
ECL Language Reference
Boca Raton Documentation Team

ECL Language Reference

ECL Language Reference
Boca Raton Documentation Team

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com> subject to the HPCC
Contribution Agreement at: hpccsystems.com/contribution. Please include Documentation Feedback in the subject line and reference
the document name, page numbers, and current Revision Number in the text of the message.

LexisNexis and related logos, designs, trade dress, and trademarks are owned by Reed Elsevier Properties Inc. and its affiliates,
used under license and not subject to the Creative Commons license. Other trademarks owned by their respective companies and
not subject to the Creative Commons license.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

This document is licensed under the Creative Commons License CC BY-ND 3.0 applicable to the jurisdiction of the principal location
of the user, as available; otherwise, the CC BY-ND 3.0 Unported (https://creativecommons.org/licenses/by-nd/3.0/).

2026 Version 10.0.22-1

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

2

ECL Language Reference

Introduction .. 9
Documentation Structure ... 9
Documentation Conventions .. 10

ECL Basics ... 11
Overview .. 11
Constants ... 12
Environment Variables .. 16
Definitions .. 17
Basic Definition Types .. 19
Recordset Filtering .. 22
Function Definitions (Parameter Passing) .. 23
Definition Visibility ... 28
Field and Definition Qualification ... 30
Actions and Definitions ... 32

Expressions and Operators .. 33
Expressions and Operators ... 33
Logical Operators ... 35
Record Set Operators ... 36
Set Operators ... 38
String Operators ... 39
IN Operator .. 40
BETWEEN Operator ... 41

Value Types .. 42
BOOLEAN .. 42
INTEGER ... 43
REAL ... 44
DECIMAL ... 45
STRING ... 46
QSTRING ... 47
UNICODE ... 48
UTF8 .. 49
DATA ... 50
VARSTRING .. 51
VARUNICODE .. 52
SET OF ... 53
TYPEOF ... 54
RECORDOF ... 55
ENUM .. 56
Type Casting .. 57

Record Structures and Files ... 60
RECORD Structure ... 60
DATASET ... 70
DICTIONARY ... 85
INDEX .. 87
Scope and Logical Filenames ... 93
Implicit Dataset Relationality ... 96

Alien Data Types .. 97
TYPE Structure .. 97
TYPE Structure Special Functions ... 98

Parsing Support .. 100
Parsing Support .. 100
PARSE Pattern Value Types ... 101
NLP RECORD and TRANSFORM Functions ... 105
XML Parsing RECORD and TRANSFORM Functions ... 107

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

3

ECL Language Reference

Reserved Keywords .. 109
ALL .. 109
EXCEPT ... 110
EXPORT .. 111
GROUP keyword .. 112
IMPORT ... 113
KEYED and WILD .. 115
LEFT and RIGHT ... 117
LIKELY and UNLIKELY ... 118
ROWS(LEFT) and ROWS(RIGHT) .. 119
SELF .. 120
SHARED .. 121
SKIP .. 122
TRUE and FALSE .. 123

Special Structures .. 124
BEGINC++ Structure ... 125
EMBED Structure ... 132
FUNCTION Structure .. 134
FUNCTIONMACRO Structure .. 137
INTERFACE Structure .. 139
MACRO Structure ... 142
MODULE Structure ... 144
TRANSFORM Structure .. 147

Built-in Functions and Actions ... 151
ABS ... 152
ACOS ... 153
AGGREGATE ... 154
ALLNODES .. 157
APPLY ... 158
ASCII ... 159
ASIN .. 160
ASSERT ... 161
ASSTRING ... 163
ATAN ... 164
ATAN2 ... 165
AVE ... 166
BUILD .. 167
CASE ... 176
CATCH ... 177
CHOOSE .. 179
CHOOSEN ... 180
CHOOSESETS ... 181
CLUSTERSIZE ... 182
COMBINE ... 183
CORRELATION .. 186
COS ... 188
COSH .. 189
COUNT .. 190
COVARIANCE .. 192
CRON .. 194
DEDUP .. 195
DEFINE .. 198
DENORMALIZE .. 199
DISTRIBUTE .. 202

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

4

ECL Language Reference

DISTRIBUTED .. 205
DISTRIBUTION ... 206
EBCDIC ... 208
ENTH ... 209
ERROR .. 210
EVALUATE ... 211
EVENT ... 213
EVENTNAME ... 214
EVENTEXTRA .. 215
EXISTS .. 216
EXP ... 218
FAIL ... 219
FAILCODE ... 220
FAILMESSAGE ... 221
FETCH ... 222
FROMJSON ... 224
FROMUNICODE ... 225
FROMXML ... 226
GETENV .. 227
GETSECRET .. 228
GLOBAL ... 229
GRAPH .. 230
GROUP .. 232
HASH ... 234
HASH32 ... 235
HASH64 ... 236
HASHCRC .. 237
HASHMD5 .. 238
HAVING ... 239
HTTPCALL ... 240
IF ... 242
IFF ... 243
IMPORT ... 244
INTFORMAT ... 245
ISVALID ... 246
ITERATE .. 247
JOIN .. 249
KEYDIFF .. 258
KEYPATCH .. 259
KEYUNICODE .. 261
LENGTH ... 262
LIBRARY .. 263
LIMIT .. 265
LN .. 267
LOADXML .. 268
LOCAL ... 270
LOG ... 271
LOOP ... 272
MAP ... 275
MAX ... 276
MERGE .. 278
MERGEJOIN .. 280
MIN .. 282
NOLOCAL .. 284

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

5

ECL Language Reference

NONEMPTY ... 285
NORMALIZE ... 286
NOFOLD .. 289
NOTHOR .. 290
NOTIFY .. 291
ORDERED ... 292
OUTPUT .. 293
PARALLEL ... 303
PARSE ... 304
PIPE .. 311
POWER ... 313
PRELOAD .. 314
PROCESS .. 315
PROJECT ... 318
PULL .. 322
RANDOM ... 323
RANGE .. 324
RANK ... 325
RANKED .. 326
REALFORMAT ... 327
REGEXEXTRACT ... 328
REGEXFIND ... 331
REGEXFINDSET .. 332
REGEXREPLACE ... 333
REGROUP ... 334
REJECTED .. 336
ROLLUP ... 337
ROUND .. 341
ROUNDUP ... 342
ROW .. 343
ROWDIFF ... 347
SAMPLE ... 348
SEQUENTIAL ... 350
SET .. 351
SIN ... 353
SINH .. 354
SIZEOF .. 355
SOAPCALL .. 356
SORT ... 360
SORTED .. 364
SQRT ... 365
STEPPED ... 366
STORED .. 368
SUM ... 369
TABLE .. 371
TAN ... 373
TANH ... 374
THISNODE ... 375
TOJSON ... 376
TOPN ... 377
TOUNICODE .. 378
TOXML ... 379
TRACE ... 380
TRANSFER .. 382

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

6

ECL Language Reference

TRIM .. 383
TRUNCATE .. 384
UNGROUP ... 385
UNICODEORDER ... 386
UNORDERED ... 387
VARIANCE ... 388
WAIT .. 390
WHEN .. 391
WHICH ... 392
WORKUNIT .. 393
XMLDECODE ... 394
XMLENCODE ... 395

Workflow Services .. 396
Workflow Overview ... 397
CHECKPOINT .. 398
DEPRECATED ... 399
FAILURE .. 400
GLOBAL - Service .. 401
INDEPENDENT .. 402
ONCE .. 403
ONWARNING ... 404
PERSIST .. 405
PRIORITY .. 407
RECOVERY ... 408
STORED - Workflow Service ... 409
SUCCESS .. 411
WHEN .. 412

Template Language .. 413
Template Language Overview ... 413
#APPEND ... 414
#CONSTANT .. 415
#DECLARE .. 416
#DEMANGLE .. 417
#ERROR .. 418
#EXPAND ... 419
#EXPORT ... 420
#EXPORTXML .. 423
#FOR ... 425
#GETDATATYPE .. 426
#IF ... 427
#IFDEFINED ... 428
#ISDEFINED .. 429
#INMODULE ... 430
#LOOP / #BREAK ... 431
#MANGLE .. 432
#ONWARNING ... 433
#OPTION ... 434
#SET .. 444
#STORED .. 445
#TEXT .. 446
#UNIQUENAME .. 447
#WARNING .. 449
#WEBSERVICE .. 450
#WORKUNIT .. 451

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

7

ECL Language Reference

External Services .. 452
SERVICE Structure ... 452
CONST .. 454
External Service Implementation .. 455

Index .. 462

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

8

ECL Language Reference
Introduction

Introduction

Documentation Structure
This manual documents the Enterprise Control Language (ECL). ECL has been designed specifically for
working with huge sets of data. This book is designed to be both a learning tool and a reference work and
is divided into the following sections:

ECL Basics Addresses the fundamental concepts of ECL.

