
White Paper

HPCC Systems: Models for Big Data

2 HPCC Systems: Models for Big Data

Table of Contents

Models for Big Data .. 3

Structured Data .. 3

Text (and HTML) ... 6

Semi-Structured Data .. 6

Bridging the Gap – The Key – Value pair .. 7

XML – Structured Text? .. 8

RDF .. 10

Data Model Summary ... 11

Data Abstraction – An Alternative Approach ... 11

Structured Data ... 12

Text .. 12

Semi-Structured Data ... 13

Key-Value Pairs .. 13

XML ... 14

RDF .. 14

Model Flexibility in Practice .. 15

Conclusion .. 16

3 HPCC Systems: Models for Big Data

Models for Big Data
The principal performance driver of a Big Data application is the data model in which the Big Data resides.
Unfortunately most extant Big Data tools impose a data model upon a problem and thereby cripple their
performance in some applications1. The aim of this paper is to discuss some of the principle data models that exist
and are imposed; and then to argue that an industrial strength Big Data solution needs to be able to move between
these models with a minimum of effort.

As each data model is discussed various products which focus upon that data model will be described and
generalized pros and cons will be detailed. It should be understood that many commercial products when utilized
fully will have tricks, features and tweaks designed to mitigate some of the worst of the cons. Notwithstanding, this
paper will attempt to show that those embellishments are a weak substitute for basing the application upon the
correct data model.

Structured Data
Perhaps the dominant format for data throughout the latter part of the twentieth century and still today the
dominant format for corporate data is the data table2. Essentially structured data has records of columns and each
column has a value the meaning of which is consistent from record to record. In such a structure, vehicles could be
represented as:

Many professional data modelers would immediately wince when handed the above. This is because the proposed
structure did not allow for a very common feature of structured databases: normalization. Normalization is a topic
which can (and does) fill many university Computer Science courses. For brevity3 we shall define normalization as
occurring when two or more columns are found to be dependant and the combinations of field values occurring are
placed into a separate table that is accessed via a foreign key.

1. In fact, the performance is so crippled that the application just “doesn’t happen”. It is impossible to ‘list all the things that didn’t happen’ although our
paper “Math and the Multi-Component Key” does give a detailed example of a problem that would take 17 hours in a key-value model and which runs at
about 60 transactions per second in a structured model. It is easy to imagine that the key-value version would not happen.

2. This is changing very rapidly in some areas. The other models are tackled later; but it is probably still true that today this one deserves to be tackled first.

3. A rather longer and more formal treatment is given here: http://en.wikipedia.org/wiki/Database_normalization

4 HPCC Systems: Models for Big Data

Thus looking at the above we might decide that the Make and Model of a car are related facts (only Toyota makes a
Camry) – the other three columns are not. Thus the above could be defined as:

The advantage of the above may not be immediately apparent. But we have reduced the width of the vehicle file by
two strings at the cost of one fairly small integer column. There is also a secondary table but that will have relatively
few entries (hundreds) compared to the millions of entries one may have in a vehicle file. Better yet we can add new
information about each vehicle type (such as Weight, Horsepower et cetera) in one place and all the other data
referring to it is ‘automatically right’.

The real power of structured data becomes apparent at the point you wish to use it. For example; if you wanted to
find out how many miles travelled by all vehicles you simply need to sum the fourth column of the first table. If you
want to find the ratio of vehicle colors in any given year – or trend it over time – a simple aggregate on the second and
third table suffice.

Things start to get a little more interesting if you want to count the number of miles driven in cars for a given
manufacturer for a given model year. The issue is that the key in the vehicle file no longer identifies manufacturer;
rather it identifies manufacturer AND model. Put another way the required result wants information spanning two
tables. To get this result efficiently some clever tricks need to be performed. If you use a high level language such
as SQL4 and if the database administrators predicted this query then the cleverness should be hidden from you.
However, under the hood one of the following will be happening:

1)	 The Tables can be JOINed back together to create a wider table (the first table) and then the required statistic
is an aggregate on three columns.

2)	 The aggregate can be formed on the larger table to produce summaries for manufacturer and model and then
that table can be joined to the vehicle type table and a second aggregate performed

3)	 The vehicle type table can be scanned to produce SETs of vehicle-type ID for each manufacturer, these sets
can then be used to produce a temporary ‘manufacturer’ column for the main table which is then aggregated.

4)	 Perhaps something else that an SQL vendor found that works in some cases

4. Structured data does NOT need to imply SQL – but SQL is, without doubt, the leading method through which structured data is accessed.

5 HPCC Systems: Models for Big Data

As can be seen, aggregating and querying data across the entire database can get very complicated even with two
files; as the number of data files grows then the problem becomes exponentially5 more complex. It is probably fair to
say that one of the key indicators of a quality of an SQL optimizer is the way it handles cross-file queries.

