
root

Go Up

Name TextVectors
Version 1.0.0
Description Text Vectorization for words and sentences
License http://www.apache.org/licenses/LICENSE-2.0
Copyright Copyright (C) 2019 HPCC Systems
Authors HPCCSystems
DependsOn ML_Core 3.2.0
Platform 7.0.0

Table of Contents

Types.ecl

Common Type definitions for TextVectors bundle

Internal

1

http://www.apache.org/licenses/LICENSE-2.0


Types

Go Up

DESCRIPTIONS

TYPES Types

Types

Common Type definitions for TextVectors bundle

Children

1. t_WordId : Type definition for a Word Id attribute

2. t_SentId : Type definition for a Sentence Id attribute

3. t_TextId : Type definition for an attribute that can hold either a Word Id

4. t_Vector : Type definition for a vector attribute (used for Word or Sentence Vectors)

5. t_Word : Type definition for the text of a Word

6. t_Sentence : Type definition for the text of a Sentence

7. t_ModRecType : Enumeration of the record type for a Text Model

8. Sentence : Dataset Record to hold a Sentence

9. SentInfo : Sentence Information record, including the sentence vector

10. Word : Dataset Record to hold a Word

11. WordInfo : Dataset record to hold information about a word, including its vector, number of
occurrences in the corpus, and discard probability

12. Vector : Dataset record to hold a sentence or word vector

13. TextMod : Record definition for the TextVectors Model

14. Closest : Used to return a set of closest items (words or sentences) for each of a given set of items
to match

2



15. TrainStats : Record to hold the return values from GetTrainStats function

T_WORDID t_WordId

Types \

t_WordId

Type definition for a Word Id attribute

RETURN UNSIGNED4 —

T_SENTID t_SentId

Types \

t_SentId

Type definition for a Sentence Id attribute.

RETURN UNSIGNED8 —

T_TEXTID t_TextId

Types \

t_TextId

Type definition for an attribute that can hold either a Word Id. or a Sentence Id.

3



RETURN UNSIGNED8 —

T_VECTOR t_Vector

Types \

t_Vector

Type definition for a vector attribute (used for Word or Sentence Vectors).

RETURN SET ( REAL8 ) —

T_WORD t_Word

Types \

t_Word

Type definition for the text of a Word.

RETURN STRING —

T_SENTENCE t_Sentence

Types \

t_Sentence

Type definition for the text of a Sentence.

4



RETURN STRING —

T_MODRECTYPE t_ModRecType

Types \

t_ModRecType

Enumeration of the record type for a Text Model.

RETURN UNSIGNED1 —

SENTENCE Sentence

Types \

Sentence

Dataset Record to hold a Sentence.

FIELD sentId ||| UNSIGNED8 — The numeric record id for this sentence.

FIELD text ||| STRING — The text content of the sentence.

SENTINFO SentInfo

Types \

SentInfo

Sentence Information record, including the sentence vector.

5



FIELD sentId ||| UNSIGNED8 — The numeric record id for this sentence.

FIELD text ||| STRING — The text content of the sentence.

FIELD vec ||| SET ( REAL8 ) — The Text Vector for the sentence.

WORD Word

Types \

Word

Dataset Record to hold a Word.

FIELD id ||| UNSIGNED4 — The numeric record id for this word.

FIELD text ||| STRING — The text content of the word.

WORDINFO WordInfo

Types \

WordInfo

Dataset record to hold information about a word, including its vector, number of occurrences in the
corpus, and discard probability.

FIELD wordId ||| UNSIGNED4 — The numeric record id for this word.

FIELD text ||| STRING — The text content of the sentence.

FIELD occurs ||| UNSIGNED4 — The number of times this word occurs in the Corpus.

FIELD pdisc ||| REAL8 — The computed probability of discard, based on the frequency of the word in
the corpus.

FIELD vec ||| SET ( REAL8 ) — The Text Vector for the word.