Expressions and Opera-
tors

Defines available operators and their expression evaluation precedence.

Value Types Introduces data types and type casting.

Record Structures and
Files

Introduces the RECORD structure, DATASET, and INDEX.

Alien Data Types Defines the TYPE structure and the functions it may use.

Natural Language Pars-
ing Support

Defines the patterns and functions the PARSE function may use.

Reserved Keywords Defines special-use ECL keywords not elsewhere defined.

Special Structures Defines the TRANSFORM, MACRO, and other structures and their use.

Built-In Functions and
Actions

Defines the functions and actions available as part of the language.

Workflow Services Defines the job execution/process control aspects of ECL.

Templates Defines the ECL Template commands.

External Services Defines the SERVICE structure and its use.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

9

ECL Language Reference
Introduction

Documentation Conventions
ECL Syntax Case
Although ECL is not case-sensitive, ECL reserved keywords and built-in functions in this document are
always shown in ALL CAPS to make them stand out for easy identification. Definition and record set names
are always shown in example code as mixed-case. Run-on words may be used to explicitly identify purpose
in examples.

Optional Items
Optional-use keywords and parameters are enclosed in square brackets in syntax diagrams with either/or
options separated by a vertical bar (|), like this:

EXAMPLEFUNC(parameter [,optionalparameter] [,OPTIONAL | WORD])

Example Code
All example code in this document appears as in the following listing:

TotalTrades := COUNT(Trades); // TotalTrades is the Definition name
 // COUNT is a built-in function, Trades is the name of a record set

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

10

ECL Language Reference
ECL Basics

ECL Basics

Overview
Enterprise Control Language (ECL) has been designed specifically for huge data projects using the Lexis-
Nexis High Performance Computer Cluster (HPCC). ECL's extreme scalability comes from a design that
allows you to leverage every query you create for re-use in subsequent queries as needed. To do this,
ECL takes a Dictionary approach to building queries wherein each ECL definition defines an expression.
Each previous Definition can then be used in succeeding ECL definitions--the language extends itself as
you use it.

Definitions versus Actions
Functionally, there are two types of ECL code: Definitions (AKA Attribute definitions) and executable Actions.
Actions are not valid for use in expressions because they do not return values. Most ECL code is composed
of definitions.

Definitions only define what is to be done, they do not actually execute. This means that the ECL programmer
should think in terms of writing code that specifies what to do rather than how to do it. This is an important
concept in that, the programmer is telling the supercomputer what needs to happen and not directing how it
must be accomplished. This frees the super-computer to optimize the actual execution in any way it needs
to produce the desired result.

A second consideration is: the order that Definitions appear in source code does not define their execution
order--ECL is a non-procedural language. When an Action (such as OUTPUT) executes, all the Definitions
it needs to use (drilling down to the lowest level Definitions upon which others are built) are compiled and
optimized--in other words, unlike other programming languages, there is no inherent execution order implicit
in the order that definitions appear in source code (although there is a necessary order for compilation to
occur without error--forward references are not allowed). This concept of "orderless execution" requires
a different mindset from standard, order-dependent programming languages because it makes the code
appear to execute "all at once."

Syntax Issues
ECL is not case-sensitive. White space is ignored, allowing formatting for readability as needed.

Comments in ECL code are supported. Block comments must be delimited with /* and */.

/* this is a block comment - the terminator can be on the same line
or any succeeding line -- everything in between is ignored */

Single-line comments must begin with //.

// this is a one-line comment

ECL uses the standard object.property syntax used by many other programming languages (however, ECL
is not an object-oriented language) to qualify Definition scope and disambiguate field references within
tables:

ModuleName.Definition //reference an definition from another module/folder

Dataset.Field //reference a field in a dataset or recordset

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

11

ECL Language Reference
ECL Basics

Constants
String
All string literals must be contained within single quotation marks (' '). All ECL code is UTF-8 encoded,
which means that all strings are also UTF-8 encoded, whether Unicode or non-Unicode strings. Therefore,
you must use a UTF-8 editor (such as the ECL IDE program).

To include the single quote character (apostrophe) in a constant string, prepend a backslash (\). To include
the backslash character (\) in a constant string, use two backslashes (\\) together.

STRING20 MyString2 := 'Fred\'s Place';
 //evaluated as: "Fred's Place"
STRING20 MyString3 := 'Fred\\Ginger\'s Place';
 //evaluated as: "Fred\Ginger's Place"

Other available escape characters are:

\t tab

\n new line

\r carriage return

\nnn 3 octal digits (for any other character)

\uhhhh lowercase "u" followed by 4 hexadecimal digits (for any other UNICODE-only character)

MyString1 := 'abcd';
MyString2 := U'abcd\353'; // becomes 'abcdë'

Hexadecimal string constants must begin with a leading "x" character. Only valid hexadecimal values
(0-9, A-F) may be in the character string and there must be an even number of characters.

DATA2 MyHexString := x'0D0A'; // a 2-byte hexadecimal string

Data string constants must begin with a leading "D" character. This is directly equivalent to casting the
string constant to DATA.

MyDataString := D'abcd'; // same as: (DATA)'abcd'

Unicode string constants must begin with a leading "U" character. Characters between the quotes are
utf16-encoded and the type of the constant is UNICODE.

MyUnicodeString1 := U'abcd'; // same as: (UNICODE)'abcd'
MyUnicodeString2 := U'abcd\353'; // becomes 'abcdë'
MyUnicodeString3 := U'abcd\u00EB'; // becomes 'abcdë'«'

UTF8 string constants must begin with leading "U8" characters. Characters between the quotes are utf8-
encoded and the type of the constant is UTF8.

MyUTF8String := U8'abcd\353';

VARSTRING string constants must begin with a leading "V" character. The terminating null byte is implied
and type of the constant is VARSTRING.

MyVarString := V'abcd'; // same as: (VARSTRING)'abcd'

QSTRING string constants must begin with a leading "Q" character. The terminating null byte is implied
and type of the constant is VARSTRING.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

12

ECL Language Reference
ECL Basics

MyQString := Q'ABCD'; // same as: (QSTRING)'ABCD'

Multiline Strings

A multiline string begins and ends with three single quotes (''').

Any quotes, tabs, or newlines in between the triple quotes are part of the string. While you can use the
\ escape character inside a multiline string, escaping is not necessary (except for the \ character). The \
character at the end of a line in a multiline string removes the end of line and joins the two lines together.

Examples:

'Single\n quotes';
u'Can\'t be multiline and must escape embedded single quotes';
u8'€';
v'Can use various prefixes';
d'7172737475';
Q'ABCDE';

'''Triple
quotes can have embedded newlines, but also \
support \n escape sequence''';
'''Single quotes inside a multiline string don't need escaping''';
u'''Unicode triple quotes
should be the same, and also \
support \n escape sequence''';
u'''Don't have to be multiline and need not escape embedded quotes (but \'can' if they want)''';
u8'''€''';
v'''Can use same prefixes as single''';
d'''7172737475''';
Q'''ABCDE''';

Numeric
Numeric constants containing a decimal portion are treated as REAL values (scientific notation is allowed)
and those without are treated as INTEGER (see Value Types). Integer constants may be decimal, unsigned,
hexadecimal, or binary values. Hexadecimal values are specified with either a leading "0x" or a trailing "x"
character. Binary values are specified with either a leading "0b" or a trailing "b" character. Decimal values
are specified with trailing "d" character. Unsigned values are specified with a trailing "u" character.