The other key feature of an SQL system to keep in mind is that in its purest form the performance is dismal. The
reason is simply that each query, however simple, requires the entire dataset to be read. As the data becomes larger
this becomes prohibitive. For this reason almost every SQL system out there has the notions of KEYs (or Indexes)
built in. A key is an access path that allows records matching on one or more columns to be retrieved without reading
the whole dataset. Thus, for example, if our vehicle dataset had been indexed by Color it would be possible to retrieve
all of the red vehicles without retrieving vehicles of any other Color.

A critical extra feature of most SQL systems is the concept of multi-component keys; this is simply a key that
contains multiple columns. For example, one could construct a key on Color / Year. This allows for two extremely fast
access paths into the vehicle file: Color and Color/Year6. The criticality of this feature comes from an understanding
of how the Color/Year value is found. The index system does NOT have to fetch all of the records with a matching
color looking for a matching year. Rather the index itself is able to resolve the match on both color and year in one
shot. This can give a performance lift of many orders of magnitude7.

Naturally a performance lift of orders of magnitude is always going to come at a price; in this case the price is the
double whammy of build cost and flexibility. For these multiple-component keys to be useful they have to exist; in
order to exist you have to predict that they are going to be useful and you have to have spent the time building the
key. The visible manifestations of this cost are the high price attached to good system DBAs and also the slow data
ingest times of most SQL systems.

The final, though obvious, flaw in the structured data model is that not all data is structured. If data is entered and
gathered electronically then it has probably been possible to force the data to be generated in a model that fits the
schema. Unfortunately there are two common reasons for data not existing easily in this model:

1)	 The data is aggregated. In the examples I have used vehicles as an example of a structured data file. In fact
vehicle data is gathered, at least in the USA, independently by each state. They have different standards for
field names and field contents. Even when they have the same column-name that is supposed to represent
the same thing, such as color, they will have different words they use to represent the same value. One state
might categorize color using broad strokes (Blue, Green, Red) others can be highly detailed (Turquoise, Aqua,
Cyan). Either the data has to be brutalized into a common schema (at huge effort and losing detail), or left un-
integrated (making genuine cross-source queries infeasible) or the schema has to get extremely complicated
to capture the detail (making queries extremely complex and the performance poor).

2)	 Data cannot be readily split into independent columns. Consider any novel, white paper or even email. It
doesn’t represent a readily quantified transaction. It can contain detail that is not known or understood a-priori;
no structured model exists to represent it. Even if a structured model were available for one particular record
(say Pride and Prejudice) then it would not fit other records (say War and Peace) in the same file.

In closing the structured data section we would like to mention one important but often overlooked advantage of
SQL – it allows the user of the data to write (or generate) queries that are related to the problem (question being
asked) rather than to the vagaries of the underlying data. The user only has to know the declared data model – the
data has already been translated into the data model by the time the user is asking questions.

5. Many people use ‘exponentially’ as an idiom for ‘very’. In this paper the term is used correctly to denote a problem that grows as a power of the
scaling factor. In this case if you have three choices as to how to perform a join between two files, then between 10 files you have at least 3^10 =
59,049 choices. In fact you have rather more as you can also choose the order in which the files are processed; and there are 3,628,800 orders of
10 files giving a total of 2.14x1011 ways to optimize a query across 10 files.

6. Because of the way most Key systems work it does not in general provide a fast access path for Year only. Some good structured systems can
access year quickly if the earlier component has low cardinality.

7. Again, this is not an idiomatic expression. If a field is evenly distributed with a cardinality of N then adding it as a component of a key in the
search path reduces the amount of data read by a factor of N. Thus if you add two or three fields each with a cardinality of 100 then one has
produced a system that will go 4-6 orders of magnitude (10000-1000000x) faster.

6 HPCC Systems: Models for Big Data

Text (and HTML)
At the complete opposite end of the scale you have text. Within text the data has almost no explicit structure and
meaning8. A slightly more structured variant is HTML which theoretically imposes some form of order upon the chaos
but in reality the generations of evolving specifications and browsers which do not comply to any specifications
mean that HTML documents cannot even be assumed to be well formed. The beauty of text is that anyone can
generate it and it often contains useful information. The World Wide Web is one example of a fairly large and useful
text repository.

The downside of text, at least at the moment, is that it has no computer understandable semantic content. A human
might be able to read it, and a thought or impression or even sets of facts might be conveyed quite accurately – but it
is not really possible to analyze the text using a computer to answer meaningful questions9.

For this reason query systems against Text tend to be very primitive analytically. The most famous interface is that
presented by the internet search engines. Typically these will take a list of words, grade them by how common the
words are, and then search for documents in which those words are prevalent10. This work all stems from term and
document frequency counts first proposed in 197211.

An alternative approach, used in fields where precision is more important and the users are considered more
capable, is the Boolean search. This method allows sophisticated expressions to be searched for. The hope
or presumption is that the query constructor will be able to capture ‘all the ways’ a given fact might have been
represented in the underlying text.

