\mathbf{root}

Go Up

Name	DBSCAN
Version	1.0.0
Description	DBSCAN Clustering Method
License	http://www.apache.org/licenses/LICENSE-2.0
Copyright	Copyright (C) 2019 HPCC Systems
Authors	HPCCSystems
DependsOn	ML_Core 3.2.2
Platform	7.4.0

Table of Contents

DBSCAN.ecl

Scalable Parallel DBSCAN Clustering Algorithm Implementation based on [1]

 $DBSCAN_Types.ecl$

DBSCAN

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core

 $_versions.ML_Core.V3_2_2.ML_Core.Types \mid DBSCAN_Types \mid std.system.Thorlib$

| internal.locCluster | internal.globalMerge |

DESCRIPTIONS

MODULE DBSCAN

/ EXPORT | DBSCAN

(REAL8 eps = 0.0, UNSIGNED4 minPts = 2, STRING dist = 'euclidian', SET OF
REAL8 dist_params = [])

Scalable Parallel DBSCAN Clustering Algorithm Implementation based on [1]. It's an extension of the original DBSCAN algorithm [2] to meet the challenge of clustering problems on the Big Data platforms such as HPCC Systems. Based on the algorithm, this implementation has three stages: 1. Data preparation, 2. Local clustering, 3. Global Merge. The details of stage 2 and 3 can be found in the /internal/locCluster.ecl and /internal/globalMerge.ecl. Reference [1] Patwary, Mostofa Ali, et al. "A new scalable parallel DBSCAN algorithm using the disjoint-set data structure." Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press, 2012. [2] Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Kdd. Vol. 96. No. 34. 1996.

- **PARAMETER** <u>eps</u> ||| REAL8 the maximum distance threshold to be considered as a neighbor of the other. Default value is 0.0.
- **PARAMETER** <u>minPts</u> ||| UNSIGNED4 the minimum number of points required for a point to become a core point. Default value is 2.

- **PARAMETER** <u>dist</u> ||| STRING a string describing the distance metrics used to calcualte the distance between a paire of points. Default value is 'euclidean'. Other supported distance metrics includes 'cosine', 'haversine', 'chebyshev', 'manhattan', 'minkowski'.
- **PARAMETER** <u>dist_params</u> ||| SET (REAL8) a set of parameters for distance metrics that need exta setup. Default value is [] which should fit for most cases.

Children

- 1. fit : Fit function performs DBSCAN clustering on a dataset (ds) to find clusters and the cluster index (Label) of each sample in the dataset
- 2. Num_Clusters : Num_Clusters Provides the number of clusters that the given dataset will be divided into when clustered by the DBSCAN algorithm
- 3. Num_Outliers : Num_Outliers Provides the number of outliers that the given dataset will have when clustered by the DBSCAN algorithm

FUNCTION fit

DBSCAN \setminus

DATASET(ML_Core.Types.ClusterLabels)	fit
(DATASET(Types.NumericField) ds)	

Fit function performs DBSCAN clustering on a dataset (ds) to find clusters and the cluster index (Label) of each sample in the dataset.

PARAMETER <u>ds</u> ||| TABLE (NumericField) — The dataset in NumericField format to be clustered.

SEE ML_Core.Types.NumericField, ML_Core.Types.ClusterLabels

RETURN TABLE ({ UNSIGNED2 wi , UNSIGNED8 id , UNSIGNED8 label }) — result in ML_Core.Types.ClusterLabels format describing the cluster index of each sample.

FUNCTION Num_Clusters

DBSCAN \

DATASET(Files.l_num_clusters)	Num_Clusters
(DATASET(ML_Core.Types.Cluster)	Labels) ds)

Num_Clusters Provides the number of clusters that the given dataset will be divided into when clustered by the DBSCAN algorithm.

PARAMETER <u>ds</u> ||| TABLE (ClusterLabels) — A dataset with cluster index information. Usually it's the result of Fit function.

RETURN TABLE ({ UNSIGNED4 wi , UNSIGNED4 num }) — DATASET(l_num_clusters) The number of clusters, per work item.

SEE DBSCAN_Types.l_num_clusters

FUNCTION Num_Outliers

DBSCAN \setminus

DATASET(Files.l_num_clusters)	Num_Outliers	
(DATASET(ML_Core.Types.ClusterLabels) ds)		

Num_Outliers Provides the number of outliers that the given dataset will have when clustered by the DBSCAN algorithm.

