ESDL Language Reference

Boca Raton Documentation Team

@HPCC

SYSTEMS

ESDL Language Reference

ESDL Language Reference

Boca Raton Documentation Team
Copyright © 2025 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docf eedback@pccsyst ens. conr

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.
HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.
Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2025 Version 10.0.2-1

© 2025 HPCC Systems®. All rights reserved
2

ESDL Language Reference

(Y] = TaTo [= o TR @ YT o T 4
ESDL SEITUCTUIES .. etniiiie ettt ettt ettt et e et et e et e ettt et e e et eh et et e e ea e e et e e e en e eenaeeeen 5
ESPSIIUCT ...ttt ettt e e e e e eaas 5
] e (=0 1= PP 6
] (=57 oL = P 7
L] = U > Y/ 8
LT L= U o o PO PT S UPTTRPPRPIN 9
RS] T T 11 T [PP 10
RS ST oo = PP 11
LS] o 4= 1 T Yo PP 12
LS D = 1= 11 o= 13
oo o) (1= 1o A o T Yo | PP 13
) 11T 14
] PP 15
] 7 SR 16
116 L PR 17
0 o1 o)1= PP 18
o]] = 19
ESDL, XSD, and ECL TYPE MaPPING .. cc.uuieiiiiiiieeie e iee e e e e e e e e e e e st e e s e e st aeeanaeeaneeaen 20
RS B I AN 1111 01U (= O 21
o aF e 1= N () T 22
L=Tod I g = e L= T () PN 23
L=To I 4= L [G = U 1= TP 24
(oTo 18]) (=T = Voo I oTo] 0L Y | NS 25
[0 F= VG o0 U o | PRSP UPRPRPRPR 26
= D 01U 7= | 27
< Tod I | (T =3 (e) PPN 28
1=T= Vo o TA=] (o] (1) RPN 29
=] I 1T [30
L=To I Y LT 0/ 010 TR 31
L=Tod ST o T PP 32
01T = 33
L= W Y PPN 34
o1 1 Lo 4 21T /= G 35
(0 =T o] Y= P 36
(o L=y o = L= Y (0 1 2 SN 37
(o] o1 1o -1 P 38
T | o P 39
(o L=T Yo7 01T o T PPN 40
version and default_ClIENt VEISIONciiiiiiiii e e e 41
UL T (Y= LU (PP 42

© 2025 HPCC Systems®. All rights reserved
3

ESDL Language Reference
ESDL Language Overview

ESDL Language Overview

ESDL (Enterprise Service Description Language) is a methodology that helps you develop and manage
web-based query interfaces quickly and consistently.

Dynamic ESDL takes an interface-first development approach. It leverages the ESDL Language to create
a common interface "contract" that both Roxie Query and Web interface developers will adhere to. It is
intended to allow developers to create production web services, with clean interfaces that can evolve and
grow over time without breaking existing applications.

ESDL's built-in versioning support helps ensure compiled and deployed applications continue to operate
while changes are made to the deployed service's interface for new functionality.

ESDL's ability to define and reuse common structures helps maintain consistent interfaces across methods.

The Dynamic ESDL service is built to scale horizontally, and hooks are provided to add custom logging and
security to help create fully "productionalized" web services.

Once a service is deployed, application developers and end-users can consume the service using REST,
JSON, XML, SOAP, or form encoded posts. Dynamic ESDL provides quick and easy access to a WSDL,
live forms, sample requests and responses, and testing interfaces to allow developers to test logic changes,
data changes, or new features, as well as to interact with the service directly using SOAP, XML, or JSON.

© 2025 HPCC Systems®. All rights reserved
4

ESDL Language Reference
ESDL Structures

ESDL Structures

ESPstruct

ESPstruct is a set of elements grouped together under one name. These elements, known as members,
can have different types and different lengths. Structures can be nested and support inheritance.

Example:

ESPst ruct NaneBl ock

{
string FirstNang;
string M ddl eNaneg;
string Last Nane;
int Age;
IE
ESPst ruct NaneBl ockExt ended: NaneBl ock
{
string SSN;

string partyAffilition;

© 2025 HPCC Systems®. All rights reserved
5

ESDL Language Reference
ESDL Structures

ESPrequest

The request structure for a method. ESPrequests can be nested and support inheritance.