Text databases such as Lucene are extremely flexible and require very little knowledge of the data to construct. The
downside is that actually extracting aggregated information from them is the field of data-mining; which is generally a
PhD level pursuit.

Semi-Structured Data
Almost by definition it is impossible to come up with a rigorous and comprehensive definition of semi-structured
data. For these purposes we shall define Semi-Structured data as that data which ought to have been represented in
a structured way but which wasn’t.

Continuing our vehicle example; consider this used car classified:

2010 Ferrari 599 GTB HGTE, FERRARI APPROVED, CERTIFIED PRE-OWNED WITH WARRANTY, Don’t let this exceptional 599 GTB
HGTE pass you by. This car is loaded with desirable options such as black brake calipers, carbon ceramic brake system, heat insulating
windscreen, front and rear parking sensors, full recaro seats, and a Bose hifi system., The HGTE package comes with a retuned
suspension consisting of stiffer springs, a thicker rear anti-roll bar, returned adjustable shocks, and wider front wheels. In addition, the
car sits 0.4 of an inch lower to the ground and has a retuned exhaust note, and is fitted with the stickier Pirelli P Zero rubber. Inside, the
HGTE package includes every possible carbon-fiber option., This vehicle has been Ferrari Approved as a Certified Pre Owned vehicle.
It has passed our 101 point inspection by our Ferrari Factory trained technicians., 100% CARFAX, CERTIFIED!!!

8. Many people refer to text as ‘unstructured data’. I have generally avoided that term as good text will usually follow the structure of the grammar
and phonetics of the underlying language. Thus text is not genuinely unstructured so much as ‘structured in a way that is too complex and subtle
to be readily analyzed by a computer using the technology we have available today.’ Although see the section on semi-structured data

9. Of course, people are researching this field. Watson is an example of a system that appears to be able to derive information from a broad range
of text. However if one considers that ‘bleeding edge’ systems in this field are correct about 75% of the time it can immediately be seen that this
would be a very poor way to represent data that one actually cared about (such as a bank balance!)

10. Google pioneered a shift from this model; the ‘page ranking’ scheme effectively places the popularity of a page ahead of the relevance of the
page to the actual search. Notwithstanding the relevance ranking of a page is still computed as discussed.

11. Of course one can build multi-billion dollar empires by ‘tweaking’ this formula correctly

7 HPCC Systems: Models for Big Data

All of the text is free form and without pre-processing it would need to be stored as a variable length string. None of
the queries of our structured section could be applied to this file. As it stands one would be limited to one or more
‘string find’ or ‘search’ statements in the hope of keying to text in the description. In an aggregated database this
restriction results in a crucial shift of responsibility. The person asking the question (or writing the query) now has
to understand all the possible ways a given piece of information might have been represented12. Of course, many
internet search engines operate exactly this way.

However, with even some simplistic pre-processing it should be possible to turn the text above into:

Of course if one were clever and dedicated then even more information could be taken. In general, one could write
a suite of routines to parse car classifieds and build up a fairly strong data model. This process of transforming from
unstructured to semi-structured text requires up-front processing but the pay-off is that structured techniques can be
used upon those facts that have been extracted; with all of the inherent performance and capability advantages that
have been mentioned. Exactly how much data is ‘parsed out’ and how much is left unparsed is (of course!) ill defined;
however for the process of classification we shall define semi structured data as data in which one or more (but not all) of
the fields have been parsed into columns.

Thus far the presumption has been that the data is starting unstructured and that we are ‘creating’ some fields from
nothing. In fact many structured databases contained semi-structured components. At the most extreme these are
represented as BLOBs inside an SQL database. Rather more usefully there may be text strings which appear free-format
but which realistically have a limited range of values. These are often the ‘comment’ fields stored in relational databases
and used as a catch-all for fields that the modelers omitted from the original data model and which no-one has ever fixed.

Bridging the Gap – The Key – Value pair
Whilst the processing paradigm of Map-Reduce is much vaunted, the equally significant enabler, the Key-Value pair, has
gone relatively unheralded. In the context of the foregoing it may be seen that it is the data model underlying Map-Reduce
(and thus Hadoop) that is actually the fundamental driver of performance. In fact those with a sharp eye may notice that
key-value pairs derive their power from their position part-way between semi-structured and textual data.

12. Or not care; if one is just ‘surfing the web’ then as long as the page offered is ‘interesting enough’ then one is happy – whether or not it was the
‘best’ response to the question is immaterial.

8 HPCC Systems: Models for Big Data

A file of key value pairs has exactly two columns. One is structured – the KEY. The other, the value, is unstructured – at
least as far as the system is concerned. The Mapper then allows you to move (or split) the data between the structured
and unstructured sections at will. Thus our vehicle table could be:

The reducer then allows data to be collated and aggregated provided it has an identical key. Thus with the Mapper I
used above it would be very easy to perform statistics aggregated by Make & Model. Aggregating by Color & Year would
be extremely painful; in fact the best idea would probably be to re-map the data so that Color and Year were the key
and then perform a different reduce. The advantage of this system over a keyed and structured SQL system is that the
sort-order required is defined at query time (no prediction is required) and until that sort order is used then there is no
overhead: in other words data ingest is quick.

