
root

Go Up

Name GNN
Version 2.0
Description Generalized Neural Network Bundle
License SeeLICENSE.TXT
Copyright Copyright (C) 2020 HPCC SystemsÂő
Authors HPCCSystems
DependsOn ML_Core
Platform 7.4.0

Table of Contents

GNNI.ecl

Generalized Neural Network Interface <p>Provides a generalized ECL interface to Keras over Tensor-
flow</p>

Tensor.ecl

ECL Tensor Module

Types.ecl

Type definitions for use with the GNNI Interface

Utils.ecl

Utility module for GNN

1

See LICENSE.TXT

GNNI

Go Up

IMPORTS

python3 | GNN.Internal | GNN.Types | GNN.Internal.Types | GNN.Internal.Keras |
GNN.Tensor | std.system.Thorlib | std.system.Log |
_versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

GNNI GNNI

GNNI

Generalized Neural Network Interface

Provides a generalized ECL interface to Keras over Tensorflow. It supports the Keras Functional API as
well as the Sequential API.

The Functional style allows models to be defined as a Directed Acyclic Graph (DAG), allowing branching
and merging among the layers. It is required for models that have multiple inputs or outputs. For an
annotated example using the Functional model with multiple inputs and outputs, see
Test/FuncModelTest.ecl

The Sequential stle is a bit simpler, but requires a strict sequence of layers, each one feeding into the
next. For an annotated example using the Sequential model, see Test/ClassicTest.ecl

THEORY OF OPERATION

A Keras / TF model is built on each HPCC node and training data is distributed among the nodes.
Distributed Synchronous Batch Gradient Descent is performed across nodes, synchronizing weights

2

periodically based on the ’batchSize’ parameter. Each function performs its work in a distributed
manner, using the built-in parallelization of HPCC. Weights are synchronized across nodes after
’batchSize’ records are processed on each node.

PROGRAM FLOW

The flow of a program using this interface is as follows:

• GetSession() – Initialized Keras / TF and returns a session token. This must be called before any
other operations.

• Define the model, either as a Sequential model or a Functional model:

– DefineModel(. . .) – Construct a Keras Sequential model by providing a list of Python
statements, one to construct each layer of the neural network as well as an optional compile
definition statement.

– DefineFuncModel(. . .) – Construct a Keras Functional Model. This allows construction of
complex models that cannot be expressed as a sequential set of layers. These include models
with multiple inputs or outputs, or models that use divergence or convergence among different
layers.

• CompileMod(. . .) – (Optional) Pass the Keras model compilation statement and perform it on the
model. This is only required if the compile definition was not provided in DefineModel (above).

• Fit(. . .) – Trains the model across the nodes of the cluster, based on provided training data.

• EvaluateMod(. . .) – (Optional) Evaluate the model against a set of data (typically your validation
or test data) and return the loss and any other metrics that were defined by your compileDef.

• Predict(. . .) – (Optional) Use the model to predict the output based on a provided set of input (X)
data.

• GetWeights(. . .) – (Optional) Return the trained weights of all layers of the model.

USE OF TENSORS

GNNI uses Tensors (effectively N-dimensional array representations) to provide data and weights in and
out of Keras / TF. See the included Tensor module for details. These Tensor datasets provide an efficient
way to store, distribute, and process N-Dimensional data. The data is packed into ’slices’, which can be
either sparse or dense, for efficiency and scalability purposes.

Tensors can be used to convey record-oriented information such as training data as well as block oriented
data like weights. Both can be N-dimensional. For record-oriented data, the first shape component is set
to 0 (unspecified) indicating that it can hold an arbitrary set of records.

For models with multiple inputs or outputs, Tensor Lists are used (see Tensor.ecl for details), with one
Tensor per input or output.

USE OF NumericField

3

GNNI also provides a set of interfaces which take in and emit data as 2-dimensional NumericField
datasets (see ML_Core.Types.NumericField). This is purely for convenience for applications that don’t
require the N-Dimensional capabilities of the Tensor format. Internally, these functions translate the
NumericField format into Tensors, and convert the output from Tensors to NumericField. These
functions have the same names as the tensor functions, but with NF appended to the name (e.g.
FitNF(. . .), PredictNF(. . .)). Weights are always returned as Tensors, so there is no NF version of
GetWeights(. . .).

SEQUENCING OF OPERATIONS The Keras / Tensorflow operations take place under the hood from
an ECL perspective. Therefore normal ECL data dependencies are not sufficient to ensure proper
sequencing. For this reason, GNNI uses a series of tokens passed from one call to the next to ensure the
correct order of command execution. For example:

• GetSession() returns a session-token which must be passed to DefineModel()

• Subsequent calls return a model-token which must be passed to the following call. Each call creates
a new model token which becomes the input to the next call in sequence.

• It is critical that this token passing is chained, or calls may occur out of order. For example, Fit()
could be called before DefineModel(), which would not produce good results.

MULTIPLE MODEL SUPPORT

GNNI supports multiple Keras models within the same work unit. Multiple models are created by using
multiple calls to DefineModel() using the same sessionId. The returned modelIds are used in subsequent
calls to discriminate between the models. See Test/MultiModel.ecl for an example.

WORKING WITH GPUs

GNN can be used with hardware accelleration (i.e. GPUs) provided certain configuration rules are
followed:

• All servers have the same configuration in terms of number of GPUs per server

• The number of Thor nodes = GPUs Per Server * Number of Servers

• The number of GPUs per Server is passed to GetSession()

One GPU will be allocated to each Thor node.

PERFORMANCE CONSIDERATIONS

Performance of GNN is a complex topic, and it is very difficult to make recommendations as to the
optimal configuration for training a given problem. Below are some observations regarding performance
that may be useful in understanding the tradeoffs.