6



VECTOR Vector

Types \

Vector

Dataset record to hold a sentence or word vector.

FIELD id ||| UNSIGNED4 — The record id for this vector.

FIELD vec ||| SET ( REAL8 ) — The contents of the vector.

TEXTMOD TextMod

Types \

TextMod

Record definition for the TextVectors Model. Text Model contains both the word and sentence vectors
for the trained corpus.

FIELD typ ||| UNSIGNED1 — The type of the record – Word or Sentence (see t_ModRecType above).

FIELD id ||| UNSIGNED8 — The id of the word or sentence.

FIELD text ||| STRING — The textual content of the item (word or sentence).

FIELD vec ||| SET ( REAL8 ) — The vector for the word or sentence.

CLOSEST Closest

Types \

Closest

7



Used to return a set of closest items (words or sentences) for each of a given set of items to match.
Closest contains the set of closest items, while Similarity is the cosine similarity between the text
sentence and each of the closest items. For example, Similarity[1] is the Cosine similarity between Text
and Closest[1]. Likewise for each of the K items in Closest and Similarity.

FIELD id ||| UNSIGNED8 — The id of the word or sentence.

FIELD text ||| STRING — The text of the word or sentence

FIELD closest ||| SET ( STRING ) — The text of the K closest words or sentence.

FIELD similarity ||| SET ( REAL8 ) — The cosine similarity between this word / sentence and each
of the K closest words or sentences. This set corresponds 1:1 to the contents of the ’closest’ field.

TRAINSTATS TrainStats

Types \

TrainStats

Record to hold the return values from GetTrainStats function. This records describes the set of
parameters used for the current training session.

FIELD vecLen ||| UNSIGNED4 — The dimensionality of the word and sentence vectors.

FIELD nWeights ||| UNSIGNED4 — The number of weights needed to train the word vectors.

FIELD nSlices ||| UNSIGNED4 — The number of slices used to hold the weights.

FIELD sliceSize ||| UNSIGNED4 — The number of weights in each weight Slice.

FIELD nWords ||| UNSIGNED4 — The number of words in the vocabulary including N-Grams.

FIELD nSentences ||| UNSIGNED8 — The number of sentences in the Corpus.

FIELD maxNGramSize ||| UNSIGNED4 — The maximum N-Gram size to consider.

FIELD nEpochs ||| UNSIGNED4 — The maximum number of epochs for which to train. Zero
(default) means auto-compute.

FIELD negSamples ||| UNSIGNED4 — The number of negative samples used in training for each
training sample.

FIELD batchSize ||| UNSIGNED4 — The batch size used to train the vectors. Zero (default) indicates
auto-compute.

8



FIELD minOccurs ||| UNSIGNED4 — The minimum number of occurrences in the Corpus in order
for a word to be considered part of the vocabulary.

FIELD maxTextDist ||| UNSIGNED4 — The maximum number of edits (in edit distance) to make in
matching a previously unseen word to a word in the vocabulary.

FIELD maxNumDist ||| UNSIGNED4 — The maximum numeric distance to consider one previously
unseen number a match for a number in the vocabulary.

FIELD discardThreshold ||| REAL4 — Words with frequency below this number are never discarded
from training data. Words with frequency above this number are stochastically sampled, based on
their frequency.

FIELD learningRate ||| REAL4 — The learning rate used to train the Neural Network.

FIELD upb ||| UNSIGNED4 — Updates per batch. The approximate number of weights that are
updated across all nodes during a single batch.

FIELD upbPerNode ||| UNSIGNED4 — Updates per batch per node. The number of weights
updated by each node during a single batch.

FIELD updateDensity ||| REAL4 — The proportion of weights updated across all nodes during a
single batch.

FIELD udPerNode ||| REAL4 — The proportion of weights updated by a single node during a single
batch.