In pure map reduce any query requires at least one full table scan of every file involved; Hadoop has no keys. Of course,
a number of add-ons have been written that allow Key-Value pairs to be stored and quickly retrieved. These function in
a very similar way to SQL keys except that the keys can only have one component, they must contain the payload of the
record, and there is no existing support for normalization or the concept of foreign keys. In other words, if you have one or
two access paths there is no problem – but you cannot access your data using a wide range of queries.

It should now be evident why Key-Value (and Map-Reduce) has been able to achieve general purpose popularity. It can
read data in either structured, text or semi-structured form and dynamically translate it into a semi-structured data-
model for further processing. The restrictions within the current implementations are:

1)	 A single map-reduce only supports one semi-structured datamodel

2)	 Multiple map-reduces require multiple-maps (and thus reprocessing of the data)

3)	 Either: all queries require a full data scan (Hadoop) OR all data-models require their own (potentially slimmer)
copy of the data (Hive etc)

4)	 The work of constructing the semi-structured model is entirely the responsibility of the programmer

5)	 If the data is at all normalized then optimizing any joins performed is entirely the responsibility of the
programmer

XML – Structured Text?
It is really incorrect to speak of XML as a data model. It is really a data transmission format that allows a plethora of
different data models to be defined and utilized. In particular many if not all of the preceding data models can be
expressed and utilized from within XML. That said, XML databases are usually thought of in the context of the storage
of hierarchical databases where each record has a different but conformant format. An example might be a personnel
database where the person is the outer container and various nested details are provided about that person, some of
which themselves have nested details. Another very common usage of an XML database is document storage where the
annotations upon and structure of the document is expressed in XML. In this model it is very common for the XML to also
have an HTML rendering generated via XSLT.

9 HPCC Systems: Models for Big Data

From the perspective of data access and summarization the key to an XML document is epitomized by the name of
the most common query language for them: XPATH13. Each element of an XML document is identified by a path which
defined from the root; the ‘navigation path’ to the individual element or elements. Along the route various filters and
conditions based upon the elements and tags encountered along the route may be executed; it is even possible to
include data derived from routes into other parts of the data within the expressions.

Thus the pain of any given query; both in terms of encoding and execution is directly proportional to the extent to
which that query can be expressed as a linear path. Simple fetches of one or more columns are easy; queries that rely
upon the relationship between the columns of a record, or between columns of different records are harder to express
and execute14. In short, whilst XML supports almost any data model; its features, search syntax, and performance
footprint encourage, if not mandate, a hierarchical data model. Hierarchical data models are ‘great if it is true’. If the data
naturally fits a model whereby every element has a single parent and that the children of different parents are logically
independent then the model is efficient in both usage and expression. If, however, it is the relationship between child
elements that is interesting then the imposition of a rigid hierarchy will simply get in the way15. One might conclude that
XML/XPATH provides most of the features of SQL but with an antithetical data model.

A hierarchical view of vehicles might be:

13. XQuery has probably surpassed XPATH in more modern installations

14. A good XML database such as MarkLogic will allow for optimization of complex queries provided the access paths can be predicted and
declared to the system.

15. Within the academic literature there have been numerous attempts to extend XPATH towards more relational or graph-based data.

10 HPCC Systems: Models for Big Data

RDF
Given the characterization of XML data as ‘typically’ hierarchical it is probably wise to mention one extremely non-
hierarchical ‘data model’ based upon XML which is RDF (Resource Description Framework). Like many things designed by
committee this standard has many features and purposes; however at the data model level it is a method of describing
data entirely using triples. Put another way RDF is a method of describing data as a collection of typed relationships
between two objects. Our vehicle file could be represented using:

Viewed at the level of a single entity this appears to be a painful way of expressing a simple concept. The power comes
from the fact that the objects in the third column are ‘first class’ objects; exactly the same as those on the left. Therefore
this table, or another, could be expressing various facts and features of them. Viewed holistically data is no longer a series
of heterogeneous tables that may or may not be linked; rather it is a homogenous web of information.

While not mandated by the data model RDF is often queried using declarative languages such as SPARQL. These
languages take advantage of the simplicity and homogeneity of the data model to produce elegant and succinct code.
The challenge here is that every query has been transformed into a graph query against a graph database. These queries
represent some of the most computationally intensive algorithms that we know. To return all ‘Blue Toyota Camry’ we
need to retrieve three lists – all blue things, all Toyota things, all Camry things and then look for any objects appear on all
three huge lists. Compared to a structured data multi-component fetch, we have turned one key fetch into three; each of
which would be at least two orders of magnitude slower.