MyInt1 := 10; // value of MyInt1 is the INTEGER value 10
MyInt2 := 0x0A; // value of MyInt2 is the INTEGER value 10
MyInt3 := 0Ax; // value of MyInt3 is the INTEGER value 10
MyInt4 := 0b1010; // value of MyInt4 is the INTEGER value 10
MyInt5 := 1010b; // value of MyInt5 is the INTEGER value 10
MyUint := 10u // value of MyUint is the UNSIGNED value 10
MyReal1 := 10.0; // value of MyReal1 is the REAL value 10.0
MyReal2 := 1.0e1; // value of MyReal2 is the REAL value 10.0
MyDec1 := 10d // value of MyDec1 is the DECIMAL value 10
MyDec2 := 3.14159265358979323846d // value of MyDec2 is the DECIMAL
 // value 3.14159265358979323846
 // a REAL type would lose precision

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

13

ECL Language Reference
ECL Basics

Compile Time Constants
The following system constants are available at compile time. These can be useful in creating conditional
code.

__ECL_VERSION__ A STRING containing the value of the platform version. For example,
'6.4.0'

__ECL_VERSION_MAJOR__ An INTEGER containing the value of the major portion of the platform
version. For example, '6'

__ECL_VERSION_MINOR__ An INTEGER containing the value of the minor portion of the platform
version. For example, '4'

__ECL_LEGACY_MODE__ A BOOLEAN value indicating if it is being compiled with legacy IMPORT
semantics.

__OS__ A STRING indicating the operating system to which it is being compiled.
Possible values are: 'windows', 'macos', or 'linux'.

__STAND_ALONE__ A BOOLEAN value indicating if it is being compiled to a stand-alone
executable.

__TARGET_PLATFORM__ A STRING containing the value of the target platform (the type of clus-
ter the query was submitted to). Possible values are: 'roxie', 'hthor', or
'thorlcr'.

__CONTAINERIZED__ A BOOLEAN value indicating if the platform is a containerized version.

Examples:

// Any modules referenced inside the condition must be declared outside of the condition
// This will avoid syntax errors
prod_thor_dali := _Control.IPAddress.prod_thor_dali;
 #IF(_TARGET_PLATFORM_ in ['thorlcr'])
 OUTPUT('thor');
 prod_thor_dali;
 #ELSE
 OUTPUT('not thor');
 #END

//Second example
IMPORT STD;
 STRING14 fGetDateTimeString() :=
 #IF(__ECL_VERSION_MAJOR__ > 5) or ((__ECL_VERSION_MAJOR__ = 5) AND (__ECL_VERSION_MINOR__ >= 2))
 STD.Date.SecondsToString(STD.Date.CurrentSeconds(true), '%Y%m%d%H%M%S');
 #ELSE
 FUNCTION
 string14 fGetDimeTime():= // 14 characters returned
 BEGINC++
 #option action
 struct tm localt; // localtime in "tm" structure
 time_t timeinsecs; // variable to store time in secs
 time(&timeinsecs);
 localtime_r(&timeinsecs,&localt);
 char temp[15];
 strftime(temp , 15, "%Y%m%d%H%M%S", &localt); // Formats the localtime to YYYYMMDDhhmmss
 strncpy(__result, temp, 14);
 ENDC++;
 RETURN fGetDimeTime();
 END;
 #END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

14

ECL Language Reference
ECL Basics

// Example using __CONTAINERIZED__
over := 'overwrite=1 ';
repl := 'replicate=1 ';
action := 'action=spray ';
srcplane :='srcplane=mydropzone ';
srcfile := 'srcfile=originalperson ';
dstname:='dstname=JD::originalperson ' ;
//dstcluster:= 'dstcluster=data '; // for containerized
//dstcluster:= 'dstcluster=mythor '; // for bare-metal
dstcluster := IF(__CONTAINERIZED__, 'dstcluster=data ','dstcluster=mythor ');
fmt:= 'format=fixed ';
recsize:='recordsize=124 ';
cmd := over + repl + action + srcplane + srcfile + dstname
 + dstcluster + fmt + recsize;
STD.File.DfuPlusExec(cmd);

Runtime Expressions

The following system constants are evaluated at runtime. Technically, these are runtime expressions, not
constants. Therefore, they cannot be used in conditional code that requires a constant.

__PLATFORM__ A STRING that represents the type of engine where the query is exe-
cuting on. Possible values are: 'roxie', 'hthor', or 'thorlcr'.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

15

ECL Language Reference
ECL Basics

Environment Variables
Environment variables store data about the current platform environment. You can retrieve the value of an
environment variable using the built-in function GETENV().

HPCC_DEPLOYMENT
In a Kubernetes deployment, this variable is auto-populated with the name of the Helm chart. For example,
if deployed using:

helm install myenv1 hpcc/hpcc

then the HPCC_DEPLOYMENT variable will contain the value: myenv1.

For a bare-metal environment, this value can be set in environment.conf, by adding:

deploymentName=myenv1

You can retrieve this value using:

OUTPUT(GETENV('HPCC_DEPLOYMENT', 'unknown'));

See Also: GETENV

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

16

ECL Language Reference
ECL Basics

Definitions
Each ECL definition is the basic building block of ECL. A definition specifies what is done but not how it is
to be done. Definitions can be thought of as a highly developed form of macro-substitution, making each
succeeding definition more and more highly leveraged upon the work that has gone before. This results in
extremely efficient query construction.

All definitions take the form:

[Scope] [ValueType] Name [(parms)] := Expression [:WorkflowService] ;

The Definition Operator (:= read as "is defined as") defines an expression. On the left side of the operator is
an optional Scope (see Attribute Visibility), ValueType (see Value Types), and any parameters (parms) it
may take (see Functions (Parameter Passing)). On the right side is the expression that produces the result
and optionally a colon (:) and a comma-delimited list of WorkflowServices (see Workflow Services). A
definition must be explicitly terminated with a semi-colon (;). The Definition name can be used in subsequent
definitions:

MyFirstDefinition := 5; //defined as 5
MySecondDefinition := MyFirstDefinition + 5; //this is 10

Definition Name Rules
Definition names begin with a letter and may contain only letters, numbers, or underscores (_).

My_First_Definition1 := 5; // valid name
My First Definition := 5; // INVALID name, spaces not allowed

You may name a Definition with the name of a previously created module in the ECL Repository, if the
attribute is defined with an explicit ValueType.

Reserved Words
ECL keywords, built-in functions and their options are reserved words, but they are generally reserved only
in the context within which they are valid for use. Even in that context, you may use reserved words as field
or definition names, provided you explicitly disambiguate them, as in this example:

ds2 := DEDUP(ds, ds.all, ALL); //ds.all is the 'all' field in the
 //ds dataset - not DEDUP's ALL option

However, it is still a good idea to avoid using ECL keywords as definition or field names.

Definition or field names cannot begin with UNICODE_ , UTF8_, or VARUNICODE_. Labels beginning with
those prefixes are treated as type names, and should be regarded as reserved.

Definition Naming
Use descriptive names for all EXPORTed and SHARED Definitions. This will make your code more readable.
The naming convention adopted throughout the ECL documentation and training courses is as follows:

Definition Type Are Named
Boolean Is...
Set Definition Set...
Record Set ...DatasetName

For example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

17

ECL Language Reference
ECL Basics

IsTrue := TRUE; // a BOOLEAN Definition
SetNumbers := [1,2,3,4,5]; // a Set Definition
R_People := People(firstname[1] = 'R'); // a Record Set Definition

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

18

ECL Language Reference
ECL Basics

Basic Definition Types
The basic types of Definitions used most commonly throughout ECL coding are: Boolean, Value, Set,
Record Set, and TypeDef.