9



Internal

Go Up

Table of Contents

Corpus.ecl

Analyze a corpus of sentences to support vectorization activities

svTrainNN.ecl

Neural Network Training for SentenceVectors

svUtils.ecl

Various utility functions used by TextVectors

Weights.ecl

Module to perform calculations to manage the weights, and their storage as slices

10



Internal/

Corpus

Go Up

IMPORTS

Types | std.Str | std.system.Thorlib |

DESCRIPTIONS

CORPUS Corpus

Corpus

(DATASET(Sentence) sentences_in=DATASET([], Sentence), UNSIGNED4 wordNGrams = 1,
REAL4 discThreshold = .0001, UNSIGNED4 minOccurs = 5, UNSIGNED4 dropoutK = 3)

Analyze a corpus of sentences to support vectorization activities.

Tokenizes sentences into words, provides a Vocabulary of unique words, and supports conversion of
sentences into training data.

PARAMETER wordNGrams ||| UNSIGNED4 — The maximum sized NGram to generate. 1
indicates unigrams only. 2 indicates unigrams and bigrams. 3 indicates uni, bi, and trigrams.
Defaults to 1 (unigrams only).

PARAMETER discThreshold ||| REAL4 — Discard threshold. Words with frequency greater than or
equal to this number are probabilistically discarded based on their frequency. Words with
frequencies below this threshold are never discarded (Default .0001).

PARAMETER minOccurs ||| UNSIGNED4 — Words that occur less than this number of times in the
corpus are eliminated (Default 5). Words with very few occurrences in the corpus may not get
properly trained due to lack of context.

11



PARAMETER dropoutK ||| UNSIGNED4 — The number of NGrams to drop from a sentence (per
Sent2Vec paper). Default 3.

PARAMETER sentences_in ||| TABLE ( Sentence ) — No Doc

Children

1. sentences : Return a dataset of Sentences, distributed evenly

2. getNGrams : Produce a series of nGrams from the set of words in a sentence

3. sent2wordList : Convert a sentence to a list of words (including n-grams if requested)

4. tokenizedSent : Each sentence transformed to a word list

5. VocabSize : The size of the vocabulary

6. wordCount : No Documentation Found

7. Vocabulary : The set of all the unique words in the corpus

8. wordIdList : No Documentation Found

9. WordList2WordIds : Convert a list of textual words making up a sentence to a set of ids
representing each word’s wordId in the vocabulary

10. GetTraining : Generate training data based on the corpus

11. NegativesTable : Negatives Table is a record containing the discard probability of each word in the
vocabulary as a single SET, indexed by the wordId

SENTENCES sentences

Corpus \

sentences

Return a dataset of Sentences, distributed evenly.

RETURN TABLE ( Sentence ) —

12



GETNGRAMS getNGrams

Corpus \

SET OF VARSTRING getNGrams

(SET OF VARSTRING words, UNSIGNED4 ngrams, UNSIGNED4 dropoutk = 0)

Produce a series of nGrams from the set of words in a sentence. For example, if the parameter ngrams is
three, it will produce the set of Bigrams (i.e. 2grams) as well as the set of Trigrams (i.e. 3grams).
Ngrams are formatted as _Word1_Word2_Word3. Given the sentence [’the’, ’quick’, ’brown’, ’fox’] and
ngrams set to 3, it will return: [’_the_quick’, ’_quick_brown’, ’_brown_fox’, ’_the_quick_brown’,
’_quick_brown_fox’].

PARAMETER words ||| SET ( VARSTRING ) — No Doc

PARAMETER ngrams ||| UNSIGNED4 — No Doc

PARAMETER dropoutk ||| UNSIGNED4 — No Doc

RETURN SET ( VARSTRING ) —

SENT2WORDLIST sent2wordList

Corpus \

DATASET(WordList) sent2wordList

(DATASET(Sentence) sent)

Convert a sentence to a list of words (including n-grams if requested). Strip out punctuation, cleanup
whitespace, and split the words.