Example:

ESPrequest M/ Quer yRequest

{
string FirstNang;
string M ddl eNane;
string Last Naneg;
string Sort by;
bool Descendi ng(fal se);
)
ESPr equest MyQuer yRequest Ext ended: MyQuer yRequest
{
string SSN,
i

© 2025 HPCC Systems®. All rights reserved
6

ESDL Language Reference
ESDL Structures

ESPresponse

The response structure for a method. ESPresponses can be nested and support inheritance.

Example:

ESPresponse M/ Quer yResponse

{
string FirstNanmg;
string M ddl eNane;
string Last Nane;
IE
ESPr esponse MyQuer yResponseExt ended: MyQuer yResponse
{
string SSN;
string partyAffilition;
i

© 2025 HPCC Systems®. All rights reserved
7

ESDL Language Reference
ESDL Structures

ESParray

A structure for unbounded arrays. Arrays support inheritance and can be nested.

Either [max_count_var(k)] or [max_count_var(k)] is required for an ESPArray when k>1.

Example:

ESPst ruct NaneBl ock

{
string FirstNang;
string M ddl eNang;
string Last Nane;
int Age;

b

[max_count (20)] ESParray <ESPstruct NaneBl ock, Nanme> Nanes;

This results in something like:

<Nanmes>
<Nanme>
<Fi r st Nane>Janes</ Fi r st Nane>
<M ddl eNane>Joseph</ M ddl eNanme>
<Last Nanme>Deer f i el d</ Last Nane>
<Age>42</ Age>
</ Nane>
<Nanme>
<Fi r st Name>Eni | y</ Fi r st Nane>
<M ddl eNane>Kat e</ M ddl eNane>
<Last Nanme>Const ance</ Last Nane>
<Age>33</ Age>
</ Nane>
</ Names>

See Also: max_count_var, max_count

© 2025 HPCC Systems®. All rights reserved
8

ESDL Language Reference

ESDL Structures

ESPenum

A structure containing an enumerated value.

Example:

ESPenum EyeCol ors : string

{

Brn("Brown"),

Bl u("Bl ue"),

Gn("Geen"),
IE

ESPst ruct Person

{
string FirstNane;

string M ddl eNane;
string Last Nane;

ESPenum EyeCol ors EyeCol or (" Brown") ;

//provides a default val ue

© 2025 HPCC Systems®. All rights reserved

9

ESDL Language Reference
ESDL Structures

ESPinclude

ESPinclude allows you to include an external ESDL file. This is similar to the #include statement.

Example:

ESPi ncl ude(conmonsSt r uct ur es) ;

© 2025 HPCC Systems®. All rights reserved
10

ESDL Language Reference
ESDL Structures

ESPservice

This defines an ESP web service interface. Once defined, this interface definition can be assigned (bound)
to a Dynamic ESDL-based ESP Service.

An ESPservice should contain one or more method definitions.

Example:

ESPservi ce [auth_feature("Al | omWService")] M/Service
ESPnet hod MyMet hod1(MyMet hod1Request, M/Met hodlResponse);

ESPnet hod MyMet hod2(MyMet hod2Request, M/Met hod2Response) ;
B

© 2025 HPCC Systems®. All rights reserved
11

ESDL Language Reference
ESDL Structures

ESPmethod

This defines a method definition you can reference in an ESPservice structure. The method definition should
contain references to a previously defined ESPrequest and ESPresponse.

Example:

ESPservi ce MyService

ESPnmet hod MyMet hod1(MyMet hod1Request, MyMet hodlResponse);
ESPmet hod

[
aut h_feature("Al | owyMet hod2"),

descri ption("M/Met hod Two"),
hel p("Thi s net hod does everything M/Met hodl does plus a few extra features"),

mn_ver("1.2")

]
MyMet hod2(MyMet hod2Request, MyMet hod2Response) ;
b

© 2025 HPCC Systems®. All rights reserved
12

ESDL Language Reference
ESDL Datatypes

ESDL Datatypes

boolean / bool

A boolean or logical data type having one of two possible values: true (1) or false (0).