Boolean Definitions
A Boolean Definition is defined as any Definition whose definition is a logical expression resulting in a TRUE/
FALSE result. For example, the following are all Boolean Definitions:

IsBoolTrue := TRUE;
IsFloridian := Person.per_st = 'FL';
IsOldPerson := Person.Age >= 65;

Value Definitions
A Value Definition is defined as any Definition whose expression is an arithmetic or string expression with
a single-valued result. For example, the following are all Value Definitions:

ValueTrue := 1;
FloridianCount := COUNT(Person(Person.per_st = 'FL'));
OldAgeSum := SUM(Person(Person.Age >= 65),Person.Age);

Set Definitions
A Set Definition is defined as any Definition whose expression is a set of values, defined within square
brackets. Constant sets are created as a set of explicitly declared constant values that must be declared
within square brackets, whether that set is defined as a separate definition or simply included in-line in
another expression. All the constants must be of the same type.

SetInts := [1,2,3,4,5]; // an INTEGER set with 5 elements
SetReals := [1.5,2.0,3.3,4.2,5.0];
 // a REAL set with 5 elements
SetStatusCodes := ['A','B','C','D','E'];
 // a STRING set with 5 elements

The elements in any explicitly declared set can also be composed of arbitrary expressions. All the expres-
sions must result in the same type and must be constant expressions.

SetExp := [1,2+3,45,SomeIntegerDefinition,7*3];
 // an INTEGER set with 5 elements

Declared Sets can contain definitions and expressions as well as constants as long as all the elements are
of the same result type. For example:

StateCapitol(STRING2 state) :=
 CASE(state, 'FL' => 'Tallahassee', 'Unknown');
SetFloridaCities := ['Orlando', StateCapitol('FL'), 'Boca '+'Raton',
 person[1].per_full_city];

Set Definitions can also be defined using the SET function (which see). Sets defined this way may be used
like any other set.

SetSomeField := SET(SomeFile, SomeField);
 // a set of SomeField values

Sets can also contain datasets for use with those functions (such as: MERGE, JOIN, MERGEJOIN, or
GRAPH) that require sets of datsets as input parameters.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

19

ECL Language Reference
ECL Basics

SetDS := [ds1, ds2, ds3]; // a set of datasets

You can construct a DATASET from a SET.

SET OF STRING s := ['Jim','Bob','Richard','Tom'];
DATASET(s,{STRING txt});

Set Ordering and Indexing
Sets are implicitly ordered and you may index into them to access individual elements. Square brackets are
used to specify the element number to access. The first element is number one (1).

MySet := [5,4,3,2,1];
ReverseNum := MySet[2]; //indexing to MySet's element number 2,
 //so ReverseNum contains the value 4

Strings (Character Sets) may also be indexed to access individual or multiple contiguous elements within
the set of characters (a string is treated as though it were a set of 1-character strings). An element number
within square brackets specifies an individual character to extract.

MyString := 'ABCDE';
MySubString := MyString[2]; // MySubString is 'B'

Substrings may be extracted by using two periods to separate the beginning and ending element numbers
within the square brackets to specify the substring (string slice) to extract. Either the beginning or ending
element number may be omitted to indicate a substring from the beginning to the specified element, or from
the specified element through to the end.

MyString := 'ABCDE';
MySubString1 := MyString[2..4]; // MySubString1 is 'BCD'
MySubString2 := MyString[..4]; // MySubString2 is 'ABCD'
MySubString3 := MyString[2..]; // MySubString3 is 'BCDE'

Record Set Definitions
The term "Dataset" in ECL explicitly means a "physical" data file in the supercomputer (on disk or in memory),
while the term "Record Set" indicates any set of records derived from a Dataset (or another Record Set),
usually based on some filter condition to limit the result set to a subset of records. Record sets are also
created as the return result from one of the built-in functions that return result sets.

A Record Set Definition is defined as any Definition whose expression is a filtered dataset or record set, or
any function that returns a record set. For example, the following are all Record Set Definitions:

FloridaPersons := Person(Person.per_st = 'FL');
OldFloridaPersons := FloridaPersons(Person.Age >= 65);

Record Set Ordering and Indexing
All Datasets and Record Sets are implicitly ordered and may be indexed to access individual records within
the set. Square brackets are used to specify the element number to access, and the first element in any
set is number one (1).

Datasets (including child datasets) and Record Sets may use the same method as described above for
strings to access individual or multiple contiguous records.

MyRec1 := Person[1]; // first rec in dataset
MyRec2 := Person[1..10]; // first ten recs in dataset
MyRec4 := Person[2..]; // all recs except the first

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

20

ECL Language Reference
ECL Basics

Note: ds[1] and ds[1..1] are not the same thing--ds[1..1] is a recordset (may be used in recordset context)
while ds[1] is a single row (may be used to reference single fields).

And you can also access individual fields in a specified record with a single index:

MyField := Person[1].per_last_name; // last name in first rec

Indexing a record set with a value that is out of bounds is defined to return a row where all the fields contain
blank/zero values. It is often more efficient to index an out of bound value rather than writing code that
handles the special case of an out of bounds index value.

For example, the expression:

IF(COUNT(ds) > 0, ds[1].x, 0);

is simpler as:

ds[1].x //note that this returns 0 if ds contains no records.

TypeDef Definitions
A TypeDef Definition is defined as any Definition whose definition is a value type, whether built-in or user-
defined. For example, the following are all TypeDef Definitions (except GetXLen):

GetXLen(DATA x,UNSIGNED len) := TRANSFER(((DATA4)(x[1..len])),UNSIGNED4);

EXPORT xstring(UNSIGNED len) := TYPE
 EXPORT INTEGER PHYSICALLENGTH(DATA x) := GetXLen(x,len) + len;
 EXPORT STRING LOAD(DATA x) := (STRING)x[(len+1)..GetXLen(x,len) + len];
 EXPORT DATA STORE(STRING x):= TRANSFER(LENGTH(x),DATA4)[1..len] + (DATA)x;
END;

pstr := xstring(1); // typedef for user defined type
pppstr := xstring(3);
nameStr := STRING20; // typedef of a system type

namesRecord := RECORD
 pstr surname;
 nameStr forename;
 pppStr addr;

END;
//A RECORD structure is also a typedef definition (user-defined)

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

21

ECL Language Reference
ECL Basics

Recordset Filtering
Filters are conditional expressions contained within the parentheses following the Dataset or Record Set
name. Multiple filter conditions may be specified by separating each filter expression with a comma (,). All
filter conditions separated by commas must be TRUE for a record to be included, which makes the comma
an implicit AND operator (see Logical Operators) in this context only.

MyRecordSet := Person(per_last_name >= 'T', per_last_name < 'U');
 // MyRecordSet contains people whose last name begins with "T"
 // the comma is an implicit AND while also functioning as
 // an expression separator (implicit parentheses)

MyRecordSet := Person(per_last_name >= 'T' AND per_last_name < 'U');
// exactly the same logical expression as above

RateGE7trds := Trades(trd_rate >= '7');

ValidTrades := Trades(NOT rmsTrade.Mortgage AND
 NOT rmsTrade.HasNarrative(rmsTrade.snClosed));

Boolean definitions should be used as recordset filters for maximum flexibility, readability and re-usability
instead of hard-coding in a Record Set definition. For example, use:

IsRevolv := trades.trd_type = 'R'
 OR (~ValidType(trades.trd_type)
 AND trades.trd_acct[1] IN ['4','5','6']);

isBank := trades.trd_ind_code IN SetBankIndCodes;

IsBankCard := IsBank AND IsRevolv;

WithinDate(INTEGER1 months) := ValidDate(trades.trd_drpt) AND
 trades.trd_drpt_mos <= months;

BankCardTrades := trades(isBankCard AND WithinDate(6));

instead of:

BankCardTrades := trades(trades.trd_ind_code IN SetBankIndCodes,
 (trades.trd_type = 'R' OR
 (~ValidType(trades.trd_type) AND
 trades.trd_acct[1] IN ['4', '5', '6'])),
 ValidDate(trades.trd_drpt),
 trades.trd_drpt_mos <= 6);

Commas used to separate filter conditions in a recordset filter definition act as both an implicit AND operation
and a set of parentheses around the individual filters being separated. This results in a tighter binding than
if AND is used instead of a comma without parentheses. For example, the filter expression in this definition::

BankMortTrades := trades(isBankCard OR isMortgage, isOpen);

is evaluated as if it were written:

(isBankCard OR isMortgage) AND isOpen

and not as:

isBankCard OR isMortgage AND isOpen

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

22

ECL Language Reference
ECL Basics

Function Definitions (Parameter Pass-
ing)
All of the basic Definition types can also become functions by defining them to accept passed parameters
(arguments). The fact that it receives parameters doesn't change the essential nature of the Definition's
type, it simply makes it more flexible.

