
White Paper

HPCC Systems:  
Performing in the Pig Pen

 



2 HPCC Systems: Performing in the Pig Pen

Performing in the Pig-Pen
The ECL performance advantage over Hadoop/PIG comes from two different areas: from the enhanced linguistic 
expressivity of ECL and from the advanced, mature engineering that underpins the platform. Clearly, in real use, an 
operating ECL system will benefit greatly from both features. Unfortunately it is almost impossible to measure the lift 
that comes from expressivity. ‘Lift from expressivity’ essentially means you will program better because the language 
is better; but for any given benchmark you will spend so much time focusing on the code that the lift is lost!

It can be equally difficult to fairly measure the combination of expressivity and engineering. By coding any benchmark 
‘well’ it is often possible to get orders of magnitude improvement by avoiding some particularly nasty operation; but 
then one is open to the charge of cheating.

 It is however possible to objectively measure something very different – just how well would ECL perform if it 
was programmed as you would program in PIG? In fact, if you gave PIG every advantage you could and stripped 
away every benefit of ECL that you could, just how well would ECL perform on identical hardware? This is not a 
meaningless metric; it gives some idea how ECL will behave when first used by an expert PIG programmer. This same 
metric also provides a good lower bound on just how much better the ECL engineering is compared to the 
PIG equivalent.

In order to perform such a measurement we decided to use the PigMix1. This is a set of 17 Pig programs within the 
community that have been used to measure the comparative performance of Pig and Java/Hadoop since 11/8/2008. 
This fits our criteria nicely: it has algorithms chosen by the Pig community, which the Pig community coded and which 
the Pig system developers have spent almost two years optimizing2. As such it ought to be representative of what Pig 
is used for and embody best practices for how to do it.

The next task was to produce the ECL versions of these Pig programs; we wanted to do so in a way which was 
reasonably good but which didn’t sneak in any ECL ‘tricks of the trade’. We therefore chose to use our automatic  
PIG->ECL converter (BACON). The exact translations this performs for each Pig statement is documented in  
“ECL for the PIGger”. The result is that we now have the same ‘PIG’ program in 3 languages; PIG, Java/Hadoop and 
naïve ECL3. It should be noted that ECL and Pig are roughly line-for-line equivalents; the Java version required 
substantially more coding.

The test hardware was a 25 node system. Each node had 4GB of memory, a quad core CPU and 600GB of hard drive 
space. Nodes were interconnected through a non-blocking Gigabit switch backplane using 1Gbps connections. The 
data was generated using the Perl data generation script generate_data.pl  found in issue PIG-200 on the Apache 
site4.  The script allows varying sizes of the base data set page_views to be generated depending on the size of the 
available cluster with the default of 625M rows.  The timings provided on the PigMix wiki page are based on only 
10M page_view rows.  The results presented here are using a page_views dataset with 156.25M rows which more 
effectively demonstrates the handling of big data on the 25-node cluster tested.  Additional datasets generated by 
the script include page_views_sorted (156.25M rows), power_users (500 rows), power_users_samples (252 rows), 
users (1,599,555 rows), users_sorted (1,599,555 rows), widegroupbydata (156.25M rows), and widerow (10M rows).  
The generated data was translated from the Pig data model to the ECL data model where needed5 for the ECL 
version of the benchmark but maintained the identical data content and size. 

1 Data given here taken from http://wiki.apache.org/pig/PigMix 
2 On the first run they were 7.6x slower than the Java baseline, as of 5/29/10 that number was down to 1.1
3  It should be noted that PigMix L1 tests the Pig MAP capability for which BACON has no direct mapping; thus our test does NOT include a timing for the 

ECL version of L1
4 PigMix data generation script generate_data.pl was taken from https://issues.apache.org/jira/browse/PIG-200 
5 Pig inner bags were mapped to ECL child datasets



3 HPCC Systems: Performing in the Pig Pen

The results were as follows:

It can be seen that there is significant variation from test to test. The outlier is L17 where the Pig time is much worse 
than Java and worse than on the official Pig website. This is a new test so it could indicate a new optimization has not 
yet made it into release code and that Pig number will improve. L9 and L10 are also interesting in that it shows that the 
Pig code (which generates Java) substantially beats the original Java baseline. This demonstrates the work that has 
been put into enhancing the Pig performance on these benchmarks.

Comparing ECL to Pig we see that it substantially wins every single comparison. The weakest win is L15 where it is 
1.46x faster than Pig. The strongest win (ignoring the outlier 24 fold improvement on L17) is the 4.74x improvement 
granted by our patented SORT algorithm on L10. Across all tests6 ECL was an average 4.45x faster than Pig.

Comparing ECL to Java we note that the gap shrinks a little but ECL still wins every single test. The weakest is again 
L15 with a 1.175x speedup and the strongest is L10 with a 6.35x speedup. Across all tests ECL is an average 3.23x faster 
than native coded Java/Hadoop.

Conclusion
Under conditions set by and for Pig programmers, naively coded ECL was able to win every single one of the 16 
benchmarks that had direct equivalents. The winning factor ranged from 1.46x to 4.74x with an average of 4.45x.

6 Excluding L1 as noted previously

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 1714

25000

20000

15000

5000

10000

0%

Java Times
Pig Times
ECL Times



LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license. Other products and services may be trademarks or 
registered trademarks of their respective companies. Copyright © 2011 LexisNexis Risk Solutions. All rights reserved.

For more information: 
Website: http://hpccsystems.com/ 
Email: info@hpccsystems.com 
US inquiries: 1.877.316.9669 
International inquiries: 1.678.694.2200

About HPCC Systems
HPCC Systems from LexisNexis® Risk Solutions offers a proven, data-intensive supercomputing platform designed for the enterprise to solve big data 
problems.  As an alternative to Hadoop, HPCC Systems offers a consistent data-centric programming language, two processing platforms and a single 
architecture for efficient processing.  Customers, such as financial institutions, insurance carriers, insurance companies, law enforcement agencies, 
federal government and other enterprise-class organizations leverage the HPCC Systems technology through LexisNexis® products and services. For 
more information, visit http://hpccsystems.com.

About LexisNexis Risk Solutions
LexisNexis® Risk Solutions (http://lexisnexis.com/risk/) is a leader in providing essential information that helps customers across all industries and 
government predict, assess and manage risk. Combining cutting-edge technology, unique data and advanced scoring analytics, Risk Solutions 
provides products and services that address evolving client needs in the risk sector while upholding the highest standards of security and privacy. 
LexisNexis Risk Solutions is headquartered in Alpharetta, Georgia, United States.