PARAMETER sent ||| TABLE ( Sentence ) — No Doc

RETURN TABLE ( { UNSIGNED4 sentId , SET ( STRING ) words } ) —

13



TOKENIZEDSENT tokenizedSent

Corpus \

DATASET(WordList) tokenizedSent

Each sentence transformed to a word list.

VOCABSIZE VocabSize

Corpus \

VocabSize

The size of the vocabulary

RETURN INTEGER8 —

WORDCOUNT wordCount

Corpus \

wordCount

No Documentation Found

RETURN INTEGER8 —

VOCABULARY Vocabulary

Corpus \

14



Vocabulary

The set of all the unique words in the corpus. Note: returned vocabulary is distributed by
HASH32(text), and sorted by text.

RETURN TABLE ( { UNSIGNED4 wordId , STRING text , UNSIGNED4 occurs ,
REAL8 pdisc , SET ( REAL8 ) vec } ) —

WORDIDLIST wordIdList

Corpus \

wordIdList

No Documentation Found

FIELD sentid ||| UNSIGNED4 — No Doc

FIELD ord ||| UNSIGNED2 — No Doc

FIELD wordids ||| SET ( UNSIGNED4 ) — No Doc

FIELD pdisc ||| REAL4 — No Doc

WORDLIST2WORDIDS WordList2WordIds

Corpus \

DATASET(wordIdList) WordList2WordIds

(DATASET(WordList) sent)

Convert a list of textual words making up a sentence to a set of ids representing each word’s wordId in
the vocabulary.

PARAMETER sent ||| TABLE ( WordList ) — No Doc

15



RETURN TABLE ( { UNSIGNED4 sentId , UNSIGNED2 ord , SET ( UNSIGNED4 )
wordIds , REAL4 pdisc } ) —

GETTRAINING GetTraining

Corpus \

DATASET(TrainingDat) GetTraining

Generate training data based on the corpus. Each record is a main word and a set of context words
(words that occur with that word in a sentence).

NEGATIVESTABLE NegativesTable

Corpus \

NegativesTable

Negatives Table is a record containing the discard probability of each word in the vocabulary as a single
SET, indexed by the wordId. It is not currently used but is left here for possible future use.

16



Internal/

svTrainNN

Go Up

IMPORTS

Types |

DESCRIPTIONS

SVTRAINNN svTrainNN

STREAMED DATASET(SliceExt) svTrainNN

(STREAMED DATASET(SliceExt) wts, STREAMED
DATASET(trainingDat) train, UNSIGNED4 slicesize,
UNSIGNED4 nWeights, UNSIGNED4 numwords, UNSIGNED4 dim,
UNSIGNED4 mbsize, REAL lr, UNSIGNED4 negsamp)

Neural Network Training for SentenceVectors.

Train specialized SentenceVector neural network given a batch of training data. Takes in weights as a set
of weights slices (SliceExt), and returns a set of weight adjustments, also formatted as slices.

PARAMETER wts ||| TABLE ( SliceExt ) — The weights slices.

PARAMETER train ||| TABLE ( TrainingDat ) — The batch of training data formatted as a main
word and set of context words.

PARAMETER slicesize ||| UNSIGNED4 — The maximum number of weights in a slice.

PARAMETER nWeights ||| UNSIGNED4 — The total number of weights across all slices.

PARAMETER numwords ||| UNSIGNED4 — The number of words in the vocabulary.

17



PARAMETER dim ||| UNSIGNED4 — The dimensionality of the vectors being trained

PARAMETER mbsize ||| UNSIGNED4 — The number of training records in the mini-batch.

PARAMETER lr ||| REAL8 — The learning rate to use for this batch.

PARAMETER negsamp ||| UNSIGNED4 — The number of negative samples to choose for each main
word.

RETURN TABLE ( SliceExt ) — weight updates as DATASET(SliceExt). Note that these are
additive changes to the weights, not the final weight values.

