Hadoop MapReduce platform is now being used successfully at many so-called Web companies whose
data encompasses massive amounts of Web information as its data source. The LexisNexis HPCC platform is at
the heart of a premier information services provider and industry leader, and has been adopted by government
agencies, commercial organizations, and research laboratories because of its high-performance cost-effective
implementation. Existing HPCC applications include raw data processing, ETL, and linking of enormous amounts of
data to support online information services such as LexisNexis and industry-leading information search applications
such as Accurint; entity extraction and entity resolution of unstructured and semi-structured data such as Web
documents to support information extraction; statistical analysis of Web logs for security applications such as
intrusion detection; online analytical processing to support business intelligence systems (BIS); and data analysis
of massive datasets in educational and research environments and by state and federal government agencies.
There are many tradeoffs in making the right decision in choosing a new computer systems architecture, and often
the best approach is to conduct a specific benchmark test with a customer application to determine the overall
system effectiveness and performance. The relative cost-performance characteristics of the system in additional to
suitability, flexibility, scalability, footprint, and power consumption factors which impact the total cost of ownership
(TCO) must be considered.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture in this paper reveals many
similarities between the platforms including the use of a high-level dataflow-oriented programming language
to implement transparent data-parallel processing. The advantages of choosing a LexisNexis HPCC platform
include: (1) an architecture which implements a highly integrated system environment with capabilities from raw
data processing to high-performance queries and data analysis using a common language; (2) an architecture
which provides equivalent performance at a much lower system cost based on the number of processing nodes
required as demonstrated with the Terabyte Sort benchmark where the HPCC platform was almost 4 times faster
than Hadoop running on the same hardware resulting in significantly lower total cost of ownership (TCO); (3) an
architecture which has been proven to be stable and reliable on high-performance data processing production
applications for varied organizations over a 10-year period; (4) an architecture that uses a dataflow programming
language (ECL) with extensive built-in capabilities for data-parallel processing which allows complex operations
without the need for extensive user-defined functions and automatically optimizes execution graphs with hundreds
of processing steps into single efficient workunits; (5) an architecture with a high-level of fault resilience and language
capabilities which reduce the need for re-processing in case of system failures; and (6) an architecture which is
available from and supported by a well-known leader in information services and risk solutions (LexisNexis) who is
part of one of the world’s largest publishers of information ReedElsevier.

43 HPCC Systems: Data Intensive Supercomputing Solutions

References
Abbas, A. (2004). Grid computing: A practical guide to technology and applications. Hingham, MA: Charles River
Media, Inc.

Agichtein, E. (2004). Scaling information extraction to large document collections: Microsoft Research.

Berman, F. (2008). Got data? A guide to data preservation in the information age. Communications of the ACM, 51(12),
50-56.

Borthakur, D. (2008). Hadoop distributed file system. Retrieved August 10, 2009, from http://wiki.apache.org/hadoop-
data/attachments/HadoopPresentations/attachments/hdfs_dhruba.pdf

Bryant, R. E. (2008). Data intensive scalable computing. Carnegie Mellon University. Retrieved August 10, 2009, from
http://www.cs.cmu.edu/~bryant/presentations/DISC-concept.ppt

Cerf, V. G. (2007). An information avalanche. IEEE Computer, 40(1), 104-105.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2006, Nov 6-8). Bigtable: A
distributed storage system for structured data. Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ‘06), Seattle, WA, 205-218.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. Proceedings of the Sixth
Symposium on Operating System Design and Implementation (OSDI).

Gantz, J. F., Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S., et al. (2007). The expanding digital universe
(White Paper): IDC.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C., et al. (2009, Aug 24-28). Building
a high-level dataflow system on top of Map-Reduce: The Pig experience. Proceedings of the 35th International
Conference on Very Large Databases (VLDB 2009), Lyon, France.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003, Oct 19-22). The Google File System. Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, 29-43.

Gokhale, M., Cohen, J., Yoo, A., & Miller, W. M. (2008). Hardware technologies for high-performance data-intensive
computing. IEEE Computer, 41(4), 60-68.

Gorton, I., Greenfield, P., Szalay, A., & Williams, R. (2008). Data-intensive computing in the 21st century. IEEE
Computer, 41(4), 30-32.

Johnston, W. E. (1998). High-speed, wide area, data intensive computing: A ten year retrospective, Proceedings of the
7th IEEE International Symposium on High Performance Distributed Computing: IEEE Computer Society.

Lyman, P., & Varian, H. R. (2003). How much information? 2003 (Research Report): School of Information
Management and Systems, University of California at Berkeley.