16. The labels I am using here are for illustration; RDF contains a range of specifications to ensure unique naming, integrity etc

11 HPCC Systems: Models for Big Data

Data Model Summary
Eight pages is woefully inadequate to do justice to the fruits of thirty years or research; there are features, advantages and
disadvantages to all of the preceding which are not even mentioned in this text. I have also ignored some popular binary
level models – notably the multimedia and sensory data models. However, the aim was not to argue for one model over
another; rather it was to argue that there is a broad range of highly divergent models out there. Further we hope to have
shown that whilst one model almost certainly is perfect for one application it is relatively unlikely that one single model
suits all of the applications that could (or should) utilize a particular dataset.

Big Data owners typically adopt one of three approaches to the above issue:

1)	 Adopt one model that excels in their core need and either accept that alternative forms of application run slowly; or
simply ignore alternative forms of data usage. As long as the ‘other uses’ weren’t really that important; this is probably
optimal.

2)	 Adopt a model that isn’t too bad across a range of potential applications – typically this results in ‘lowest common
denominatorism’ – but it allows the data to be used to its fullest extent. This gets the most out of your data – but the cost
of hardware – or lack of performance may be an issue.

3)	Replicate some or all of the data from a core system into one or more data-marts; each in a slightly different data
model. If the cost of maintaining multiple systems, and training staff for multiple systems can be justified then at an
‘external’ data level this appears optimal.

Data Abstraction – An Alternative Approach
A driving goal behind the HPCC17 system was the abstraction of the data model from both the language and the system.
As each of the previous data models was discussed the ‘typical query language’ was discussed alongside the model. The
HPCC system language, ECL, allows all of the supported data models to be queried using the same language. Further
most, if not all, of the previous data models have an engine built around them that is designed for one particular data
model. HPCC offers two different execution engines each of which is designed to support each of the data models.
Finally, and most importantly, much of the technology built into the HPCC is focused upon the translation of one data
model to another as efficiently as possible – in terms of both programmer and system resources.

Of course, in a whitepaper such as this, it is always easy to conclude ‘we do everything better than everyone without any
compromises’; it is much harder to develop a system that renders the claim true. The truth is that HPCC has been used to
implement all of the above data models and in some aspects18 we beat all the existing systems we have been measured
against; of course any system that specializes in only one data model will usually have some advantage within that data
model19. Where we believe HPCC is untouchable is in its ability to natively support a broad range of models and in the
speed with which we can translate between models.

As an aid to further research this paper will now review some of the system features available for each of the stated data
models, the extent of the work done, and some features available for translation in and out of the data model.

17. http://en.wikipedia.org/wiki/HPCC

18. Usually including performance

19. Usually speed of update or standards conformance

12 HPCC Systems: Models for Big Data

Structured Data
The ECL20 handling of structured data is based upon the RECORD structure and corresponding DATASET declarations.
ECL has a huge range of data types from INTEGERs of all sizes from 1 to 8 bytes, packed decimals, fixed and variable length
strings, floating point numbers and user defined types. ECL also supports variant records and arrays of structured types21.
Like SQL, columns are accessed by name and type conversions occur to allow columns to be compared and treated at a
logical level (rather than low-level). Unlike SQL it is also possible to define an ordering of records within a file; this allows for
records to be iterated over in sequence. ECL also has NORMALIZE and DENORMALIZE functions built in so that questions
regarding ‘just how much to normalize data’ can be changed and modified even once the system is in place.

By default ECL files are flat and they have to be fully scanned to obtain data (like Hadoop). However ECL also has the
ability to create indexes with single or multiple components and it also allows for variant degrees of payload to be
imbedded within the key. Thus an ECL programmer can choose to have a large number of highly tuned keys (similar to
SQL) or one or two single component keys with a large payload (like Key-Value) whichever they prefer (including both22).

There are many, many ECL features to support structured data but some of the most important are PROJECT, JOIN
(keyed and global variants) and INDEX. Simple ingest of structured data is handled via DATASET which can automatically
translated from flat-file, CSV23 and well structured XML. More complex (and partial) ingest of other data models will be
handled under the section ‘Semi-Structured Data’.

Text
ECL handles Text in two different ways depending upon requirements. At the most basic level variable length strings24
are native within ECL and a full set of string processing functions are available in the Std.Str module of the ECL standard
library. For text which needs to be ‘carried around’ or ‘extracted from’ this is usually adequate.

For text that needs to be rigorously searched, an ECL programmer typically utilizes an inverted index. An inverted index
is a key that has a record for every word in a document and a marker for where in the document the word occurs25.
This index can then be accessed to perform searches across documents in the manner described in the text section.
Our ‘Boolean Search’ add-on module exemplifies this approach. At a low level ECL has two technologies, global smart
stepping and local smart stepping26, to improve the performance of this form of search.