Example:

bool ean i ncl udeFl ag;
bool incl udeMore;

© 2025 HPCC Systems®. All rights reserved
13

ESDL Language Reference
ESDL Datatypes

string

A data type consisting of sequence of alphanumeric characters.

Example:

string FirstNang;

© 2025 HPCC Systems®. All rights reserved
14

ESDL Language Reference
ESDL Datatypes

Int

An integer value.

Example:

int Age;

© 2025 HPCC Systems®. All rights reserved
15

ESDL Language Reference
ESDL Datatypes

INt64

A 64-bit integer value

Example:

int64 lterations;

© 2025 HPCC Systems®. All rights reserved
16

ESDL Language Reference
ESDL Datatypes

float

A 4-byte floating point or real number.

Example:

fl oat Tenperature;

© 2025 HPCC Systems®. All rights reserved
17

ESDL Language Reference
ESDL Datatypes

double

An 8-byte floating point or real number.

Example:

doubl e Tenper at ur e;

© 2025 HPCC Systems®. All rights reserved
18

ESDL Language Reference
ESDL Datatypes

binary

A data type containing binary data, similar to a BLOB .

Example:

bi nary RetinaScanSanpl e;

© 2025 HPCC Systems®. All rights reserved
19

ESDL Language Reference
ESDL Datatypes

ESDL, XSD, and ECL Type Mapping

ESDL XSD ECL

Bool boolean bool boolean

Binary Base64Binary |String (base64 encoded)
Float float REAL4

Double double REALS8

Int int INTEGER

Int64 long INTEGERS8

String string String

© 2025 HPCC Systems®. All rights reserved
20

ESDL Language Reference
ESDL Attributes

ESDL Attributes

You can use ESDL attributes to extend and override the default behavior of an ESDL definition. For example,
adding a max_len(n) to a string defines the string will only need to store a certain number of characters.

Many attributes are treated as hints that may have more effect on some implementations than others. For
example, max_len(n) will affect generated ECL code, but is ignored when generating C++.

© 2025 HPCC Systems®. All rights reserved
21

ESDL Language Reference
ESDL Attributes

max_len (n)

The max_len attribute specifies the field length for ECL string field.

Example:

[max_len(20)] string City;

It means that in ECL, City field is a fixed length of 20 chars. For integer type, the max_len means the
maximum size in bytes for the integer (8*max_len bits integer).

Example:

[max_l en(3)] int Age;

This generates ECL code:

i nteger3 Age{xpat h(' Age')};

This attribute works for ESPenum type, too. The ECL type is also string.
[mex_l en(2)] ESPenum St at eCode St at e;

Here the StateCode is 2-char state code enumeration.

This attribute can also be used for ESPstruct, ESPrequest, ESPresponse:

ESPstruct [max_|l en(1867)] IdentitySlim: ldentity
{

B

This generates ECL code:

export t _M/Query := record (share.t_Nanme), MAXLENGTH(1867)
{
i

The ECL option MAXLENGTH helps ECL engine better manage memory.

This does not affect the type in the XSD/WSDL. ESP ignores this attribute when generating the schema.
The type for a string is xsd:string which has no length limit. Therefore, the schema stays the same if the
field length changes in the Roxie query.

© 2025 HPCC Systems®. All rights reserved
22

ESDL Language Reference
ESDL Attributes

ecl_max_len (n)

This ecl_max_len attribute tells the ECL generator to use ECL maxlength instead of the regular field length.

Example:

[ecl _max_I en(50)] string ConpanyNane;
[max_l en(6)] string Gender;

The generated ECL code is:

string ConpanyNanme { xpath("ConpanyNane"), max| engt h(50) };
string6 Gender { xpath("Gender") };

Note: when both max_len and ecl_max_len are specified, ecl_max_len is used and max_len is ignored.