Parameter definitions always appear in parentheses attached to the Definition's name. You may define the
function to receive as many parameters as needed to create the desired functionality by simply separating
each succeeding parameter definition with a comma.

The format of parameter definitions is as follows:

DefinitionName([ValueType] AliasName [=DefaultValue]) := expression;

ValueType Optional. Specifies the type of data being passed. If omitted, the default is
INTEGER (see Value Types). This also may include the CONST keyword (see
CONST) to indicate that the passed value will always be treated as a constant.

AliasName Names the parameter for use in the expression.

DefaultValue Optional. Provides the value to use in the expression if the parameter is omit-
ted. The DefaultValue may be the keyword ALL if the ValueType is SET (see
the SET keyword) to indicate all possible values for that type of set, or empty
square brackets ([]) to indicate no possible value for that type of set.

expression The function's operation for which the parameters are used.

Simple Value Type Parameters
If the optional ValueType is any of the simple types (BOOLEAN, INTEGER, REAL, DECIMAL, STRING,
QSTRING, UNICODE, DATA, VARSTRING, VARUNICODE), the ValueType may include the CONST key-
word (see CONST) to indicate that the passed value will always be treated as a constant (typically used
only in ECL prototypes of external functions).

ValueDefinition := 15;
FirstFunction(INTEGER x=5) := x + 5;
 //takes an integer parameter named "x" and "x" is used in the
 //arithmetic expression to indicate the usage of the parameter

SecondDefinition := FirstFunction(ValueDefinition);
 // The value of SecondDefinition is 20

ThirdDefinition := FirstFunction();
 // The value of ThirdDefinition is 10, omitting the parameter

SET Parameters
The DefaultValue for SET parameters may be a default set of values, the keyword ALL to indicate all possible
values for that type of set, or empty square brackets ([]) to indicate no possible value for that type of set
(and empty set).

SET OF INTEGER1 SetValues := [5,10,15,20];

IsInSetFunction(SET OF INTEGER1 x=SetValues,y) := y IN x;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

23

ECL Language Reference
ECL Basics

OUTPUT(IsInSetFunction([1,2,3,4],5)); //false
OUTPUT(IsInSetFunction(,5)); // true

Passing DATASET Parameters
Passing a DATASET or a derived recordset as a parameter may be accomplished using the following syntax:

DefinitionName(DATASET(recstruct) AliasName) := expression;

The required recstruct names the RECORD structure that defines the layout of fields in the passed
DATASET parameter. The recstruct may alternatively use the RECORDOF function. The required Alias-
Name names the dataset for use in the function and is used in the Definition's expression to indicate where
in the operation the passed parameter is to be used. See the DATASET as a Value Type discussion in the
DATASET documentation for further examples.

MyRec := {STRING1 Letter};

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],MyRec);

FilteredDS(DATASET(MyRec) ds) := ds(Letter NOT IN ['A','C','E']);
 //passed dataset referenced as "ds" in expression

OUTPUT(FilteredDS(SomeFile));

Passing DICTIONARY Parameters
Passing a DICTIONARY as a parameter may be accomplished using the following syntax:

DefinitionName(DICTIONARY(structure) AliasName) := expression;

The required structure parameter is the RECORD structure that defines the layout of fields in the passed
DICTIONARY parameter (usually defined inline). The required AliasName names the DICTIONARY for use
in the function and is used in the Definition's expression to indicate where in the operation the passed para-
meter is to be used. See the DICTIONARY as a Value Type discussion in the DICTIONARY documentation.

rec := RECORD
 STRING10 color;
 UNSIGNED1 code;
 STRING10 name;
END;
Ds := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Seth'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

DsDCT := DICTIONARY(DS,{color => DS});

DCTrec := RECORD
 STRING10 color =>
 UNSIGNED1 code,
 STRING10 name,
END;
InlineDCT := DICTIONARY([{'Black' => 0 , 'Fred'},
 {'Brown' => 1 , 'Sam'},
 {'Red' => 2 , 'Sue'},
 {'White' => 3 , 'Jo'}],
 DCTrec);

MyDCTfunc(DICTIONARY(DCTrec) DCT,STRING10 key) := DCT[key].name;

MyDCTfunc(InlineDCT,'White'); //Jo

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

24

ECL Language Reference
ECL Basics

MyDCTfunc(DsDCT,'Brown'); //Seth

Passing Typeless Parameters
Passing parameters of any type may be accomplished using the keyword ANY as the passed value type:

DefinitionName (ANY AliasName) := expression;

a := 10;
b := 20;
c := '1';
d := '2';
e := '3';
f := '4';
s1 := [c,d];
s2 := [e,f];

ds1 := DATASET(s1,{STRING1 ltr});
ds2 := DATASET(s2,{STRING1 ltr});

MyFunc(ANY l, ANY r) := l + r;

MyFunc(a,b); //returns 30
MyFunc(a,c); //returns '101'
MyFunc(c,d); //returns '12'
MyFunc(s1,s2); //returns a set: ['1','2','3','4']
MyFunc(ds1,ds2); //returns 4 records: '1', '2', '3', and '4'

Passing Function Parameters
Passing a Function as a parameter may be accomplished using either of the following syntax options as
the ValueType for the parameter:

FunctionName(parameters)

PrototypeName

FunctionName The name of a function, the type of which may be passed as a parameter.

parameters The parameter definitions for the FunctionName parameter.

PrototypeName The name of a previously defined function to use as the type of function that
may be passed as a parameter.

The following code provides examples of both methods:

//a Function prototype:
INTEGER actionPrototype(INTEGER v1, INTEGER v2) := 0;

INTEGER aveValues(INTEGER v1, INTEGER v2) := (v1 + v2) DIV 2;
INTEGER addValues(INTEGER v1, INTEGER v2) := v1 + v2;
INTEGER multiValues(INTEGER v1, INTEGER v2) := v1 * v2;

//a Function prototype using a function prototype:
INTEGER applyPrototype(INTEGER v1, actionPrototype actionFunc) := 0;

//using the Function prototype and a default value:
INTEGER applyValue2(INTEGER v1,
 actionPrototype actionFunc = aveValues) :=
 actionFunc(v1, v1+1)*2;

//Defining the Function parameter inline, witha default value:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

25

ECL Language Reference
ECL Basics

INTEGER applyValue4(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2) = aveValues)
 := actionFunc(v1, v1+1)*4;
INTEGER doApplyValue(INTEGER v1,
 INTEGER actionFunc(INTEGER v1, INTEGER v2))
 := applyValue2(v1+1, actionFunc);

//producing simple results:
OUTPUT(applyValue2(1)); // 2
OUTPUT(applyValue2(2)); // 4
OUTPUT(applyValue2(1, addValues)); // 6
OUTPUT(applyValue2(2, addValues)); // 10
OUTPUT(applyValue2(1, multiValues)); // 4
OUTPUT(applyValue2(2, multiValues)); // 12
OUTPUT(doApplyValue(1, multiValues)); // 12
OUTPUT(doApplyValue(2, multiValues)); // 24

//A definition taking function parameters which themselves
//have parameters that are functions...

STRING doMany(INTEGER v1,
 INTEGER firstAction(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2)),
 INTEGER secondAction(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2)),
 INTEGER actionFunc(INTEGER v1,INTEGER v2))
 := (STRING)firstAction(v1, actionFunc) + ':' + (STRING)secondaction(v1, actionFunc);

OUTPUT(doMany(1, applyValue2, applyValue4, addValues));
 // produces "6:12"

OUTPUT(doMany(2, applyValue4, applyValue2,multiValues));
 // produces "24:12"

Passing NAMED Parameters
Passing values to a function defined to receive multiple parameters, many of which have default values
(and are therefore omittable), is usually accomplished by "counting commas" to ensure that the values you
choose to pass are passed to the correct parameter by the parameter's position in the list. This method
becomes untenable when there are many optional parameters.