Text can be brought into ECL as a ‘csv’ dataset; if it currently exists as a series of independent documents then a utility
exists to combine that into one file of records. It will be covered in greater depth in the semi-structured section but it
should be noted that ECL has an extremely strong PATTERN definition and PARSE capability that is designed to take text
and extract information from it.

20. http://en.wikipedia.org/wiki/ECL,_data-centric_programming_language_for_Big_Data

21. For those familiar with COBOL this was a method of having narrower records whereby collections of fields would only exist based upon a ‘type’
field in the parent record

22. Our premier entity resolution system uses multi-component keys to handle the bulk of queries and falls back to a system similar to key value if
the multi-components are not applicable.

23. Referred to as ‘comma separated variable’ although there are many variants; most of which don’t include commas!

24. In standard ASCII and UNICODE formats

25. There may be other flags and weights for some applications

26. When accessing inverted indexes naively you need to read every entry for every value that is being searched upon; this can require an amount
of sequential data reading that would cripple performance. ‘Smart stepping’ is a technique whereby the reading of the data is interleaved with the
merging of the data allowing, on occasions, vast quantities of the data for one or more values to be skipped (or stepped) over. The ‘local’ case is
where this is done on a single machine; ‘global’ is the case where we achieve this even when the merge is spread across multiple machines.

13 HPCC Systems: Models for Big Data

Semi-Structured Data
We firmly believe that the next big ‘sweet spot’ in Big Data exists in Semi-Structured data. The action of turning data which
is otherwise inaccessible into accessible information is a major competitive differentiator. ECL has extensive support at
both a high and low level for this process.

Firstly, at a high level, ECL is a data processing language, not a storage and retrieval language. The two execution engines
(one batch, one online), coupled with PERSIST, WORKFLOW and INDEX capability all push towards a model where data
goes through an extensive and important processing stage prior to search and retrieval.

Secondly, at a lower level, the ECL PARSE statement makes available two different text parsing capabilities that
complement each other to extract information in whichever form it is in. One capability is essentially a superset of regular
expressions; wrapped in an easy-to-read and re-use syntax. This is ideal where the data is highly unstructured27 and
particular patterns are being ‘spotted’ within in. Examples applications include screen scraping and entity extraction.
The other capability follows a Tomita28 methodology; it is designed for the instance where textual document follows a
relatively rigorous grammar29. This is suitable for rapidly processing text which is expected to be well formed.

Thirdly, again at a higher level, the ECL support for Text and Structured data are BOTH built upon the same ECL record
structure. Thus, once some information has been extracted from the text, it can still reside in the same record structure
awaiting additional processing. Further, as keys can contain arbitrary payloads, and as joins can be made across arbitrary
keys, it is even possible to combine structured and inverted index fetches within the same query.

Key-Value Pairs
Key-Value pairs are a degenerative-sub case of normal ECL batch processing. If required a Key-Value pair can be
declared as:

KVPair := RECORD

	 STRING KeyValue;

	 STRING Value;

	 END;

The map-reduce paradigm can then be implemented using:

1)	 PROJECT/TRANSFORM statement returning a KVPair – this is equivalent to a Mapper

2)	 DISTRIBUTE(KVPairFile,HASH(KeyValue)) – the equivalent of the first stage of the Hadoop shuffle

3)	 SORT(DistributedKVPairFile,KeyValue,LOCAL) – second stage of Hadoop shuffle

4)	 ROLLUP(SortedPairFile,KeyValue,LOCAL) – the reduce

This usage of ECL is ‘degenerative’ insofar as data can be distributed, sorted and rolled up using any of the fields of a
record, any combination of fields of a record and even any expressions involving combinations of fields of a record. Thus
the ‘normal’ ECL case only has values30 and any number of different keys ‘appear upon demand’.

27. Specifically the case where linguistic rules of grammar not followed uniformly and thus the data really is ‘unstructured’.

28. A brief treatment of these is given here: http://en.wikipedia.org/wiki/GLR_parser

29. This case works particularly well (and easily) in the case where the text being parsed is generated against a BNF grammar

30. Although it has any number of values; not just one per record

14 HPCC Systems: Models for Big Data

XML
XML probably represents the biggest stretch for ECL in terms of native support of a data model.

ECL does have very strong support for XML which is well specified and gently nested. Specifically it has:

1)	 XML on a dataset to allow the importing of XML records that can be reasonably represented as structured data

2)	 XMLPARSE to allow the extraction of sub-sections of more free-form XML into structured data

3)	 Extensive support for child datasets within record structures to allow some degree of record and file nesting on a
hierarchical basis

4)	 An XML import utility that will construct a good ECL record structure from an XML schema.

Unfortunately there are XML schemas out there that really do not have sane and rational structural equivalents. More
specifically; they may have equivalents but they are not the best representation of the data. For this reason we have
been actively researching the construction of an XPATH equivalent within ECL. This essentially extends upon our work
supporting arbitrary text processing and utilizes our ability to have multiple component indexes in an inversion and
to blend the results of inverted and structured index lookups. The result is the ability to store XML documents in an
extremely efficient shredded form and then process XPATH queries using the index prior to performing the fetch of
those parts of the document required31.