© 2025 HPCC Systems®. All rights reserved
23

ESDL Language Reference
ESDL Attributes

ecl_name ("name")

The ecl_name attribute specifies the field name in generated ECL code. By default, the field name in ECL
is the same as the name defined in ECM. However, in some cases, the name could causes issues in ECL.
For example keywords in ECL cannot be used as a field name.

Example:

[ecl _name(" _export")] string Export;
[ecl _name(" _type")] string Type;

Here, both EXPORT and TYPE are ECL keywords and cannot be used as ECL field names. We use
ecl_name to tell the esdl2ecl process to generate acceptable names.

© 2025 HPCC Systems®. All rights reserved
24

ESDL Language Reference
ESDL Attributes

counter and count_val

These two attributes are used to help ESP calculate the record count of the response.

counter counts the number of children of the nodes. When the node is an array, it is the same as the number
of items in the array.

count_val will use the value of the node as record count. Field RecordCount is implicitly marked as coun-
t val.

When an response has multiple counter, count_val, the sum of the values is returned as record-count.

Example:

[counter] ESParray<MyRecord, Record> Records;
[count _val] int Total Found;

© 2025 HPCC Systems®. All rights reserved
25

ESDL Language Reference
ESDL Attributes

max_count

The max_count attribute is used to specify the expected max items in a dataset (ESParray).

Example:

[max_count (20)] ESParray <ESPstruct MyRecord, Record> Records;

See Also: ESParray, max_count_var

© 2025 HPCC Systems®. All rights reserved
26

ESDL Language Reference
ESDL Attributes

max_count_var

The max_count_var attribute is used to specify a variable (an ECL Attribute) containing the value of the
expected max items in a dataset (ESParray).

Example:

[max_count _var ("i esp. Const ants. JD. MaxRecords")] ESParray <ESPstruct MYRecord, Record> Records;

The ECL developer defines the constant iesp.Constants.JD.MaxRecords rather than hard coding the max
count value in the ESDL.

See Also: ESParray, max_count

© 2025 HPCC Systems®. All rights reserved
27

ESDL Language Reference
ESDL Attributes

ecl_null (n | string)

The ecl_null attribute tells ESP to remove the field altogether if the field's value is n or string. This provides
a means to remove a field completely when there is no data for it.

Example:

[ecl _null (0)] int Age;
[ecl _null("fal se")] bool IsMatch;

Age 0 means there is no Age data for this person. So, if Age is 0, the <Age> tag is not returned.
Without this attribute, <Age>0</Age> would be returned.

For the second example, a bool value of false, returned as a string, is treated as null and therefore the
tag is not returned.

© 2025 HPCC Systems®. All rights reserved
28

ESDL Language Reference
ESDL Attributes

leading_zero(n)

The leading_zero attribute adds zero(s) to the field value to so that the total length is n.

Example:
ESPstruct Date
{
[l eadi ng_zero(4)] Year;
[l eadi ng_zero(2)] Month;
[l eadi ng_zero(2)] Day;
b

So the Date will always have a 4-digit Year and a 2-digit Month and a 2-digit Day.

© 2025 HPCC Systems®. All rights reserved
29

ESDL Language Reference
ESDL Attributes

ecl _hide

The ecl_hide attribute hides the field from ECL (that is, the field is removed when generating the ECL code).
This is used for some special cases.

Example:
ESPstruct Rel ative
[ecl _hi de] ESParray<ESPstruct Relative, Relative> Rel atives;
ki

In this case, the Relative structure is defined in a recursive manner, and ECL does not support such a
construct. Therefore, we use ecl_hide to avoid the recursive definition in ECL.

Sometimes a field is hidden from ECL for other reasons. In these cases, ecl_hide is not needed.

© 2025 HPCC Systems®. All rights reserved
30

ESDL Language Reference
ESDL Attributes

ecl_type ("type")

The ecl_type attribute defines the field type in ECL.

Example:

[ecl _type("Deci mal 10_2")] doubl e Retail Price;

ESDL does not have a monetary type, so we use ecl_type to define it.