The easier method is to use the following NAMED parameter syntax, which eliminates the need to include
extraneous commas as place holders to put the passed values in the proper parameters:

Attr := FunctionName([NAMED] AliasName := value);

NAMED Optional. Required only when the AliasName clashes with a reserved word.

AliasName The names of the parameter in the definition's function definition. This must be
a valid label (See Definition Name Rules)

value The value to pass to the parameter.

This syntax is used in the call to the function and allows you to pass values to specific parameters by their
AliasName, without regard for their position in the list. All unnamed parameters passed must precede any
NAMED parameters.

outputRow(BOOLEAN showA = FALSE, BOOLEAN showB = FALSE,
 BOOLEAN showC = FALSE, STRING aValue = 'abc',
 INTEGER bValue = 10, BOOLEAN cValue = TRUE) :=

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

26

ECL Language Reference
ECL Basics

 OUTPUT(IF(showA,' a='+aValue,'')+
 IF(showB,' b='+(STRING)bValue,'')+
 IF(showc,' c='+(STRING)cValue,''));

outputRow(); //produce blanks
outputRow(TRUE); //produce "a=abc"
outputRow(,,TRUE); //produce "c=TRUE"
outputRow(NAMED showB := TRUE); //produce "b=10"

outputRow(TRUE, NAMED aValue := 'Changed value');
 //produce "a=Changed value"

outputRow(,,,'Changed value2',NAMED showA := TRUE);
 //produce "a=Changed value2"

outputRow(showB := TRUE); //produce "b=10"

outputRow(TRUE, aValue := 'Changed value');
outputRow(,,,'Changed value2',showA := TRUE);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

27

ECL Language Reference
ECL Basics

Definition Visibility
ECL code, definitions, are stored in .ECL files in your code repository, which are organized into modules
(directories or folders on disk). Each .ECL file may only contain a single EXPORT or SHARED definition
(see below) along with any supporting local definitions required to fully define the definition's result. The
name of the file and the name of its EXPORT or SHARED definition must exactly match.

Within a module (directory or folder on disk), you may have as many EXPORT and/or SHARED definitions
as needed. An IMPORT statement (see the IMPORT keyword) identifies any other modules whose visible
definitions will be available for use in the current definition.

The following fundamental definition visibility scopes are available in ECL: "Global," Module, and Local.

"Global"
Definitions defined as EXPORT (see the EXPORT keyword) are available throughout the module in which
they are defined, and throughout any other module that IMPORTs that module (see the IMPORT keyword).

//inside the Definition1.ecl file (in AnotherModule folder) you have:
EXPORT Definition1 := 5;
 //EXPORT makes Definition1 available to other modules and
 //also available throughout its own module

Module
The scope of the definitions defined as SHARED (see the SHARED keyword) is limited to that one module,
and are available throughout the module (unlike local definitions). This allows you to keep private any def-
initions that are only needed to implement internal functionality. SHARED definitions are used to support
EXPORT definitions.

//inside the Definition2.ecl file you have:
IMPORT AnotherModule;
 //makes definitions from AnotherModule available to this code, as needed

SHARED Definition2 := AnotherModule.Definition1 + 5;
 //Definition2 available throughout its own module, only

//***
//then inside the Definition3.ecl file (in the same folder as Definition2) you have:
IMPORT $;
 //makes definitions from the current module available to this code, as needed

EXPORT Definition3 := $.Definition2 + 5;
 //make Definition3 available to other modules and
 //also available throughout its own module

Local
A definition without either the EXPORT or SHARED keywords is available only to subsequent definitions,
until the end of the next EXPORT or SHARED definition. This makes them private definitions used only
within the scope of that one EXPORT or SHARED definition, which allows you to keep private any definitions
that are only needed to implement internal functionality. Local definitions definitions are used to support the
EXPORT or SHARED definition in whose file they reside. Local definitions are referenced by their definition
name alone; no qualification is needed.

//then inside the Definition4.ecl file (in the same folder as Definition2) you have:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

28

ECL Language Reference
ECL Basics

IMPORT $;
 //makes definitions from the current module available to this code, as needed

LocalDef := 5;
 //local -- available through the end of Definition4's definition, only

EXPORT Definition4 := LocalDef + 5;
//EXPORT terminates scope for LocalDef

LocalDef2 := Definition4 + LocalDef;
 //INVALID SYNTAX -- LocalDef is out of scope here
 //and any local definitions following the EXPORT
 //or SHARED definition in the file are meaningless
 //since they can never be used by anything

The LOCAL keyword is valid for use within any nested structure, but most useful within a FUNCTION-
MACRO structure to clearly identify that the scope of a definition is limited to the code generated within
the FUNCTIONMACRO.

AddOne(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 1;
 RETURN numPlus;
ENDMACRO;

numPlus := 'this is a syntax error without LOCAL in the FUNCTIONMACRO';
numPlus;
AddOne(5);

See Also: IMPORT, EXPORT, SHARED, MODULE, FUNCTIONMACRO

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

29

ECL Language Reference
ECL Basics

Field and Definition Qualification
Imported Definitions
EXPORTed definitions defined within another module and IMPORTed (see the EXPORT and IMPORT
keywords) are available for use in the definition that contains the IMPORT. Imported Definitions must be
fully qualified by their Module name and Definition name, using dot syntax (module.definition).

IMPORT abc; //make all exported definitions in the abc module available
EXPORT Definition1 := 5; //make Definition1 available to other modules
Definition2 := abc.Definition2 + Definition1;
 // object qualification needed for Definitions from abc module

Fields in Datasets
Each Dataset counts as a qualified scope and the fields within them are fully qualified by their Dataset (or
record set) name and Field name, using dot syntax (dataset.field). Similarly, the result set of the TABLE
built-in function (see the TABLE keyword) also acts as a qualified scope. The name of the record set to
which a field belongs is the object name:

Young := YearOf(Person.per_dbrth) < 1950;
MySet := Person(Young);

When naming a Dataset as part of a definition, the fields of that Definition (or record set) come into scope. If
Parameterized Definitions (functions) are nested, only the innermost scope is available. That is, all the fields
of a Dataset (or derived record set) are in scope in the filter expression. This is also true for expressions
parameters of any built-in function that names a Dataset or derived record set as a parameter.

MySet1 := Person(YearOf(dbrth) < 1950);
// MySet1 is the set of Person records who were born before 1950

MySet2 := Person(EXISTS(OpenTrades(AgeOf(trd_dla) < AgeOf(Person.per_dbrth))));

// OpenTrades is a pre-defined record set.
//All Trades fields are in scope in the OpenTrades record set filter
//expression, but Person is required here to bring Person.per_dbrth
// into scope
//This example compares each trades' Date of Last Activity to the
// related person's Date Of Birth

Any field in a Record Set can be qualified with either the Dataset name the Record Set is based on, or any
other Record Set name based on the same base dataset. For example:

memtrade.trd_drpt
nondup_trades.trd_drpt
trades.trd_drpt

all refer to the same field in the memtrade dataset.

For consistency, you should typically use the base dataset name for qualification. You can also use the
current Record Set's name in any context where the base dataset name would be confusing.

Scope Resolution Operator
Identifiers are looked up in the following order:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

30

ECL Language Reference
ECL Basics

1. The currently active dataset, if any

2. The current definition being defined, and any parameters it is based on

3. Any definitions or parameters of any MODULE or FUNCTION structure that contains the current definition

This might mean that the definition or parameter you want to access isn't picked because it is hidden as in
a parameter or private definition name clashing with the name of a dataset field.

It would be better to rename the parameter or private definition so the name clash cannot occur, but some-
times this is not possible.

You may direct access to a different match by qualifying the field name with the scope resolution operator
(the carat (^) character), using it once for each step in the order listed above that you need to skip.