• Many factors influence the training performance, and these are interrelated in complex ways:

4

– The complexity of the network design.
– The amount of training data (number of records, and record size).
– The complexity of the relationship(s) being modeled.
– The Learning Rate specified in the Compile line for the selected optimizer.
– The number of nodes in the HPCC cluster.
– GNN training parameters (see Fit Below). Specifically: batchSize, learningRateReduction,

batchSizeReduction, and localBatchSize.
– The random starting point of the neural network weights.

• It important to separate the speed of running Epochs from the final loss achieved. Using large
batchSize (i.e. the number of records to process on each node before synchronizing weights), will
process epochs faster, but with less loss reduction on each epoch.

• Once the optimal training loss is determined (e.g. by running multiple epochs until consistent gain
no longer occurs), it is recommended to use the ”trainToLoss” parameter to abort training when a
given loss level is reached.

• Training parameters usually need to be adjusted when running on different sized clusters. The
number of records processed on each batch is nNodes * batchSize. For a larger cluster, it may be
necessary to reduce the batchSize to avoid blurring of the training. An alternative is to use the
batchSizeReduction parameter, which will cause the batchSize to automatically reduce as the
training progresses. In some cases, reducing the learning rate or using the learningRateReduction
parameter can also compensate for larger batch sizes.

• If the network doesn’t converge (e.g. loss goes to infinity, or loss is unstable across epochs), it
generally means that the learning rate is set too high, or the batchSize is too large.

Children

1. GetSession : Initialize Keras on all nodes and return a ”session” token to be used on the next call
to GNNI

2. DefineModel : Define a Keras / Tensorflow model using Keras sytax

3. DefineFuncModel : DefineFuncModel(. . .) – Construct a Keras Functional Model

4. ToJSON : Return a JSON representation of the Keras model

5. FromJSON : Create a Keras model from previously saved JSON

6. CompileMod : Compile a previously defined Keras model

7. GetWeights : Return the weights currently associated with the model

8. SetWeights : Set the weights of the model from a list of Tensors

9. GetLoss : Get the accumulated average loss for the latest epoch

10. Fit : Train the model using synchronous batch distributed gradient descent

11. EvaluateMod : Determine the loss and other metrics in order to evaluate the model

5

12. Predict : Predict the results using the trained model

13. Shutdown

14. FitNF : Fit a model with 2 dimensional input and output using NumericField matrices

15. EvaluateNF : Evaluate a model with 2 dimensional input and output using NumericField matrices

16. PredictNF : Predict the results for a model with 2 dimensional input and output using
NumericField matrixes for input and output

GETSESSION GetSession

GNNI \

UNSIGNED4 GetSession

(UNSIGNED GPUsPerServer = 0)

Initialize Keras on all nodes and return a ”session” token to be used on the next call to GNNI.

This function must be called before any other use of GNNI.

PARAMETER GPUsPerServer ||| UNSIGNED8 — – The number of GPUs per Server. This is only
used when working with GPUs. See ”WORKING WITH GPUs section of module documentation.
Defaults to 0 when GPUs not used.

RETURN UNSIGNED4 — A session token (UNSIGNED4) to identify this session.

DEFINEMODEL DefineModel

GNNI \

UNSIGNED4 DefineModel

(UNSIGNED4 sess, SET OF STRING ldef, STRING cdef = ”)

Define a Keras / Tensorflow model using Keras sytax. Optionally also provide a ”compile” line with the
compilation parameters for the model.

6

If no compile line is provided (cdef), then the compile specification can be provided in a subsequent call
to CompileMod (below).

The symbols ”tf” (for tensorflow) and ”layers” (for tf.keras.layers) are available for use within the
definition strings. See GNN/Test/ClassicTest.ecl for an annotated example.

PARAMETER sess ||| UNSIGNED4 — The session token from a previous call to GetSesion().

PARAMETER ldef ||| SET (STRING) — A set of python strings as would be passed to Keras
model.add(). Each string defines one layer of the model.

PARAMETER cdef ||| STRING — (optional) A python string as would be passed to Keras
model.compile(. . .). This line should begin with ”compile”. Model is implicit here.

RETURN UNSIGNED4 — A model token to be used in subsequent GNNI calls.

DEFINEFUNCMODEL DefineFuncModel

GNNI \

UNSIGNED4 DefineFuncModel

(UNSIGNED sess, DATASET(FuncLayerDef) lDefs, SET OF STRING inputs, SET OF
STRING outputs, STRING cdef = ”)

DefineFuncModel(. . .) – Construct a Keras Functional Model. This allows construction of complex
models that cannot be expressed as a sequential set of layers. These include models with multiple inputs
or outputs, or models that use divergence or convergence among different layers.

Layers are connected together using the layerName and predecessor fields of the FuncLayerDef. The
inputs of a layer are connected to the predecessor layers in the order specified by the set of names in the
predecessor field.

The inputs and outputs parameter specifies the names of the layers that form the input and output of
the model.

This is similar to the Keras Functional API, except that the entire model is defined in one call rather
than assembled piecemeal as in the Functional API. The same rules apply here as for the Keras
Functional API, and there should be a simple translation of any program using the Functional API.

For models with multiple inputs, input is specified as a list of tensors (see Tensor.ecl).

For models with multiple outputs, output will be a list of tensors.

7

PARAMETER sess ||| UNSIGNED8 — The session token from a previous call to GetSesion().

PARAMETER lDefs ||| TABLE (FuncLayerDef) — A series of layer definitions using the
Types.FuncLayerDef format.

PARAMETER inputs ||| SET (STRING) — A list of the names of the layers that represent the
inputs to the model.

PARAMETER outputs ||| SET (STRING) — A list of the names of the layers that represent the
outputs of the model.

PARAMETER cdef ||| STRING — (optional) A python string as would be passed to Keras
model.compile(. . .). This line should begin with ”compile”. Model is implicit here.

RETURN UNSIGNED4 —

SEE Types.FuncLayerDef

SEE Test.FuncModelTest.ecl

TOJSON ToJSON

GNNI \

STRING ToJSON

(UNSIGNED4 mod)

Return a JSON representation of the Keras model.

