Go Up

<table>
<thead>
<tr>
<th>Name</th>
<th>KMeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.0.1</td>
</tr>
<tr>
<td>Description</td>
<td>KMeans Bundle for Clustering algorithm</td>
</tr>
<tr>
<td>License</td>
<td>http://www.apache.org/licenses/LICENSE-2.0</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright (C) 2019 HPCC Systems</td>
</tr>
<tr>
<td>Authors</td>
<td>HPCCSystems</td>
</tr>
<tr>
<td>DependsOn</td>
<td>ML_Core 3.2.2</td>
</tr>
<tr>
<td>Platform</td>
<td>6.4.0</td>
</tr>
</tbody>
</table>

Table of Contents

KMeans.ecl
Classic KMeans Clustering

Types.ecl
Type definition module for KMeans

Test
KMeans

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core | _versions.ML_Core.V3_2_2.ML_Core.Types | _versions.ML_Core.V3_2_2.ML_Core.ModelOps2 | _versions.PBblas.V3_0_2.PBblas.Types | Types.KMeans_Model | Types.KMeans_Model.Ind1 |

DESCRIPTIONS

KMEANS KMeans

/ EXPORT KMeans

(INTEGER max_iter = 100 , REAL t = 0.00001)

Classic KMeans Clustering.

Clustering Algorithms are a branch of unsupervised machine learning algorithms. They automatically categorize observations(points) into groups without pre-defined labels. KMeans[1] is one of the most well-known clustering algorithms. Given the data points for clustering and the K initial centroids of each cluster, the KMeans algorithm can automatically group each sample into one cluster.

KMeans is a popular clustering method for cluster analysis in data mining. It iteratively update the cluster centroids until it reaches the tolerance. KMeans module is both highly data scalable and model scalable on HPCC Systems Platform.

PARAMETER **max_iter** || INTEGER8 — The maximum number of iterations to run KMeans. It’s an integer scalar value. The default value is 100.

PARAMETER **t** || REAL8 — The convergence tolerance. It’s a real value scalar. KMeans will stop iterating when center movement of each cluster is smaller than t between two consecutive iterations. The default value is 0.00001.

Children

1. **Fit** : Train and return a KMeans model
2. **Centers** : Extract the final coordinates of the centers of each cluster from the trained model
3. **Predict** : Compute the cluster center for each new sample
4. **Labels** : Function Labels() computes the closest center of each training sample from the trained Model
5. **Iterations** : Extract the number of iterations that each work item took to converge, from the provided model

FIT **Fit**

KMeans \[\]

<table>
<thead>
<tr>
<th>Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DATASET(Types.NumericField) sampleset, DATASET(Types.NumericField) initCentroids)</td>
</tr>
</tbody>
</table>

Train and return a KMeans model.

Fit function takes the samples and initial centroids as inputs and returns a trained KMeans model.

PARAMETER **sampleset** || TABLE (NumericField) — The samples to be clustered in DATASET(NumericField) format. Each observation (e.g. record) is identified by ’id’, and each feature is identified by field number (i.e. ’number’).

PARAMETER **initCentroids** || TABLE (NumericField) — The initial K centroids for clustering in DATASET(NumericField) format. Each observation (e.g. record) is identified by ’id’, and each feature is identified by field number.

RETURN TABLE ({ UNSIGNED2 wi , REAL8 value , SET (UNSIGNED4) indexes }) — KMeans Model in the format of ML_Core.Types.Layout_Model2.
Centers

KMeans \[
\begin{array}{l}
| \text{Centers} \\
| \hline
| (\text{DATASET(Types.Layout_Model2) mod}) \\
\end{array}
\]

Extract the final coordinates of the centers of each cluster from the trained model.

PARAMETER \(\text{mod} \) \(\text{|||} \) TABLE (Layout_Model2) — The fitted/trained KMeans model.

RETURN TABLE (\{UNSIGNED2 \(wi \), UNSIGNED8 \(id \), UNSIGNED4 \(number \), REAL8 \(value \}\}) — centers The Final coordinates of the center of each cluster in NumericField format.

SEE ML_Core.Types.NumericField

Predict

KMeans \[
\begin{array}{|l|}
| \hline
| \text{DATASET(KTypes.Labels)} \text{ Predict} \\
| \hline
| (\text{DATASET(Types.Layout_Model2) mod, DATASET(Types.NumericField) newSamples}) \\
| \hline
\end{array}
\]

Compute the cluster center for each new sample.

PARAMETER \(\text{mod} \) \(\text{|||} \) TABLE (Layout_Model2) — The fitted/trained KMeans model.

PARAMETER \(\text{newSamples} \) \(\text{|||} \) TABLE (NumericField) — The new samples to be clustered.
Function `Labels()` computes the closest center of each training sample from the trained Model.

PARAMETER `mod` ||| TABLE (Layout_Model2) — The fitted/trained KMeans model.

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED8 label }) — The closest center index for each training sample.

SEE Types.KMeans_Model.Labels

ITERATIONS Iterations

Extract the number of iterations that each work item took to converge, from the provided model.

PARAMETER `mod` ||| TABLE (Layout_Model2) — The fitted/trained KMeans model.
RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 iters }) — iterations The total number of iterations for each wi.