RDF
Much like Key-Value pairs RDF is simply a degenerative32 case of standard ECL processing. Pleasingly the global smart
stepping technology developed for Text searching can also be utilized to produce relatively rapid RDF query processing.
Unfortunately being ‘relatively quick’ does not avoid the fundamental issue that graph problems are extremely compute
intensive and the transformation of all queries into graph queries loses a lot of academic elegance once it is appreciated
that we are transforming all queries into graph queries that we cannot, in general, solve.

From an execution standpoint ECL has an immediate solution that yields many orders of magnitude performance33
improvement. You do not restrict yourself to triples; you allow the data store to be an arbitrary n-tuple. By doing this each
fetch returns much less data (reduced by the cardinality of the fourth and subsequent columns) and the joins required
are reduced by the products of those reductions34. This performance boost is achieved for the same reason that multi-
component keys yield staggering lift over single component keys (see the description of structural data)35.

The downside is that the query programmer now has to adapt their coding to the more heterogeneous data layout. As an
area of active research a second language KEL (Knowledge Engineering Language) has been proposed and prototyped36
which allows the programmer to work in a homogenous environment but then translates the queries into ECL that in
turn uses an execution optimal heterogeneous data model. More information will be made available as the project nears
fruition.

31. Fuller details of this will be published in due course; probably accompanied by a product Module offering

32. This term is being used technically; not in the pejorative. ECL works naturally with any combination of N-tuples. Asserting everything must be triples
(or 3-tuples) is one very simple case of that.

33. Again, this is a mathematical claim, not a marketing one

34. If we can find it – we could reference the Lawrence Livermore study here

35. Yoo and Kaplan from Lawrence Livermore have produced an excellent study and independent on the advantages of DAS for graph processing:
http://dsl.cs.uchicago.edu/MTAGS09/a05-yoo-slides.pdf

36. A team led by LexisNexis Risk Solutions, including Sandia National Labs and Berkeley Labs has an active proposal for further development of this
system.

15 HPCC Systems: Models for Big Data

Model Flexibility in Practice
If ECL is compared in a genuine ‘apples to apples’ comparison against any of the technologies here on their own data
model it tends to win by somewhere between a factor of 2 and 5. There are a variety of reasons for this, and they differ
from data model to data model and from competitor to competitor but the reasons usually include some of:

1)	 HPCC/ECL Generates C++ which executes natively; this has a simple low-level advantage over Java based
solutions

2)	 The ECL compiler is heavily optimizing; it will re-arrange and modify the code to minimize operations performed
and data moved

3)	 The HPCC contains over a dozen patented or patent-pending algorithms that give a tangible performance boost
to certain activities – sorting and keyed fetch being the two most significant

4)	 Whilst ECL supports all of these data models it does not (always) support all of the standards contained in the
languages that usually wrap these models. Sometimes standards written a priori in a committee room impose
low-level semantics on a solution that result in significant performance degradation37

5)	 Whilst continually evolving, the core of the HPCC has been around for over a decade and has been tweaked and
tuned relentlessly since creation

6)	 The ECL language has explicit support for some feature that needs to be manufactured using a combination of
capabilities of the other system38. In this situation the extra knowledge of the intent that the HPCC system has
usually gives a performance advantage.

The above is a pretty impressive list; and going 2-5x faster allows you to use less hardware, or process more data, or get
the results faster or even a little bit of all three. However, a factor of two to five is not really game-changing, it just lowers
the cost of playing39.

Those occasions when ECL is game-changing, when it delivers performance which is one or more orders of magnitude
faster than the competition, usually stem from the data model. External evidence and support for this claim can be
gleaned from the websites of many of the solutions mentioned in this paper. They all claim, and cite examples, where
their solution to a data problem produces a result three to ten times faster than their competitors. Can they all claim
this without deception40? Yes; they are citing examples where a customer with a given problem switched to them and
they were providing a more suitable data model to the underlying problem. It is quite conceivable that two data solution
vendors could swap customers and both customers get a performance enhancement!

37. As a recent example: ECL provides two sets of string libraries, one which is UNICODE complaint, one of which is not. The non-compliant
libraries execute five times faster than the compliant ones. That said; string library performance is not usually the dominant factor in Big Data
performance.

38. Put simply – if you can write it in one line of ECL the ECL compiler knew exactly what you were trying to do – if you write the same capability in
100 lines of Java then the system has no high level understanding of what you were doing.

39. As an aside, the HPCC was one of the first systems available that could linearly scale work across hundreds of servers. As such it could often
provide two orders of magnitude (100x) performance uplift over the extant single-server solutions; which clearly is game changing. For this paper,
given the title includes ‘Big Data’, it is presumed that HPCC is being contrasted to other massively parallel solutions.