18



Internal/

svUtils

Go Up

IMPORTS

Types |

DESCRIPTIONS

SVUTILS svUtils

svUtils

Various utility functions used by TextVectors

Children

1. normalizeVector : Normalize a vector by dividing by the its length to create a unit vector

2. calcSentVector : Calculate a Sentence Vector by taking the average of the word vectors for all
words in the sentence

3. cosineSim : Cosine similarity a and b are unit vectors

4. isNumeric : Returns TRUE if a string represents a number (integer)

5. numDistance : Calculates the numeric distance between two numeric strings as ABS(n1 - n2)

6. addVecs : Implements vec1 + (vec2 * multiplier) Allows (potentially) scaled addition of vectors as
well as subtraction (using a negative multiplier

19



NORMALIZEVECTOR normalizeVector

svUtils \

t_Vector normalizeVector

(t_Vector vec)

Normalize a vector by dividing by the its length to create a unit vector

PARAMETER vec ||| SET ( REAL8 ) — No Doc

RETURN SET ( REAL8 ) —

CALCSENTVECTOR calcSentVector

svUtils \

t_Vector calcSentVector

(t_Vector wordvecs, UNSIGNED2 veclen)

Calculate a Sentence Vector by taking the average of the word vectors for all words in the sentence.

PARAMETER wordvecs ||| SET ( REAL8 ) — A concatenated set of vectors for all the words in the
sentence.

PARAMETER veclen ||| UNSIGNED2 — The length of each word vector and the resulting sentence
vector.

RETURN SET ( REAL8 ) —

COSINESIM cosineSim

svUtils \

20



REAL8 cosineSim

(t_Vector a_in, t_Vector b_in, UNSIGNED4 veclen)

Cosine similarity a and b are unit vectors. Theta is the angle between vectors. Cosine similarity is
Cos(theta). Cos(theta) = (a . b) / (L2Norm(a) * L2Norm(b)) Note: a . b = L2Norm(a) * L2Norm(b) *
Cos(theta) Since we assume the inputs to be unit vectors, the norms will be 1. We therefore simplify the
calculation to a . b.

PARAMETER a_in ||| SET ( REAL8 ) — No Doc

PARAMETER b_in ||| SET ( REAL8 ) — No Doc

PARAMETER veclen ||| UNSIGNED4 — No Doc

RETURN REAL8 —

ISNUMERIC isNumeric

svUtils \

BOOLEAN isNumeric

(STRING instr)

Returns TRUE if a string represents a number (integer). Otherwise FALSE.

PARAMETER instr ||| STRING — No Doc

RETURN BOOLEAN —

NUMDISTANCE numDistance

svUtils \

UNSIGNED4 numDistance

(VARSTRING str1, VARSTRING str2)

21



Calculates the numeric distance between two numeric strings as ABS(n1 - n2).

PARAMETER str1 ||| VARSTRING — No Doc

PARAMETER str2 ||| VARSTRING — No Doc

RETURN UNSIGNED4 —

ADDVECS addVecs

svUtils \

t_Vector addVecs

(t_Vector vec1, t_Vector vec2, UNSIGNED4 multiplier = 1)

Implements vec1 + (vec2 * multiplier) Allows (potentially) scaled addition of vectors as well as
subtraction (using a negative multiplier.

PARAMETER vec1 ||| SET ( REAL8 ) — No Doc

PARAMETER vec2 ||| SET ( REAL8 ) — No Doc

PARAMETER multiplier ||| UNSIGNED4 — No Doc

RETURN SET ( REAL8 ) —

22



Internal/

Weights

Go Up

IMPORTS

Types | std.system.Thorlib |

DESCRIPTIONS

WEIGHTS weights

weights

(SET OF INTEGER4 shape)

Module to perform calculations to manage the weights, and their storage as slices.

Weights are stored in fixed size slices for ease of distribution and management. Currently only supports 3
layer Neural Network weights as used in word vectorization. Will need to be extended to handle a
general Neural Network shape.