PARAMETER mod ||| UNSIGNED4 — The model token as previously returned from
DefineModel(. . .) above.

RETURN STRING — A JSON string representing the model definition.

8

FROMJSON FromJSON

GNNI \

UNSIGNED4 FromJSON

(UNSIGNED4 sess, STRING json)

Create a Keras model from previously saved JSON.

Note that this call defines the model, but does not restore the compile definition or the trained model
weights. CompileMod(. . .) should be called after this to define the model compilation parameters.

PARAMETER sess ||| UNSIGNED4 — A session token previously returned from GetSession(..).

PARAMETER json ||| STRING — A JSON string defining the model as previously returned from
ToJSON(. . .).

RETURN UNSIGNED4 — A model token to be used in subsequent GNNI calls.

COMPILEMOD CompileMod

GNNI \

UNSIGNED4 CompileMod

(UNSIGNED model, STRING compileStr)

Compile a previously defined Keras model.

This is an optional call that can be used if you omit the compileDef parameter during DefineModel(. . .)
or if the model was created via FromJSON(. . .).

The compile string uses the same python syntax as using Keras’ model.compile(. . .). Model is implied in
this call, so the line should begin with ”compile”.

The symbol ”tf” (for tensorflow) is available for use within the compile string.

Example:

• ”’compile(loss=’categorical_crossentropy’, optimizer=’adam’, metrics=[’accuracy’])”’

9

It is convenient to use the triple single quote(”’) syntax as it allows strings to cross line boundaries, and
allows special characters such as single or double quotes without escaping.

There is no need to make this call if the compileDef was provided in the DefineModel(. . .) call.

The returned model token should be used in subsequent calls to GNNI.

PARAMETER model ||| UNSIGNED8 — A model token as returned from DefineModel(. . .) or
FromJSON(. . .).

PARAMETER compileStr ||| STRING — A python formatted string defining the Keras ”compile”
call and its parameters.

RETURN UNSIGNED4 — A new model token that should be used in subsequent GNNI calls.

GETWEIGHTS GetWeights

GNNI \

DATASET(t_Tensor) GetWeights

(UNSIGNED4 model)

Return the weights currently associated with the model.

The weights are returned as a Tensor List containing the weights for each Keras layer as a separate
Tensor.

The weights from a given layer can be extracted by simply filtering on the work-item (wi). The first layer
will use wi = 1, and the Nth layer uses wi = N.

This call is typically made after training the model via Fit(. . .), but can also be called before Fit(. . .) to
retrieve the initial weights.

PARAMETER model ||| UNSIGNED4 — The model token as returned from DefineModel(. . .),
CompileMod(. . .), or Fit(. . .).

RETURN TABLE (t_Tensor) — A t_Tensor dataset representing the weights as a list of Tensors.

SEE Tensor.t_Tensor

10

SETWEIGHTS SetWeights

GNNI \

UNSIGNED4 SetWeights

(UNSIGNED4 model, DATASET(t_Tensor) weights)

Set the weights of the model from a list of Tensors.

Typically, the weights to be set were originally obtained using GetWeights(. . .) above. They must be of
the same number and shape as would be returned from GetWeights(. . .).

These will contain one Tensor for each defined Keras layer. The shape of each tensor is determined by
the definition of the layer.

PARAMETER model ||| UNSIGNED4 — The model token from the previous step.

PARAMETER weights ||| TABLE (t_Tensor) — The Tensor List (DATASET(t_Tensor)) containing
the desired weights.

RETURN UNSIGNED4 — A new model token to be used in subsequent calls.

SEE Tenosr.t_Tensor

GETLOSS GetLoss

GNNI \

REAL GetLoss

(UNSIGNED4 model)

Get the accumulated average loss for the latest epoch.

This represents the average per sample loss.

PARAMETER model ||| UNSIGNED4 — The model token as returned from Fit(. . .).

RETURN REAL8 — The average loss.

11

FIT Fit

GNNI \

UNSIGNED4 Fit

(UNSIGNED4 model, DATASET(t_Tensor) x, DATASET(t_Tensor) y, UNSIGNED4
batchSize = 512, UNSIGNED4 numEpochs = 1, REAL trainToLoss = 0, REAL
learningRateReduction = 1.0, REAL batchSizeReduction = 1.0, UNSIGNED4
localBatchSize = 32)

Train the model using synchronous batch distributed gradient descent.

The X tensor represents the independent training data and the Y tensor represents the dependent
training data.

Both X and Y tensors should be record-oriented tensors, indicated by a first shape component of zero.
These must also be distributed (not replicated) tensors. If the model specifies multiple inputs or outputs,
then tensor lists should be supplied, using the work-item id (wi) to distinguish the order of the tensors in
the tensor list (see Tensor.ecl).

BatchSize defines how many observations are processed on each node before weights are re-synchronized.
There is an interaction between the number of nodes in the cluster, the batchSize, and the complexity of
the model. A larger batch size will process epochs faster, but the loss reduction may be less per epoch.
As the number of nodes is increased, a smaller batchSize may be required. The default batchSize of 512
is a good starting point, but may require tuning to increase performance or improve convergence (i.e. loss
reduction). Final loss should be used to assess the fit, rather than number of epochs trained. For
example, for a given neural network, a loss of .02 may be the optimal tradeoff between underfit and
overfit. In that case the network should be trained to that level, adjusting number of epochs and
batchSize to reach that level. Alternatively, the trainToLoss parameter can be used to automatically stop
when a given level of loss is achieved. See the top-level module documentation for more insight on
Performance Considerations.

PARAMETER model ||| UNSIGNED4 — The model token from the previous GNNI call.

PARAMETER x ||| TABLE (t_Tensor) — The independent training data tensor or tensor list.

PARAMETER y ||| TABLE (t_Tensor) — The dependent training data tensor or tensor list.

PARAMETER batchSize ||| UNSIGNED4 — The number of records to process on each node before
re-synchronizing weights across nodes.

PARAMETER numEpochs ||| UNSIGNED4 — The number of times to iterate over the full training
set.