PARAMETER <u>ds</u> ||| TABLE (ClusterLabels) — A dataset with cluster index information. Usually it's the result of Fit function.

RETURN TABLE ({ UNSIGNED4 wi , UNSIGNED4 num }) — DATASET(l_num_clusters) The number of outliers, per work item.

SEE DBSCAN_Types.l_num_clusters

DBSCAN_Types

Go Up

IMPORTS

_versions.ML_Core.V3_2_2.ML_Core | _versions.ML_Core.V3_2_2.ML_Core.Types |

DESCRIPTIONS

MODULE DBSCAN_Types

DBSCAN_Types

No Documentation Found

Children

- 1. l_stage1 : l_stage1 extends NumericField by adding a nodeID field and a fields field for the data preparation of stage 2 local clustering
- 2. l_stage2 : l_stage2 is the data structure for the local clustering of locDBSCAN() function
- 3. l_stage3 : l_stage3 is the data structure for global merging of globalMerge() function
- 4. l_num_clusters : l_num_clusters This record structure holds the results of functions that return statistics about the clusters formed in DBSCAN clustering, that is, it is the result structure for num_clusters and num_outliers

RECORD I_stage1

DBSCAN_Types \

l_stage1

l_stage1 extends NumericField by adding a nodeID field and a fields field for the data preparation of stage 2 local clustering. The nodeID field records the physical cluster node to which the data point is assigned to. The fields filed allows each data point to be stored as a vector for embedded C++ computing at stage 2.

- **FIELD** <u>wi</u> ||| UNSIGNED2 The work-item identifier for this cell.
- **FIELD** <u>id</u> ||| UNSIGNED8 The record-identifier for this cell.
- **FIELD** <u>**number**</u> ||| UNSIGNED4 The field number (i.e. featureId) of this cell.
- **FIELD** <u>value</u> ||| REAL8 The numerical value of this cell.
- **FIELD** <u>nodeID</u> ||| UNSIGNED4 The physical cluster node to which the data point is assigned to. It's 0-based index by default.
- **FIELD** <u>fields</u> ||| SET (REAL4) The SET of feature values of each data point. It's similar to the vector definition in C++.
- **SEE** ML_Core.Types.NumericField.

RECORD I_stage2

DBSCAN_Types \

l_stage2

l_stage2 is the data structure for the local clustering of locDBSCAN() function.

FIELD <u>wi</u> ||| UNSIGNED2 — The work-item identifier for this cell.

FIELD <u>id</u> ||| UNSIGNED8 — The record-identifier for this cell.

FIELD parentID ||| UNSIGNED8 — the largest core points a data point belongs to.

FIELD <u>nodeID</u> ||| UNSIGNED8 — The physical cluster node to which the data point is assigned to.

- **FIELD** <u>fields</u> ||| SET (REAL4) The SET of feature values of each data point. It's similar to the vector definition in C++.
- **FIELD** <u>if_local</u> ||| BOOLEAN TRUE if the data point is physically located at the current cluster. Otherwise FALSE.
- **FIELD** if_core ||| BOOLEAN TRUE if the data point is a core point. Otherwise FALSE.

RECORD I_stage3

DBSCAN_Types \setminus

l_stage3

- l_stage3 is the data structure for global merging of globalMerge() function.
- **FIELD** wi ||| UNSIGNED4 The work-item identifier for this cell.
- **FIELD** <u>id</u> ||| UNSIGNED4 The record-identifier for this cell.
- **FIELD parentID** ||| UNSIGNED4 the largest core points a data point belongs to.
- **FIELD** <u>nodeID</u> ||| UNSIGNED4 The physical cluster node it's located. It's 0-based index by default.
- **FIELD** <u>if_local</u> ||| BOOLEAN TRUE if the data point is physically located at the current cluster. Otherwise FALSE.
- **FIELD** if_core ||| BOOLEAN TRUE if the data point is a core point. Otherwise FALSE.
- **SEE** ML_Core.Types.NumericField.

RECORD I_num_clusters

DBSCAN_Types \

l_num_clusters

l_num_clusters This record structure holds the results of functions that return statistics about the clusters formed in DBSCAN clustering, that is, it is the result structure for num_clusters and num_outliers. It contains the value of the statistic, per work-item

FIELD wi ||| UNSIGNED4 — The work-item identifier

FIELD <u>**num**</u> ||| UNSIGNED4 — The value of the statistic (Number of clusters / outliers)