PARAMETER shape ||| SET ( INTEGER4 ) — The number of neurons in each layer of the Neural
Network. For example, [100, 10, 200] describes a neural network with 100 neurons in the input
layer, 10 in the hidden layer, and 200 in the output layer.

Children

1. nWeights : The total number of weights in the network

2. toFlatIndex : Convert the compound index: (layer, j, i) to a contiguous flat index into a set of
weights

23



3. fromFlatIndex : Convert a flat index into a list of weights into a compound index into the weights
of the neural network: (layer, j, i)

4. slicesPerNode : The number of slices needed for each node

5. nSlices : The total number of slices used to hold the weights

6. sliceSize : The number of weights in each slice

7. nWeightSlots : The number of slots to hold weights across all slices

8. initWeights : Return an initial set of weight slices with weights set to random values

9. distributeAllSlices : Copy weights to all nodes and assign the node id to the copy on each node

10. toSliceExt : Make Extended Weights

11. fromSliceExt : Take a set of Extended Weight slices (i.e

12. slices2Linear : Convert a dataset of replicated slices (SliceExt) into a single SliceExt replicated on
each node and containing one linear array (i.e

13. compressOne : Compress a set of weights (assumed to be sparse) by converting to a sparse
representation [. . . ] packed into a DATA field

14. decompressOne : Decompress a set of compressed weights in sparse format (i.e

15. compressWeights : Compress a set of extended slices (e.g

16. decompressWeights : Decompress a set of compressed slices into the native extended slice format

NWEIGHTS nWeights

weights \

nWeights

The total number of weights in the network

RETURN INTEGER8 —

24



TOFLATINDEX toFlatIndex

weights \

UNSIGNED4 toFlatIndex

(UNSIGNED2 l, UNSIGNED4 j, UNSIGNED4 i)

Convert the compound index: (layer, j, i) to a contiguous flat index into a set of weights.

PARAMETER l ||| UNSIGNED2 — No Doc

PARAMETER j ||| UNSIGNED4 — No Doc

PARAMETER i ||| UNSIGNED4 — No Doc

RETURN UNSIGNED4 —

FROMFLATINDEX fromFlatIndex

weights \

wIndex fromFlatIndex

(UNSIGNED4 indx)

Convert a flat index into a list of weights into a compound index into the weights of the neural network:
(layer, j, i).

PARAMETER indx ||| UNSIGNED4 — No Doc

RETURN ROW ( wIndex ) —

SLICESPERNODE slicesPerNode

weights \

25



slicesPerNode

The number of slices needed for each node

RETURN INTEGER8 —

NSLICES nSlices

weights \

nSlices

The total number of slices used to hold the weights.

RETURN INTEGER8 —

SLICESIZE sliceSize

weights \

sliceSize

The number of weights in each slice.

RETURN INTEGER8 —

NWEIGHTSLOTS nWeightSlots

weights \

26



nWeightSlots

The number of slots to hold weights across all slices. This may be different from nWeights because
nWeights does not always divide exactly into nSlices.

RETURN INTEGER8 —

INITWEIGHTS initWeights

weights \

DATASET(slice) initWeights

Return an initial set of weight slices with weights set to random values.

DISTRIBUTEALLSLICES distributeAllSlices

weights \

DATASET(SliceExt) distributeAllSlices

(DATASET(SliceExt) slices)

Copy weights to all nodes and assign the node id to the copy on each node.

If running on 7.2 or greater, use the DISTRIBUTE(.., ALL) facility. Otherwise, use NORMALIZE to
make copies of each and assign nodeId, then DISTRIBUTE by nodeId.