PARAMETER trainToLoss ||| REAL8 — Causes training to exit before numEpochs is complete if the
trainToLoss is met. Defaults to 0, meaning that all epochs will be run. When using trainToLoss,
numEpochs should be set to a high value so that it does not exit before the training goal is met.
Note that not all network / training data configurations can be trained to a given loss. The nature
of the data and the network configuration limits the minimum achievable loss.

12

PARAMETER learningRateReduction ||| REAL8 — Controls how much the learning rate is
reduced as epochs progress. For some networks, training can be improved by gradulally reducing
the learning rate. The default value (1.0), maintains the original learning rate across all epochs. A
value of .5 would cause the learning rate to be reduced to half the original rate by the final epoch.

PARAMETER batchSizeReduction ||| REAL8 — Controls how much the batchSize is reduced as
epochs progress. For some networks, training can be improved by gradually reducing the batchSize.
The default value (1.0), maintains the original batchSize across all epochs. A value of .25 would
cause the learning rate to be reduced to one quarter the original rate by the final epoch.

PARAMETER localBatchSize ||| UNSIGNED4 — The batch size to use when calling Keras Fit() on
each local machine. The default (32) is recommended for most uses.

RETURN UNSIGNED4 — A new model token for use with subsequent GNNI calls.

EVALUATEMOD EvaluateMod

GNNI \

DATASET(Types.metrics) EvaluateMod

(UNSIGNED4 model, DATASET(t_Tensor) x, DATASET(t_Tensor) y)

Determine the loss and other metrics in order to evaluate the model.

Returns a set of metrics including loss and any other metrics that were defined in the compile definition
for a set of provided test data.

Both X and Y tensors should be record-oriented tensors, indicated by a first shape component of zero.
These must also be distributed (not replicated) tensors.

This is typically used after training the model, using a segregated set of test data, in order to determine
the ”out of sample” performance (i.e. performance on data outside of the training set).

PARAMETER model ||| UNSIGNED4 — The model token from the previous GNNI call (e.g. Fit).

PARAMETER x ||| TABLE (t_Tensor) — The independent test data tensor or tensor list.

PARAMETER y ||| TABLE (t_Tensor) — The dependent test data tensor or tensor list.

RETURN TABLE ({ UNSIGNED4 metricId , STRING metricName , REAL8 value }) —
A dataset of metrics indicating the performance of the model.

13

SEE Types.metrics

PREDICT Predict

GNNI \

DATASET(t_Tensor) Predict

(UNSIGNED4 model, DATASET(t_Tensor) x)

Predict the results using the trained model.

The X tensor represents the independent (input) data for the neural network and the output is returned
as a tensor or tensor list (for multiple output networks). Input and output will be Tensor Lists if there is
more than one input or output tensor for the NN.

The X tensor should be a record-oriented tensor, indicated by a first shape component of zero. It must
also be distributed (not replicated) tensor.

PARAMETER model ||| UNSIGNED4 — A model token as returned from the previous GNNI call
(e.g. Fit).

PARAMETER x ||| TABLE (t_Tensor) — The independent (i.e. input) data tensor or tensor list.

RETURN TABLE (t_Tensor) — The output predicted by the model as a record-oriented tensor or
tensor list.

SHUTDOWN Shutdown

GNNI \

UNSIGNED4 Shutdown

(UNSIGNED4 model)

PARAMETER model ||| UNSIGNED4 — A model token as returned from a previous GNNI call.

14

RETURN UNSIGNED4 — A new model token.

NODOC Shutdown Keras / Tensorflow and free up any allocated memory. This function is not
required at this time but is here for future use.

FITNF FitNF

GNNI \

UNSIGNED4 FitNF

(UNSIGNED4 model, DATASET(NumericField) x, DATASET(NumericField) y,
UNSIGNED4 batchSize = 512, UNSIGNED4 numEpochs = 1, REAL trainToLoss = 0,
REAL learningRateReduction = 1.0, REAL batchSizeReduction = 1.0, UNSIGNED4
localBatchSize = 32)

Fit a model with 2 dimensional input and output using NumericField matrices.

This is a NumericField wrapper around the Fit function. See Fit (above) for details.

PARAMETER model ||| UNSIGNED4 — The model token from the previous GNNI call.

PARAMETER x ||| TABLE (NumericField) — The independent training data.

PARAMETER y ||| TABLE (NumericField) — The dependent training data.

PARAMETER batchSize ||| UNSIGNED4 — The number of records to process on each node before
re-synchronizing weights across nodes.

PARAMETER numEpochs ||| UNSIGNED4 — The number of times to iterate over the full training
set.

PARAMETER trainToLoss ||| REAL8 — Causes training to exit before numEpochs is complete if the
trainToLoss is met. Defaults to 0, meaning that all epochs will be run. When using trainToLoss,
numEpochs should be set to a high value so that it does not exit before the training goal is met.
Note that not all network / training data configurations can be trained to a given loss. The nature
of the data and the network configuration limits the minimum achievable loss.

PARAMETER learningRateReduction ||| REAL8 — Controls how much the learning rate is
reduced as epochs progress. For some networks, training can be improved by gradulally reducing
the learning rate. The default value (1.0), maintains the original learning rate across all epochs. A
value of .5 would cause the learning rate to be reduced to half the original rate by the final epoch.

15

PARAMETER batchSizeReduction ||| REAL8 — Controls how much the batchSize is reduced as
epochs progress. For some networks, training can be improved by gradually reducing the batchSize.
The default value (1.0), maintains the original batchSize across all epochs. A value of .25 would
cause the learning rate to be reduced to one quarter the original rate by the final epoch.

PARAMETER localBatchSize ||| UNSIGNED4 — The batch size to use when calling Keras Fit() on
each local machine. The default (32) is recommended for most uses.

RETURN UNSIGNED4 — A new model token for use with subsequent GNNI calls.