This example shows the qualification order necessary to reach a specific definition/parameter:

ds := DATASET([1], { INTEGER SomeValue });

INTEGER SomeValue := 10; //local definition

myModule(INTEGER SomeValue) := MODULE

 EXPORT anotherFunction(INTEGER SomeValue) := FUNCTION
 tbl := TABLE(ds,{SUM(GROUP, someValue), // 1 - DATASET field
 SUM(GROUP, ^.someValue), // 84 - FUNCTION parameter
 SUM(GROUP, ^^.someValue), // 42 - MODULE parameter
 SUM(GROUP, ^^^.someValue), // 10 - local definition
 0});
 RETURN tbl;
 END;

 EXPORT result := anotherFunction(84);
 END;

OUTPUT(myModule(42).result);

In this example there are four instances of the name "SomeValue":

a field in a DATASET.

a local definition

a parameter to a MODULE structure

a parameter to a FUNCTION structure

The code in the TABLE function shows how to reference each separate instance.

While this syntax allows exceptions where you need it, creating another definition with a different name is
the preferred solution.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

31

ECL Language Reference
ECL Basics

Actions and Definitions
While Definitions define expressions that may be evaluated, Actions trigger execution of a workunit that
produces results that may be viewed. An Action may evaluate Definitions to produce its result. There are
a number of built-in Actions in ECL (such as OUTPUT), and any expression (without a Definition name) is
implicitly treated as an Action to produce the result of the expression.

Expressions as Actions
Fundamentally, any expression in can be treated as an Action. For example,

Attr1 := COUNT(Trades);
Attr2 := MAX(Trades,trd_bal);
Attr3 := IF (1 = 0, 'A', 'B');

are all definitions, but without a definition name, they are simply expressions

COUNT(Trades); //execute these expressions as Actions
MAX(Trades,trd_bal);
IF (1 = 0, 'A', 'B');

that are treated as actions, and as such, can directly generate result values by simply submitting them
as queries to the supercomputer. Basically, any ECL expression can be used as an Action to instigate a
workunit.

Definitions as Actions
These same expression definitions can be executed by submitting the names of the Definitions as queries,
like this:

Attr1; //These all generate the same result values
Attr2; // as the previous examples
Attr3;

Actions as Definitions
Conversely, by simply giving any Action a Definition name it becomes a definition, therefore no longer a
directly executable action. For example,

OUTPUT(Person);

is an action, but

Attr4 := OUTPUT(Person);

is a definition and does not immediately execute when submitted as part of a query. To execute the action
inherent in the definition, you must execute the Definition name you've given to the Action, like this:

Attr4; // run the previously defined OUTPUT(Person) action

Debugging Uses
This technique of directly executing a Definition as an Action is useful when debugging complex ECL code.
You can send the Definition as a query to determine if intermediate values are correctly calculated before
continuing on with more complex code.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

32

ECL Language Reference
Expressions and Operators

Expressions and Operators

Expressions and Operators
Expressions are evaluated left-to-right and from the inside out (in nested functions). Parentheses may be
used to alter the default evaluation order of precedence for all operators.

Arithmetic Operators
Standard arithmetic operators are supported for use in expressions, listed here in their evaluation prece-
dence.

Note: * , /, %, and DIV all have the same precedence and are left associative. + and - have the same
precedence and are left associative.

Division /

Integer Division DIV

Modulus Division %

Multiplication *

Addition +

Subtraction -

Division by zero defaults to generating a zero result (0), rather than reporting a "divide by zero" error. This
avoids invalid or unexpected data aborting a long job. The default behaviour can be changed using

#OPTION ('divideByZero', 'zero'); //evaluate to zero

The divideByZero option can have the following values:

'zero' Evaluate to 0 - the default behaviour.

'fail' Stop and report a division by zero error.

'nan' This is only currently supported for real numbers. Division by
zero creates a quiet NaN, which will propagate through any
real expressions it is used in. You can use NOT ISVALID(x)
to test if the value is a NaN. Integer and decimal division by
zero continue to return 0.

Bitwise Operators
Bitwise operators are supported for use in expressions, listed here in their evaluation precedence:

Bitwise AND &

Bitwise OR |

Bitwise Exclusive OR ^

Bitwise NOT BNOT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

33

ECL Language Reference
Expressions and Operators

Bitshift Operators
Bitshift operators are supported for use in integer expressions:

Bitshift Right >>

Bitshift Left <<

Comparison Operators
The following comparison operators are supported:

Equivalence = returns TRUE or FALSE.

Not Equal <> returns TRUE or FALSE

Not Equal != returns TRUE or FALSE

Less Than < returns TRUE or FALSE

Greater Than > returns TRUE or FALSE

Less Than or Equal <= returns TRUE or FALSE

Greater Than or Equal >= returns TRUE or FALSE

Equivalence Comparison <=> returns -1, 0, or 1

The Greater Than or Equal operator must have the Greater Than (>) sign first. For the expression a <=> b,
the Equivalence Comparison operator returns -1 if a<b, 0 if a=b, and 1 if a>b. When STRINGs are compared,
trailing spaces are generally ignored. Standard library functions, such as Std.Str.Find(), may consider trailing
spaces. See the Standard Library Reference for specific details.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

34

ECL Language Reference
Expressions and Operators

Logical Operators
The following logical operators are supported, listed here in their evaluation precedence:

NOT Boolean NOT operation

~ Boolean NOT operation

AND Boolean AND operation

OR Boolean OR operation

Logical Expression Grouping
When a complex logical expression has multiple OR conditions, you should group the OR conditions and
order them from least complex to most complex to result in the most efficient processing.

If the probability of occurrence is known, you should order them from the most likely to occur to the least
likely to occur, because once any part of a compound OR condition evaluates to TRUE, the remainder of
the expression can be bypassed. However, this is not guaranteed. This is also true of the order of MAP
function conditions.

Whenever AND and OR logical operations are mixed in the same expression, you should use parentheses
to group within the expression to ensure correct evaluation and to clarify the intent of the expression. For
example consider the following:

isCurrentRevolv := trades.trd_type = 'R' AND
 trades.trd_rate = '0' OR
 trades.trd_rate = '1';

does not produce the intended result. Use of parentheses ensures correct evaluation, as shown below:

isCurrentRevolv := trades.trd_type = 'R' AND
 (trades.trd_rate = '0' OR trades.trd_rate = '1');

An XOR Operator
The following function can be used to perform an XOR operation on 2 Boolean values:

BOOLEAN XOR(BOOLEAN cond1, BOOLEAN cond2) :=
 (cond1 OR cond2) AND NOT (cond1 AND cond2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

35

ECL Language Reference
Expressions and Operators

Record Set Operators
The following record set operators are supported (all require that the files were created using identical
RECORD structures):

+ Append all records from both files, independent of any order

& Append all records from both files, maintaining record order on each node

- Subtract records from a file

Example:

MyLayout := RECORD
 UNSIGNED Num;
 STRING Number;
END;

FirstRecSet := DATASET([{1, 'ONE'}, {2, 'Two'}, {3, 'Three'}, {4, 'Four'}], MyLayout);
SecondRecSet := DATASET([{5, 'FIVE'}, {6, 'SIX'}, {7, 'SEVEN'}, {8, 'EIGHT'}], MyLayout);

ExcludeThese := SecondRecSet(Num > 6);

WholeRecSet := FirstRecSet + SecondRecSet;
ResultSet := WholeRecSet-ExcludeThese;

OUTPUT (WholeRecSet);
OUTPUT(ResultSet);

Prefix Append Operator
(+) (ds_list) [, options])

(+) The prefix append operator.

ds_list A comma-delimited list of record sets to append (two or more). All the record sets
must have identical RECORD structures.

options Optional. A comma-delimited list of options from the list below.

The prefix append operator (+) provides more flexibility than the simple infix operators described above. It
allows hints and other options to be associated with the operator. Similar syntax will be added in a future
change for other infix operators.