SEE Types.KMeans_Model.n_Iters
Types

Go Up

IMPORTS

_imports.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

TYPES Types

| Types |

Type definition module for KMeans.

Children

1. KMeans_Model : Definition of the meaning of the indexes of the KMeans Model variables

KMEANS_MODEL KMeans_Model

| Types | KMeans_Model |

Definition of the meaning of the indexes of the KMeans Model variables.
Ind1 enumerates the first index, which is used to determine which type of data is stored:

- Centers stores the list of centers of clusters. The second index is the centerID. The third index is the number field of the center.

- samples stores the set of sample indexes (i.e. ids) associated with each centerId. The value is the Id of its closest center.

- Iterations stores the iterations associated with each wi. It represents how many iteration runs of each wi before it stops iterating. It does not have following index.

Children

1. **Ind1** : Index 1 represents the category of data within the model

2. **Centers_Indexes** : Centers_Indexes enumerates the second and third indexes of each center which is the parent index

3. **Samples_Indexes** : Samples_Indexes enumerates the indexes of each sample which is the parent index

4. **Labels** : Labels format defines the distance space where each cluster defined by a center and its closest samples

5. **n_iters** : The number of iterations for which each work item was trained

IND1 Ind1

Types \ KMeans_Model \ Ind1

Index 1 represents the category of data within the model.

VALUE reserved = 1. Reserved for future use.

VALUE centers = 2. The set of tree nodes within the model.

VALUE samples = 3. The particular record ids that are included in tree’s sample.

VALUE iterations = 4. The iteration runs of each wi.

Children
1. **reserved**: No Documentation Found
2. **centers**: No Documentation Found
3. **samples**: No Documentation Found
4. **iterations**: No Documentation Found

RESERVED reserved

Types \ KMeans_Model \ Ind1 \

<table>
<thead>
<tr>
<th>CTypes.t_index</th>
<th>reserved</th>
</tr>
</thead>
</table>

No Documentation Found

RETURN UNSIGNED4 —

CENTERS centers

Types \ KMeans_Model \ Ind1 \

<table>
<thead>
<tr>
<th>CTypes.t_index</th>
<th>centers</th>
</tr>
</thead>
</table>

No Documentation Found

RETURN UNSIGNED4 —

SAMPLES samples

Types \ KMeans_Model \ Ind1 \
| CTypes.t_index | samples |

No Documentation Found

RETURN UNSIGNED4 —

ITERATIONS iterations

Types \ KMeans_Model \ Ind1 \

| CTypes.t_index | iterations |

No Documentation Found

RETURN UNSIGNED4 —

CENTERS_INDEXES Centers_Indexes

Types \ KMeans_Model \\

| Centers_Indexes |

Centers_Indexes enumerates the second and third indexes of each center which is the parent index. The parent index value is 2. It is used to store the id and the field value of each center.

RETURN UNSIGNED2 —

VALUE id = 2. The center identifier.

VALUE number = 3. The field identifier.
Samples_Indexes enumerates the indexes of each sample which is the parent index. The parent index value is 3. It is used to store the sampleID. The value is the Id of its closest center.

```
RETURN UNSIGNED2 —
```

```
VALUE id = 2. The sample identifier.
```

Labels format defines the distance space where each cluster defined by a center and its closest samples.

```
FIELD wi ||| UNSIGNED2 — The model identifier.
FIELD id ||| UNSIGNED8 — The sample identifier.
FIELD label ||| UNSIGNED8 — The identifier of the closest center to the sample.
```

The number of iterations for which each work item was trained.
FIELD \texttt{wi} \ | \ | \ UNSIGNED2 — The work item id.
FIELD \texttt{iters} \ | \ | \ UNSIGNED8 — The number of iterations.
Test

Go Up

Table of Contents

<table>
<thead>
<tr>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
</tr>
<tr>
<td>Validation</td>
</tr>
</tbody>
</table>
DSIris.ecl

The file provide the information of the testing dataset: Public Dataset Iris

Children

1. Layout: No Documentation Found
2. ds: No Documentation Found
3. sklearn_rst: No Documentation Found
4. sklearn_converge: No Documentation Found
5. sklearn_alleg: No Documentation Found
No Documentation Found

FIELD sepal_length | REAL8 — No Doc
FIELD sepal_width | REAL8 — No Doc
FIELD petal_length | REAL8 — No Doc
FIELD petal_width | REAL8 — No Doc
FIELD class | REAL8 — No Doc

RETURN TABLE (Layout) —

No Documentation Found

SKLEARN_RST sklearn_rst

No Documentation Found
RETURN TABLE ({ INTEGER8 id, REAL8 sepal_length, REAL8 sepal_width, REAL8 petal_length, REAL8 petal_width }) —

SKLEARN_CONVERGE sklearn_converge

DSIris \

| sklearn_converge |

No Documentation Found

RETURN INTEGER8 —

SKLEARN_ALLEG sklearn_alleg

DSIris \

| sklearn_alleg |

No Documentation Found

RETURN TABLE ({ INTEGER8 id, INTEGER8 y }) —
Validation