SEE ML_Core.Types.NumericField

EVALUATENF EvaluateNF

GNNI \

DATASET(Types.metrics) EvaluateNF

(UNSIGNED4 model, DATASET(NumericField) x,
DATASET(NumericField) y)

Evaluate a model with 2 dimensional input and output using NumericField matrices.

This is a NumericField wrapper around the EvaluateMod function. See EvaluateMod (above) for details.

PARAMETER model ||| UNSIGNED4 — The model token from the previous GNNI call.

PARAMETER x ||| TABLE (NumericField) — The independent test data.

PARAMETER y ||| TABLE (NumericField) — The dependent test data.

RETURN TABLE ({ UNSIGNED4 metricId , STRING metricName , REAL8 value }) —
A dataset of metrics indicating the performance of the model.

SEE Types.metrics

SEE ML_Core.Types.NumericField

16

PREDICTNF PredictNF

GNNI \

DATASET(NumericField) PredictNF

(UNSIGNED4 model, DATASET(NumericField) x)

Predict the results for a model with 2 dimensional input and output using NumericField matrixes for
input and output.

This a a NumericField wrapper around the Predict function. See Predict (above) for details.

PARAMETER model ||| UNSIGNED4 — A model token as returned from the previous GNNI call
(e.g. Fit).

PARAMETER x ||| TABLE (NumericField) — The independent (i.e. input) data NumericField
matrix.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8
value }) — The output predicted by the model as a NumericField matrix.

SEE ML_Core.Types.NumericField

17

Tensor

Go Up

IMPORTS

python3 | _versions.ML_Core.V3_2_2.ML_Core |
_versions.ML_Core.V3_2_2.ML_Core.Types | std.system.Thorlib | std.system.Log |

DESCRIPTIONS

TENSOR Tensor

Tensor

ECL Tensor Module.

Overview:

Tensor datasets provide an efficient way to store, distribute, and process N-Dimensional data. Tensors
represent an N dimensional array. They can represent data of from 0 dimensions (scalar), 1 dimension
(vector), 2 dimensions (matrix), or up to a high number of dimensions.

Tensors are typed – the module currently only supports REAL4 type Tensors, but is set up to accomodate
other data types in the future. The Tensor.R4 submodule is used to manage REAL4 type Tensors.

Two main record types are defined for use with Tensors:

• TensorData is used to define the content of a Tensor. This is a sparse data format – each record
represents one cell of the Tensor.

• t_Tensor is used to define the Tensor’s metadata such as it’s N dimensional shape, its type, etc. It
manages the tensor as a series of slices (i.e. partitions) with the data packed into the slices in either
sparse or dense form, depending on the nature of the data.

18

A Tensor is created by calling the MakeTensor(. . .) function with the appropriate meta-data and a
TensorData dataset.

Inversely, the data is read out of a Tensor using the GetData(. . .) function.

Tensor Shape:

A Tensor is defined with a shape. Shapes are given by a set of integers defining the length of each
dimension of the Tensor. For example: shape [4, 3, 2] represents a 4 x 3 x 2 tensor. Record-oriented
Tensors may have the first shape component unspecified. Zero is used to indicated that the index is
unspecified. For example: a shape of [0, 5, 8, 4] specifies a Tensor with an unspecified number of rows,
each with a 3 dimensional shape [5, 8, 4].

Distribution Modes:

Tensors have 2 distribution modes:

• Distributed – The slices are distributed across the nodes of the cluster.

• Replicated – All slices are present on all nodes (for local operations on each node).

Tensor Lists:

A t_Tensor dataset also allows for multiple tensors of different shapes to be stored in a single dataset.
The work item (wi) field of the Tensor is used to distinguish between the different Tensors. A Tensor
with multiple work items is considered an ordered list of Tensors.

Tensor Data Types:

At some point, we will support Tensors of different data types such as REAL4, REAL8, INTEGER4,
INTEGER8, and STRING. This release, however, supports only REAL4 type tensors. The methods
operating on these tensors are found in the R4 (i.e. REAL4) submodule. Future versions will add more
submodules for different tensor types.

The dat module (e.g. Tensor.R4.dat) provides methods for packing and unpacking scalar, vector, and
matrix data. These methods allow, for example, a Tensor of shape [2,3,3] to be built by packing two 3 x
3 matrices into a Tensor.

EXAMPLES:

// Scalar (0-D)
tensDatScalar := Tensor.R4.dat.fromScalar(3.14159); // 0D (Scalar) Tensor data
// Vector (1-D)
tensDatVector := Tensor.R4.dat.fromVector([.013, .015, -.312, 0, 1.0]); // 1D (Vector) Tensor data
// Matrix (2-D)
tensDatMatrix := Tensor.R4.dat.fromMatrix(myNF); // 2D (Matrix) Tensor data
// N-D Tensor

19

tensDat := DATASET([\{[1,1,1,1], .01\},
\{[5,2,111,3], .02\}], Tensor.R4.TensDat); // 4D (nD) Tensor data

Children

1. R4 : REAL4 tensor type attributes

R4 R4

Tensor \

R4

REAL4 tensor type attributes

Children

1. TensData : REAL4 Tensor Data Format

2. t_SparseDat : Record format for the sparseData child dataset within a Tensor

3. t_Tensor : Record format for a REAL4 valued Tensor slice

4. dat : Submodule for manipulating TensorData

5. Replicate : Replicate the Tensor Slices to all nodes of the cluster

6. MakeTensor : Make a Tensor from a set of TensorData and some meta-data

7. GetData : Extract the data from a tensor and return it in sparse TensData format

8. Reshape : Reshape a tensor to a new compatible shape

9. Add : Add two tensors

10. GetRecordCount : Get the number of records in a record-oriented Tensor

11. AlignTensors : Aligns a list of Tensors (seperated by wi) so that all of the tensors’ corresponding
records are stored on the same node

20

TENSDATA TensData

Tensor \ R4 \

TensData

REAL4 Tensor Data Format.

Note: This is sparse format, and any cells not supplied are assumed to be zero.