© 2025 HPCC Systems®. All rights reserved
31

ESDL Language Reference
ESDL Attributes

ecl _keep

The ecl_keep attribute keeps the field in the generated ECL even though this field would have been hidden
without this attribute.

© 2025 HPCC Systems®. All rights reserved
32

ESDL Language Reference
ESDL Attributes

min_ver

The min_ver attribute allows you to define the minimum (earliest) version where a field is visible. Requests
using a prior version will not have access to the field.

Example:

[mn_ver("1.03")] bool IsValid;

© 2025 HPCC Systems®. All rights reserved
33

ESDL Language Reference
ESDL Attributes

max_ver

The max_ver attribute allows you to define the maximum (latest) version where a field is visible. Requests
using a later version will not have access to the field.

Example:

[max_ver("1.04")] bool IsValid;

© 2025 HPCC Systems®. All rights reserved
34

ESDL Language Reference
ESDL Attributes

ping_min_ver

Dynamic ESDL services automatically add a ping method to your service for monitoring connectivity to the
service.

The ping_min_ver attribute on a service allows you to define the minimum (earliest) version where the ping
method is visible. The ping method is not visible to versions lower than the ping_min_ver

Example:

[ping_m n_ver("1.03")]

© 2025 HPCC Systems®. All rights reserved
35

ESDL Language Reference
ESDL Attributes

depr_ver

The depr_ver attribute allows you to declare a field's end of life version. The field is deprecated at the
specified version number. Requests using that version or any subsequent version will not have access to
the field.

Example:

[depr_ver("1.04")] bool IsValid;

© 2025 HPCC Systems®. All rights reserved
36

ESDL Language Reference
ESDL Attributes

get _data from

The get_data_from attribute allows you to specify that a field gets its data from another variable. This sup-
ports code reuse when complex versioning changes are made.

Example:

ESPr esponse Roxi eEchoPer sonl nf oResponse

{
ESPstruct Nanel nfo Nane;

string Varl;
[get _data_from("Varl1")] string Var2;

b

In the example above, the query returns the data in Varl then the service puts the data into the Var2 field
and sends that in the response to the client.

In this example both Varl and Var2 are in the response to the client. Typically, Varl and Var2 are in non-
overlapping versions so only one will be in the response depending on the version specified.

Since the get_data_from attribute supports complex data types, such as an ESPstruct, the fields do not
have to be limited to string types.

© 2025 HPCC Systems®. All rights reserved
37

ESDL Language Reference
ESDL Attributes

optional

The optional attribute allows you to specify that a field is optional and is hidden or not depending on the
absence or presence of a URL decoration.

When a field has an optional attribute, the field is visible only when the option appears on the URL. But
when the option starts with an exclamation point (!), then the field is hidden only if the option is in the URL.

Example:
ESPr equest Roxi eEchoPer sonl nf oRequest
{
ESPst ruct Nanel nfo Nane;
string First;
string M ddl e;
string Last;
[optional ("dev")] string N ckNaneg;
[optional ("! _NonUS ")] string SSN;
b

Assuming the service is running on a server with the hostname of example.com and the service binding
is set to 8003:

If the URL is

http://exanpl e. com 8003/

then SSN is visible and NickName is hidden;
If the URL is

http://exanpl e. com 8003/ ?dev

then SSN and NickName are both visible

If the URL is

http://exanpl e. com 8003/ ?dev& NonUS
then NickName is visible and SSN is hidden.
If the URL is

http://exanpl e. com 8003/ ?_NonUS_

then both NickName and SSN are hidden.

© 2025 HPCC Systems®. All rights reserved
38

ESDL Language Reference
ESDL Attributes

help

The help attribute (valid only for an ESPMethod) allows you to specify some additional text to display on
the form that is automatically generated to execute a method.

Example:

ESPservi ce MyService

{
ESPnmet hod MyMet hod1(MyMet hod1Request, MyMet hodlResponse);
ESPmet hod

[
descri ption("M/Met hod Two"),

hel p("This net hod does everythi ng M/Met hodl does plus a few extra features"),
mn_ver("1.2")

MyMet hod2(MyMet hod2Request, MyMet hod2Response) ;

© 2025 HPCC Systems®. All rights reserved
39

ESDL Language Reference
ESDL Attributes

description

The description attribute (valid only for an ESPMethod) allows you to specify some additional text to display
on the form that is automatically generated to execute a method.