PARAMETER slices ||| TABLE ( SliceExt ) — No Doc

RETURN TABLE ( { UNSIGNED2 nodeId , UNSIGNED2 sliceId , REAL4 loss , REAL4
minLoss , UNSIGNED4 minEpoch , UNSIGNED4 maxNoProg , UNSIGNED8
batchPos , SET ( REAL8 ) weights } ) —

27



TOSLICEEXT toSliceExt

weights \

DATASET(SliceExt) toSliceExt

(DATASET(Slice) weights)

Make Extended Weights. Return a dataset of weight slices that have been replicated to all nodes and
converted to SliceExt record type that includes a node id.

PARAMETER weights ||| TABLE ( Slice ) — No Doc

RETURN TABLE ( { UNSIGNED2 nodeId , UNSIGNED2 sliceId , REAL4 loss , REAL4
minLoss , UNSIGNED4 minEpoch , UNSIGNED4 maxNoProg , UNSIGNED8
batchPos , SET ( REAL8 ) weights } ) —

FROMSLICEEXT fromSliceExt

weights \

DATASET(Slice) fromSliceExt

(DATASET(SliceExt) extWeights)

Take a set of Extended Weight slices (i.e. replicated to all nodes) and return a dataset of Weight slices
that are distributed by sliceId. The duplicated copies are filtered out except on the node that owns each
slice.

PARAMETER extweights ||| TABLE ( SliceExt ) — No Doc

RETURN TABLE ( { UNSIGNED2 sliceId , SET ( REAL8 ) weights } ) —

SLICES2LINEAR slices2Linear

weights \

28



SliceExt slices2Linear

(DATASET(SliceExt) slices)

Convert a dataset of replicated slices (SliceExt) into a single SliceExt replicated on each node and
containing one linear array (i.e. SET) of weights.

PARAMETER slices ||| TABLE ( SliceExt ) — No Doc

RETURN ROW ( { UNSIGNED2 nodeId , UNSIGNED2 sliceId , REAL4 loss , REAL4
minLoss , UNSIGNED4 minEpoch , UNSIGNED4 maxNoProg , UNSIGNED8
batchPos , SET ( REAL8 ) weights } ) —

COMPRESSONE compressOne

weights \

DATA compressOne

(t_Vector wts, UNSIGNED4 slicesize)

Compress a set of weights (assumed to be sparse) by converting to a sparse representation [. . . ] packed
into a DATA field.

PARAMETER wts ||| SET ( REAL8 ) — No Doc

PARAMETER slicesize ||| UNSIGNED4 — No Doc

RETURN DATA —

DECOMPRESSONE decompressOne

weights \

t_Vector decompressOne

(DATA cwts, UNSIGNED4 slicesize)

29



Decompress a set of compressed weights in sparse format (i.e. [. . . ] into a dense set of weights.

PARAMETER cwts ||| DATA — No Doc

PARAMETER slicesize ||| UNSIGNED4 — No Doc

RETURN SET ( REAL8 ) —

COMPRESSWEIGHTS compressWeights

weights \

DATASET(CSlice) compressWeights

(DATASET(SliceExt) slices)

Compress a set of extended slices (e.g. SliceExt) into CSlice format.

PARAMETER slices ||| TABLE ( SliceExt ) — No Doc

RETURN TABLE ( { UNSIGNED2 nodeId , UNSIGNED2 sliceId , REAL4 loss , REAL4
minLoss , UNSIGNED4 minEpoch , UNSIGNED4 maxNoProg , UNSIGNED8
batchPos , DATA cweights } ) —

DECOMPRESSWEIGHTS decompressWeights

weights \

DATASET(SliceExt) decompressWeights

(DATASET(CSlice) cslices)

Decompress a set of compressed slices into the native extended slice format.

PARAMETER cslices ||| TABLE ( CSlice ) — No Doc

30



RETURN TABLE ( { UNSIGNED2 nodeId , UNSIGNED2 sliceId , REAL4 loss , REAL4
minLoss , UNSIGNED4 minEpoch , UNSIGNED4 maxNoProg , UNSIGNED8
batchPos , SET ( REAL8 ) weights } ) —

31