FIELD indexes ||| SET (UNSIGNED4) — – the N-dimensional index of this tensor cell

FIELD value ||| REAL4 — – the numeric value of this tensor cell.

T_SPARSEDAT t_SparseDat

Tensor \ R4 \

t_SparseDat

Record format for the sparseData child dataset within a Tensor

FIELD offset ||| UNSIGNED4 — The offset within the tensor slice.

FIELD value ||| REAL4 — The value at the given offset within the tensor slice.

T_TENSOR t_Tensor

Tensor \ R4 \

t_Tensor

Record format for a REAL4 valued Tensor slice.

21

Tensors are stored as a Dataset of Tensor slices. Each slice contains Tensor metadata (e.g. shape,
dataType), as well as the tensor data elements within the slice. Slices can be densely packed or sparsely
packed depending on the density of the source data.

FIELD nodeId ||| UNSIGNED4 — The node number on which this slice currently resides.

FIELD wi ||| UNSIGNED4 — The work-item allows a list of tensors to be stored within a single
dataset. Wi of 1 indicates the first tensor in the list, 2 for the second, etc.

FIELD sliceId ||| UNSIGNED4 — The id of this tensor slice. Each tensor is represented as 1 or more
slices. Each tensor in a tensor list can have the same sliceIds.

FIELD shape ||| SET (UNSIGNED4) — The shape of the tensor (e.g. [10, 20, 5]).

FIELD dataType ||| UNSIGNED4 — The data type for each cell of the tensor.

FIELD maxSliceSize ||| UNSIGNED4 — The size of a full slice for this tensor.

FIELD sliceSie ||| — The size of this slice. Slices 1 - (N-1) will full slices, while slice N may have less
than the maxSliceSize data.

FIELD denseDat ||| — A packed block of REAL4 values representing the linearized data within this
slice.

FIELD sparseDat ||| — A child dataset for storeing sparse data as a set of local offset and value pairs.
Note: Only denseData or sparseData are used for any slice. The other will be empty.

FIELD slicesize ||| UNSIGNED4 — No Doc

FIELD densedata ||| SET (REAL4) — No Doc

FIELD sparsedata ||| TABLE (t_SparseDat) — No Doc

DAT dat

Tensor \ R4 \

dat

Submodule for manipulating TensorData.

Children

1. fromScalar : Create tensor data from a scalar

2. fromVector : Create tensor data from a vector

22

3. fromMatrix : Create tensor data from a NumericField matrix

4. toScalar : Extract a scalar from a position within the Tensor data

5. toVector : Extract a vector of values from a TensData dataset

6. toMatrix : Extract a matrix of values from a TensData dataset

FROMSCALAR fromScalar

Tensor \ R4 \ dat \

DATASET(TensData) fromScalar

(REAL4 value, t_Indexes atIndx = [])

Create tensor data from a scalar.

The scalar will be placed at the ”atIndex” in the tensor.

Example: tdat := t_Tensor.R4.dat.fromScalar(’3.14159’, [1,3,1]); // The cell will be placed at index [1,
3, 1]

PARAMETER value ||| REAL4 — The value of the tensor cell at atIndex.

PARAMETER atindx ||| SET (UNSIGNED4) — No Doc

RETURN TABLE (TensData) — A TensData dataset with one record.

PARM atIndx The index of the cell being defined.

FROMVECTOR fromVector

Tensor \ R4 \ dat \

DATASET(TensData) fromVector

(SET OF REAL4 vec, t_Indexes atIndx = [])

23

Create tensor data from a vector.

The elements of the array will be placed under ”atIndx”. The first element will be at [atIndx, 1], and the
Nth will be at [atIndx, N].

Example: tdat := t_Tensor.R4.dat.fromVector([.1, .2, -.1, -.2], [1, 3]); // The first element (.1) will be at
index [1, 3, 1].

PARAMETER vec ||| SET (REAL4) — A set of numbers representing the value of the vector.

PARAMETER atIndx ||| SET (UNSIGNED4) — The index under which to place the vector.

RETURN TABLE (TensData) — A TensData dataset with length the same as the vector.

FROMMATRIX fromMatrix

Tensor \ R4 \ dat \

DATASET(TensData) fromMatrix

(DATASET(NumericField) mat, t_Indexes atIndx = [])

Create tensor data from a NumericField matrix.

The elements of the matrix will be placed at: [atIndx, id, number], where id and number are the row and
column indexes for each matrix cell.

Note: The work-item (wi) field of the NF matrix is ignored, so multiple work-items should not be used in
the input matrix.

Example: tdat := t_Tensor.R4.dat.fromMatrix(myNumericFieldDS, [3,5,2]); // The first element of the
matrix will be at: [3,5,2,1,1].

PARAMETER mat ||| TABLE (NumericField) — A ML_Core.NumericField dataset representing the
matrix to be added.

PARAMETER atIndx ||| SET (UNSIGNED4) — The index under which to place this matrix in the
tensor data.

RETURN TABLE ({ SET (UNSIGNED4) indexes , REAL4 value }) — A TensorData
dataset with length the same as the NumericField data passed in.

24

SEE ML_Core.Types.NumericField

TOSCALAR toScalar

Tensor \ R4 \ dat \

REAL4 toScalar

(DATASET(TensData) tens, t_Indexes fromIndx = [])

Extract a scalar from a position within the Tensor data.

Note: If the tensor shape has 5 indexes, then fromIndex should be 5 long, as the scalar is extracted from
the actual tensor cell.

Example: REAL4 val := toScalar(myt_TensorDat, [1,3]); // Extract a cell from position [1,3] of a 2-D
tensor.

PARAMETER tens ||| TABLE (TensData) — A TensData dataset from which to extract.

PARAMETER fromIndx ||| SET (UNSIGNED4) — The index from which to extract the cell value.

RETURN REAL4 — The extracted value as a REAL4.

TOVECTOR toVector

Tensor \ R4 \ dat \

DATASET(NumericField) toVector

(DATASET(TensData) tens, t_Indexes fromIndx = [])

Extract a vector of values from a TensData dataset.