Example:

ESPservi ce MyService
{
ESPnet hod MyMet hod1(MyMet hod1Request, MyMet hod1Response);
ESPnet hod
[
descri ption("M/Met hod Two"),
hel p("Thi s net hod does everything M/Met hodl does plus a few extra features"),
mn_ver("1.2")

]
My/Met hod2(MyMet hod2Request, MyMet hod2Response) ;
IE

© 2025 HPCC Systems®. All rights reserved
40

ESDL Language Reference
ESDL Attributes

version and default_client_version

The version and default_client_version attributes (valid only for an ESPService) allow you to specify the
version to use when a version is not explicitly specified in the request.

The default_client_version is used for APl requests in SOAP format if the client doesn't specify the version.
The version is used for requests coming from a web browser without a version decoration in the URL.

These attributes provide better APl backward compatibility while allowing API developers to see the latest
interface using a browser.

If default_client_version is higher than version, the service uses default_client_version for all requests
that don't specify a version.

Even though defaults can be specified for a service, you should still encourage API developers to specify a
version in requests to ensure compatibility between their application and the service.

Example:

ESPservi ce [version("0.02"), default_client_version("0.01")] Esdl Exanpl e
{
ESPnet hod EchoPer sonl nf o(EchoPer sonl nf oRequest, EchoPer sonl nf oResponse) ;
ESPmet hod Roxi eEchoPer sonl nf o(Roxi eEchoPer sonl nf oRequest, Roxi eEchoPer sonl nf oResponse) ;

© 2025 HPCC Systems®. All rights reserved
41

ESDL Language Reference
ESDL Attributes

auth feature

The auth_feature attribute (valid only for an ESPService or ESPMethod) allows you to specify a means to
verify a user's permission to execute a method.

In order to enable this feature, your system must be configured to use a form of security that supports
feature level authentication, such as LDAP security included in the Community edition of the platform. Once
LDAP is configured, you would add the tag name provided as the value for the authFeature attribute to
the feature level authentication list in the Security section of ECL Watch. Then you would set permissions
for users and/or groups.

If you are using a third-party Security Manager plugin, consult their documentation for details on adding the
tag name to their security configuration.

The auth_feature attribute is required for every method, but can be specified at the ESPService level to
apply to all methods within a service. You can override for an individual method by setting the attribute at
a method level.

Setting auth_feature("NONE") means no authentication is needed. Setting auth_feature("DEFERRED") de-
fers the authentication to the business logic in the ESP developer's method implementation logic.

Example:
ESPservi ce MyService [auth_feature("NONE")]

ESPnet hod MyMet hod1(MyMet hod1Request, MyMet hod1Response);
ESPnet hod
[
descripti on("M/Met hod Two"),
aut h_feature("Al | oy Met hod2"),
hel p("Thi s nmet hod does everythi ng M/Met hodl does plus a few extra features"),
mn_ver("1.2")
]
My/Met hod2(MyMet hod2Request, MyMet hod2Response) ;
IE

© 2025 HPCC Systems®. All rights reserved
42

	ESDL Language Reference
	Table of Contents
	ESDL Language Overview
	ESDL Structures
	ESPstruct
	ESPrequest
	ESPresponse
	ESParray
	ESPenum
	ESPinclude
	ESPservice
	ESPmethod

	ESDL Datatypes
	boolean / bool
	string
	int
	int64
	float
	double
	binary
	ESDL, XSD, and ECL Type Mapping

	ESDL Attributes
	max_len (n)
	ecl_max_len (n)
	ecl_name ("name")
	counter and count_val
	max_count
	max_count_var
	ecl_null (n | string)
	leading_zero(n)
	ecl_hide
	ecl_type ("type")
	ecl_keep
	min_ver
	max_ver
	ping_min_ver
	depr_ver
	get_data_from
	optional
	help
	description
	version and default_client_version
	auth_feature