Nicosia, M. (2009). Hadoop cluster management. Retrieved August 10, 2009, from http://wiki.apache.org/hadoop-
data/attachments/HadoopPresentations/attachments/Hadoop-USENIX09.pdf

NSF. (2009). Data-intensive computing. National Science Foundation. Retrieved August 10, 2009, from http://www.
nsf.gov/funding/pgm_summ.jsp?pims_id=503324&org=IIS

Nyland, L. S., Prins, J. F., Goldberg, A., & Mills, P. H. (2000). A design methodology for data-parallel applications. IEEE
Transactions on Software Engineering, 26(4), 293-314.

O’Malley, O. (2008). Introduction to Hadoop. Retrieved August 10, 2009, from http://wiki.apache.org/hadoop-data/
attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf

O’Malley, O., & Murthy, A. C. (2009). Winning a 60 second dash with a yellow elephant. Retrieved August 10, 2009, from
http://sortbenchmark.org/Yahoo2009.pdf

Olston, C. (2009). Pig overview presentation - Hadoop summit. Retrieved August 10, 2009, from http://infolab.
stanford.edu/~olston/pig.pdf

44 HPCC Systems: Data Intensive Supercomputing Solutions

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008a). Pig latin: A not-so-foreign language for data
processing (presentation at sigmod 2008). Retrieved August 10, 2009, from http://i.stanford.edu/~usriv/talks/
sigmod08-pig-latin.ppt#283,18,User-Code as a First-Class Citizen

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008b, June 9-12). Pig Latin: A not-so_foreign language
for data processing. Proceedings of the 28th ACM SIGMOD/PODS International Conference on Management of Data /
Principles of Database Systems, Vancouver, BC, Canada, 1099-1110.

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., Dewitt, D. J., Madden, S., et al. (2009, June 29 - July 2). A comparison of
approaches to large-scale data analysis. Proceedings of the 35th SIGMOD international conference on Management
of data, Providence, RI, 165-168.

Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2004). Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming Journal, 13(4), 227-298.

PNNL. (2008). Data intensive computing. Pacific Northwest National Laboratory. Retrieved August 10, 2009, from
http://www.cs.cmu.edu/~bryant/presentations/DISC-concept.ppt

Ravichandran, D., Pantel, P., & Hovy, E. (2004). The terascale challenge. Proceedings of the KDD Workshop on Mining
for and from the Semantic Web.

Rencuzogullari, U., & Dwarkadas, S. (2001). Dynamic adaptation to available resources for parallel computing in
an autonomous network of workstations. Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming, Snowbird, UT, 72-81.

Skillicorn, D. B., & Talia, D. (1998). Models and languages for parallel computation. ACM Computing Surveys, 30(2), 123-
169.

Venner, J. (2009). Pro Hadoop. Berkeley, CA: Apress.

White, T. (2008). Understanding MapReduce with Hadoop. Retrieved August 10, 2009, from http://wiki.apache.org/
hadoop-data/attachments/HadoopPresentations/attachments/MapReduce-SPA2008.pdf

White, T. (2009). Hadoop: The definitive guide (First ed.). Sebastopol, CA: O’Reilly Media Inc.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license. Other products and services may be trademarks or
registered trademarks of their respective companies. Copyright © 2011 LexisNexis Risk Solutions. All rights reserved.

For more information:
Website: http://hpccsystems.com/
Email: info@hpccsystems.com
US inquiries: 1.877.316.9669
International inquiries: 1.678.694.2200

About HPCC Systems
HPCC Systems from LexisNexis® Risk Solutions offers a proven, data-intensive supercomputing platform designed for the enterprise to solve big data
problems. As an alternative to Hadoop, HPCC Systems offers a consistent data-centric programming language, two processing platforms and a single
architecture for efficient processing. Customers, such as financial institutions, insurance carriers, insurance companies, law enforcement agencies,
federal government and other enterprise-class organizations leverage the HPCC Systems technology through LexisNexis® products and services. For
more information, visit http://hpccsystems.com.

About LexisNexis Risk Solutions
LexisNexis® Risk Solutions (http://lexisnexis.com/risk/) is a leader in providing essential information that helps customers across all industries and
government predict, assess and manage risk. Combining cutting-edge technology, unique data and advanced scoring analytics, Risk Solutions
provides products and services that address evolving client needs in the risk sector while upholding the highest standards of security and privacy.
LexisNexis Risk Solutions is headquartered in Alpharetta, Georgia, United States.