If the tensor shape has N terms, then the fromIndx should contain N-1 terms. It will return the cells:
[fromIndx, 1] through [fromIndx, M], where M is the last shape term.

25

The data is returned as a NumericField matrix with a single row (i.e. id = 1). This is used rather than a
SET to allow for sparse data. Only non-zero cells are returned. The number field indicates the position
within the vector.

Example: DATASET(NumericField) vec := toVector(myt_TensorDat, [5,2]); // Extract a vector from
[5,2] in the 3-D tensor data.

PARAMETER tens ||| TABLE (TensData) — The TensorData dataset from which to extract the
vector.

PARAMETER fromIndex ||| — the index from which to extract.

PARAMETER fromindx ||| SET (UNSIGNED4) — No Doc

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8
value }) — A vector as a single row of a NumericField matrix.

SEE ML_Core.Types.NumericField

TOMATRIX toMatrix

Tensor \ R4 \ dat \

DATASET(NumericField) toMatrix

(DATASET(TensData) tens, t_Indexes fromIndx = [])

Extract a matrix of values from a TensData dataset.

If the tensor shape has N terms, then the fromIndx should contain N-2 terms. It will return the cells:
[fromIndx, 1, 1] through [fromIndx, K, M], where K is the second to last shape term and M isthe last
shape term.

Example: myNF := toNumericField(myt_TensorDat, [3,11]); // Extract a matrix from a 4-D tensor data
dataset.

PARAMETER tens ||| TABLE (TensData) — The TensorData dataset from which to extract.

PARAMETER fromIndx ||| SET (UNSIGNED4) — The index from wich to extract the matrix.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED4 number , REAL8
value }) — A matrix in NumericField format.

26

SEE ML_Core.Types.NumericField

REPLICATE Replicate

Tensor \ R4 \

DATASET(t_Tensor) Replicate

(DATASET(t_Tensor) tens)

Replicate the Tensor Slices to all nodes of the cluster.

This is used to provide a copy of the Tensor on each node of the cluster.

PARAMETER tens ||| TABLE (t_Tensor) — A t_Tensor dataset to be replicated.

RETURN TABLE ({ UNSIGNED4 nodeId , UNSIGNED4 wi , UNSIGNED4 sliceId ,
SET (UNSIGNED4) shape , UNSIGNED4 dataType , UNSIGNED4 maxSliceSize ,
UNSIGNED4 sliceSize , SET (REAL4) denseData , TABLE (t_SparseDat)
sparseData }) — A replicated t_Tensor dataset. If the original dataset contained N slices, the
new dataset will contain N x nNodes slices.

MAKETENSOR MakeTensor

Tensor \ R4 \

DATASET(t_Tensor) MakeTensor

(t_Indexes shape, DATASET(TensData) contents = DATASET([],
TensData), BOOLEAN replicated = FALSE, UNSIGNED4 wi = 1, UNSIGNED4
forceMaxSliceSize = 0)

Make a Tensor from a set of TensorData and some meta-data.

Tensors may be replicated (e.g. copied locally to each node), or distributed (slices spread across nodes).

PARAMETER shape ||| SET (UNSIGNED4) — The desired shape of the Tensor (e.g. [10, 5, 2]).

27

PARAMETER contents ||| TABLE (TensData) — Dataset of TensData representing the contents of
the Tensor. If omitted, the tensor will be empty (i.e. all zeros).

PARAMETER replicated ||| BOOLEAN — True if this tensor is to be replicated to all nodes. Default
= False (i.e. distributed).

PARAMETER wi ||| UNSIGNED4 — Work-item. This field allows multiple Tensors to be stored in the
same dataset. Default = 1. This field should always be 1 for a single Tensor dataset. For a Tensor
list, wi should always go from 1 to nTensors.

PARAMETER forceMaxSliceSize ||| UNSIGNED4 — If non-zero, it will override the default sizing
of slices. Needed internally, but should always use the default (0) for external uses.

RETURN TABLE ({ UNSIGNED4 nodeId , UNSIGNED4 wi , UNSIGNED4 sliceId ,
SET (UNSIGNED4) shape , UNSIGNED4 dataType , UNSIGNED4 maxSliceSize ,
UNSIGNED4 sliceSize , SET (REAL4) denseData , TABLE (t_SparseDat)
sparseData }) — A dataset of t_Tensor representing the Tensor object.

GETDATA GetData

Tensor \ R4 \

DATASET(TensData) GetData

(DATASET(t_Tensor) tens)

Extract the data from a tensor and return it in sparse TensData format.

This is essentially the inverse of the MakeTensor(. . .) method.

PARAMETER tens ||| TABLE (t_Tensor) — The t_Tensor dataset from which to extract the data

RETURN TABLE (TensData) — TensData dataset of non-zero tensor data (sparse form).

RESHAPE Reshape

Tensor \ R4 \

28

Reshape

(DATASET(t_Tensor) tens, t_Indexes newShape)

Reshape a tensor to a new compatible shape.

Returns a new tensor with the desired shape.

If the shapes were not compatible, an empty tensor is returned.

PARAMETER tens ||| TABLE (t_Tensor) — The tensor to be reshaped.

PARAMETER newShape ||| SET (UNSIGNED4) — The desired new shape.

RETURN TABLE ({ UNSIGNED4 nodeId , UNSIGNED4 wi , UNSIGNED4 sliceId ,
SET (UNSIGNED4) shape , UNSIGNED4 dataType , UNSIGNED4 maxSliceSize ,
UNSIGNED4 sliceSize , SET (REAL4) denseData , TABLE (t_SparseDat)
sparseData }) — A new tensor with the desired shape, if the shapes were compatible.
Otherwise, an empty tensor.

ADD Add

Tensor \ R4 \

DATASET(t_Tensor) Add

(DATASET(t_Tensor) t1, DATASET(t_Tensor) t2)

Add two tensors.