40. One subtle form of deception is ‘measuring something else’; the overall performance of a system needs to include latency, transaction
throughput, startup time, resource requirements and system availability. There are systems that are highly tuned to one of those; this is legitimate
– provided it is declared.

16 HPCC Systems: Models for Big Data

Given the preceding paragraph one might naturally expect data owners to be swapping and changing vendors with very
high frequency to continually benefit from the ‘best model for this problem’ factor. Unfortunately the reality is that many
data systems have been in the same model for years (even decades) even once it is abundantly clear it is the wrong
model. The reason, as described previously, is that changing model usually involves a change of language, vendor and
format; all of which are high risk, high cost, and disruptive changes. The ECL/HPCC system allows for model-change
without any of those factors changing. Of course, the first time ECL is used many of those changes do occur; but once
within the HPCC system data can transition from one model to another on a case by case basis with zero disruption41.

To understand all aspects of the ECL impact one does need to accept that zero disruption is not the same thing as zero
effort. Data will generally come to an ECL system in a natural or native42 model. For reasons of time and encouragement
the data will usually be made available in the original model through the ECL system. This will garner any ‘ECL is quick’
benefits immediately but it may not be game-changing. At that point a skilled data architect (or aspiring amateur!)
is needed that can explore the options for alternative data models for the data. This might be as big as a completely
different core model or it might be a change of model as the data is used for certain new or existing processes. The
exploration is performed alongside the service of the data using the extant model. Then, if and when these opportunities
are found and the results are shown to be as good or better, then the game can be changed.

One note of caution needs to be sounded; giving people the ability to choose also gives them the ability to choose poorly.
As the data models were discussed it should have become apparent that some of them were extreme, niche models and
others were more general purpose and middle of the road. ECL is flexible enough to allow the most horrific extremes to
be perpetrated in any direction. For this reason ECL operates best and produces its most dramatically good results when
early design decisions are made by one or more experienced data personnel. If these are not available it is probably wise
to mandate that the existing data model is adhered to; at least initially.

Conclusion
In many ways this entire paper is a conclusion; any one of the subject headings could have been the title for a 100 page
paper. I am sure that as each of the data models was discussed, the zealots of the model could have listed a dozen extra
advantages and detractors could list a dozen extra flaws. Notwithstanding the purpose of the descriptions was simply to
detail that there are many alternative models and that they each have lists of pros and cons. Further, most of them have
languages, standards, and vendors wrapped around them, designed to make data processing in that particular model as
proficient as possible.

Next, under the title of data abstraction, we proposed that the optimal system would allow for the problem to dictate the
model to be used; rather than the model used dictating the problems which are soluble. We then detailed how the ECL/
HPCC system supports each of the data models mentioned and also the large array of features and tools provided to
assist in the transition between models. It was also noted that whilst ECL/HPCC generally executed against a given model
more efficiently than alternative implementations it did not always support all of the standards or language features
associated with a given model.

Finally the paper ended by suggesting that ECL gains performance lift from general efficiencies but that for the
performance lift to reach the level of dramatic then generally a data-model shift was required. It was noted that data-
models can be shifted without ECL by changing vendors; the unique advantage of ECL is the ability to shift model (or even
hybridize models) within the same language and system. This advantage reduces the cost and risk of model shift and
therefore increases the chances of one occurring.

41. This is a mathematical zero, not a marketing one. ECL/HPCC supports all of these models and hybrids of them within the same system and
code. Many, if not all, ECL deployments run data in most of these models simultaneously and will often run the same data in different models at the
same time on the same machine!

42. Where a native model is an extremely un-natural model imposed upon the data by an earlier system

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license. Other products and services may be trademarks or
registered trademarks of their respective companies. Copyright © 2011 LexisNexis Risk Solutions. All rights reserved.

For more information:
Website: http://hpccsystems.com/
Email: info@hpccsystems.com
US inquiries: 1.877.316.9669
International inquiries: 1.678.694.2200

About HPCC Systems
HPCC Systems from LexisNexis® Risk Solutions offers a proven, data-intensive supercomputing platform designed for the enterprise to solve big
data problems. As an alternative to Hadoop, HPCC Systems offers a consistent data-centric programming language, two processing platforms and
a single architecture for efficient processing. Customers, such as financial institutions, insurance carriers, insurance companies, law enforcement
agencies, federal government and other enterprise-class organizations leverage the HPCC Systems technology through LexisNexis® products and
services. For more information, visit http://hpccsystems.com.

About LexisNexis Risk Solutions
LexisNexis® Risk Solutions (http://lexisnexis.com/risk/) is a leader in providing essential information that helps customers across all industries
and government predict, assess and manage risk. Combining cutting-edge technology, unique data and advanced scoring analytics, Risk Solutions
provides products and services that address evolving client needs in the risk sector while upholding the highest standards of security and privacy.
LexisNexis Risk Solutions is headquartered in Alpharetta, Georgia, United States.