This performs cell-wise addition of the contents of the two input tensors and returns a new tensor
representing the sum of the two tensors.

Both tensors must be of the same shape.

This function can also add two tensor lists. Each tensor of list 1 must be of the same shape as the
corresponding tensor in list 2. The lists must also be of the same length.

PARAMETER t1 ||| TABLE (t_Tensor) — The first tensor or tensor list.

PARAMETER t2 ||| TABLE (t_Tensor) — The second tensor or tensor list.

29

RETURN TABLE ({ UNSIGNED4 nodeId , UNSIGNED4 wi , UNSIGNED4 sliceId ,
SET (UNSIGNED4) shape , UNSIGNED4 dataType , UNSIGNED4 maxSliceSize ,
UNSIGNED4 sliceSize , SET (REAL4) denseData , TABLE (t_SparseDat)
sparseData }) — A new Tensor (DATASET(t_Tensor)) representing t1 + t2.

GETRECORDCOUNT GetRecordCount

Tensor \ R4 \

UNSIGNED GetRecordCount

(DATASET(t_Tensor) tens)

Get the number of records in a record-oriented Tensor.

PARAMETER tens ||| TABLE (t_Tensor) — The input Tensor.

RETURN UNSIGNED8 — The number of records in the distributed tensor.

ALIGNTENSORS AlignTensors

Tensor \ R4 \

DATASET(t_Tensor) AlignTensors

(DATASET(t_Tensor) tensList)

Aligns a list of Tensors (seperated by wi) so that all of the tensors’ corresponding records are stored on
the same node. This prevents different sized records from being distributed differently among the nodes.

In most cases, the inputs and outputs to a neural network during training, and the inputs during
prediction should be aligned so that various aspects of the same observation are presented together.

PARAMETER tens ||| — A Tensor List with at least two tensors identified by sequential work item ids
from 1-N.

PARAMETER tenslist ||| TABLE (t_Tensor) — No Doc

30

RETURN TABLE (t_Tensor) — A new Tensor List with the same number of tensors as the input
list, with all of the tensors being aligned.

31

Types

Go Up

DESCRIPTIONS

TYPES Types

Types

Type definitions for use with the GNNI Interface.

Children

1. metrics : Return structure for call to EvaluateMod

2. FuncLayerDef : Record to use for defining complex (i.e

METRICS metrics

Types \

metrics

Return structure for call to EvaluateMod.

Contains a series of metrics and their values.

FIELD metricId ||| UNSIGNED4 — A sequential id to maintain the metrics’ order.

FIELD metricName ||| STRING — The Keras name identifying the metric.

FIELD value ||| REAL8 — The value of the metric.

32

FUNCLAYERDEF FuncLayerDef

Types \

FuncLayerDef

Record to use for defining complex (i.e. Non-Sequential, Functional) models using the
DefineFuncModel() GNNI method.

FIELD layername ||| STRING — No Doc

FIELD layerdef ||| STRING — No Doc

FIELD predecessors ||| SET (STRING) — No Doc

33

Utils

Go Up

IMPORTS

GNN.Tensor |

DESCRIPTIONS

UTILS Utils

Utils

Utility module for GNN. Contains various utility functions for use with GNN.

Children

1. ToOneHot : Convert Tensor Data to OneHot Encoding

2. FromOneHot : Convert One Hot encoded 2-D tensor data to class label format

3. Probabilities2Class : Convert a set of class probabilities to a class label
Class probabilities are typically returned from a ”softmax” activation function

TOONEHOT ToOneHot

Utils \

34

DATASET(TensDat) ToOneHot

(DATASET(TensDat) classDat, UNSIGNED numClasses)

Convert Tensor Data to OneHot Encoding.

Input is a 1-D tensor data set with the value of each observation being the class.

Returns a 2-D TensDat dataset with numClasses being the cardinality of the 2nd dimension. The value
will be 1 for the cell with second dimension corresponding to the class. All others will be zero. Since
TensDat is a sparse format, all zero cells will be skipped.

Note that Classes are 0-based. Class 0 will be at final index = 1. Class 5 will be at final index = 6.

PARAMETER classDat ||| TABLE (TensDat) — A 1-D tensor with the index being the observation
number, and the value ((0-(numClasses-1)) corresponds to the class label.

PARAMETER numClasses ||| UNSIGNED8 — The number of possible values for the class variable.

RETURN TABLE ({ SET (UNSIGNED4) indexes , REAL4 value }) — A 2-D set of
TensData one hot encoded.

SEE Tensor.R4.TensData

FROMONEHOT FromOneHot

Utils \

DATASET(TensDat) FromOneHot

(DATASET(TensDat) ohTens)

Convert One Hot encoded 2-D tensor data to class label format.

Input is a 2-D One Hot encoded TensDat dataset, as produced by ToOneHot above.

Output is a 1-D set of class labels corresponding to the highest value of the One Hot encoded fields for
each observation.

Note that returned classes are zero based.

PARAMETER ohTens ||| TABLE (TensDat) — A one hot encoded 2-D tensor data set.

35

RETURN TABLE ({ SET (UNSIGNED4) indexes , REAL4 value }) — A 1-D dataset of
TensData with the value of each observation being the class label.

SEE Tensor.R4.TensData

PROBABILITIES2CLASS Probabilities2Class

Utils \

DATASET(TensDat) Probabilities2Class

(DATASET(TensDat) td)

Convert a set of class probabilities to a class label

Class probabilities are typically returned from a ”softmax” activation function. This returns the class
label associated with the maximum probability label.

Note that this function simply calls FromOneHot, which implements this functionality. Both names are
included because it is sometimes more intuitive to think of the operation in different ways.

PARAMETER td ||| TABLE (TensDat) — A 2-D tensor data set with a probability for each class.

RETURN TABLE ({ SET (UNSIGNED4) indexes , REAL4 value }) — A 1-D dataset of
TensData with a class label for each observation.

SEE FromeOneHot

SEE Tensor.R4.TensData

36