The following options may be used:

[, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)]

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

36

ECL Language Reference
Expressions and Operators

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Example:

ds_1 := (+)(ds1, ds2, UNORDERED);
 //equivalent to: ds := ds1 + ds2;

ds_2 := (+)(ds1, ds2);
 //equivalent to: ds := ds1 & ds2;

ds_3 := (+)(ds1, ds2, ds3);
 //multiple file appends are supported

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

37

ECL Language Reference
Expressions and Operators

Set Operators
The following set operators are supported, listed here in their evaluation precedence:

+ Append (all elements from both sets, without re-ordering or duplicate element re-
moval)

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

38

ECL Language Reference
Expressions and Operators

String Operators
The following string operator is supported:

+ Concatenation

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

39

ECL Language Reference
Expressions and Operators

IN Operator
value IN value_set

value The value to find in the value_set. This is usually a single value, but if the
value_set is a DICTIONARY with a multiple-component key, this may also be
a ROW.

value_set A set of values. This may be a set expression, the SET function, or a DIC-
TIONARY.

The IN operator is shorthand for a collection of OR conditions. It is an operator that will search a set to find an
inclusion, resulting in a Boolean return. Using IN is much more efficient than the equivalent OR expression.

Examples:

ABCset := ['A', 'B', 'C'];
IsABCStatus := Person.Status IN ABCset;
 //This code is directly equivalent to:
 // IsABCStatus := Person.Status = 'A' OR
 // Person.Status = 'B' OR
 // Person.Status = 'C';

IsABC(STRING1 char) := char IN ABCset;
Trades_ABCstat := Trades(IsABC(rate));
 // Trades_ABCstat is a record set definition of all those
 // trades with a trade status of A, B, or C

//SET function examples
r := {STRING1 Letter};
SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'}],r);
x := SET(SomeFile(Letter > 'C'),Letter);
y := 'A' IN x; //results in FALSE
z := 'D' IN x; //results in TRUE

DICTIONARY examples:

//DICTIONARY examples:
rec := {STRING color,UNSIGNED1 code};
ColorCodes := DATASET([{'Black' ,0 },
 {'Brown' ,1 },
 {'Red' ,2 },
 {'White' ,3 }], rec);

CodeColorDCT := DICTIONARY(ColorCodes,{Code => Color});
OUTPUT(6 IN CodeColorDCT); //false

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code});
OUTPUT(ROW({'Red',2},rec) IN ColorCodesDCT);

See Also: Basic Definition Types, Definition Types (Set Definitions), Logical Operators, PATTERN, DIC-
TIONARY, ROW, SET, Sets and Filters, SET OF, Set Operators

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

40

ECL Language Reference
Expressions and Operators

BETWEEN Operator
SeekVal BETWEEN LoVal AND HiVal

SeekVal The value to find in the inclusive range.

LoVal The low value in the inclusive range.

HiVal The high value in the inclusive range.

The BETWEEN operator is shorthand for an inclusive range check using standard comparison operators
(SeekVal >= LoVal AND SeekVal <= HiVal). It may be combined with NOT to reverse the logic.

Example:

X := 10;
Y := 20;
Z := 15;

IsInRange := Z BETWEEN X AND Y;
 //This code is directly equivalent to:
 // IsInRange := Z >= X AND Z <= Y;

IsNotInRange := Z NOT BETWEEN X AND Y;
 //This code is directly equivalent to:
 // IsInNotRange := NOT (Z >= X AND Z <= Y);
OUTPUT(IsInRange);
OUTPUT(IsNotInRange);

See Also: Logical Operators, Comparison Operators

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

41

ECL Language Reference
Value Types

Value Types
Value types declare an Attribute's type when placed left of the Attribute name in the definition. They also
declare a passed parameter's type when placed left of the parameter name in the definition. Value types
also explicitly cast from type to another when placed in parentheses left of the expression to cast.

BOOLEAN
BOOLEAN

A Boolean true/false value. TRUE and FALSE are reserved ECL keywords; they are Boolean constants
that may be used to compare against a BOOLEAN type. When BOOLEAN is used in a RECORD structure,
a single-byte integer containing one (1) or zero (0) is output.

Example:

BOOLEAN MyBoolean := SomeAttribute > 10;
 // declares MyBoolean a BOOLEAN Attribute

BOOLEAN MyBoolean(INTEGER p) := p > 10;
 // MyBoolean takes an INTEGER parameter

BOOLEAN Typtrd := trades.trd_type = 'R';
 // Typtrd is a Boolean attribute, likely to be used as a filter

See Also: TRUE/FALSE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

42

ECL Language Reference
Value Types

INTEGER
[IntType] [UNSIGNED] INTEGER[n]

[IntType] UNSIGNEDn

An n-byte integer value. Valid values for n are: 1, 2, 3, 4, 5, 6, 7,or 8. If n is not specified for the INTEGER,
the default is 8-bytes.

The optional IntType may specify either the BIG_ENDIAN (Sun/UNIX-type, valid only inside a RECORD
structure) or LITTLE_ENDIAN (Intel-type) style of integers. These two IntTypes have opposite internal byte
orders. If the IntType is missing, the integer is LITTLE_ENDIAN.

If the optional UNSIGNED keyword is missing, the integer is signed. Unsigned integer declarations may be
contracted to UNSIGNEDn instead of UNSIGNED INTEGERn.

INTEGER Value Ranges

Size Signed Values Unsigned Values

1-byte -128 to 127 0 to 255

2-byte -32,768 to 32,767 0 to 65,535

3-byte -8,388,608 to 8,388,607 0 to 16,777,215

4-byte -2,147,483,648 to 2,147,483,647 0 to 4,294,967,295

5-byte -549,755,813,888 to
549,755,813,887

0 to 1,099,511,627,775

6-byte -140,737,488,355,328 to
140,737,488,355,327

0 to 281,474,976,710,655

7-byte -36,028,797,018,963,968 to
36,028,797,018,963,967

0 to 72,057,594,037,927,935

8-byte -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0 to 18,446,744,073,709,551,615

Example:

INTEGER1 MyValue := MAP(MyString = '1' => MyString, '0');
 //MyValue is 1 or 0, changing type from string to integer
UNSIGNED INTEGER1 MyValue := 255; //max value possible in 1 byte
UNSIGNED1 MyValue := 255;
 //MyValue contains the max value possible in a single byte
MyRec := RECORD
 LITTLE_ENDIAN INTEGER2 MyLittleEndianValue := 1;
 BIG_ENDIAN INTEGER2 MyBigEndianValue := 1;
 //the physical byte-order is opposite in these two
END

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

43

ECL Language Reference
Value Types

REAL
REAL[n]

An n-byte standard IEEE floating point value. Valid values for n are: 4 (values to 7 significant digits) or 8
(values to 15 significant digits). If n is omitted, REAL is a double-precision floating-point value (8-bytes).

REAL Value Ranges
Type Significant Digits Largest Value Smallest Value

Type Significant Digits Largest Value Smallest Value
REAL4 7 (9999999) 3.402823e+038 1.175494e-038
REAL8 15 (999999999999999) 1.797693e+308 2.225074e-308

Example:

REAL4 MyValue := MAP(MyString = '1.0' => MyString, '0');
 // MyValue becomes either 1.0 or 0

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

44

ECL Language Reference
Value Types

DECIMAL
[UNSIGNED] DECIMALn [_y]

UDECIMALn [_y]

A packed decimal value of n total digits. If the _y value is present, the y defines the number of decimal
places in the value. There can be at most 32 leading digits and 32 fractional digits.

If the UNSIGNED keyword is omitted, the rightmost nibble holds the sign. Unsigned decimal declarations
may be contracted to use the optional UDECIMALn syntax instead of UNSIGNED DECIMALn.

Using exclusively DECIMAL values in computations invokes the Binary Coded Decimal (BCD) math libraries
(base-10 math), allowing up to 32-digits of precision (which may be on either side of the decimal point).

Example:

DECIMAL5_2 MyDecimal := 123.45;
 //five total digits with two decimal places

OutputFormat199 := RECORD
 UNSIGNED DECIMAL9 Person.SSN;
 //unsigned packed decimal containing 9 digits,
 // occupying 5 bytes in a flat file

UDECIMAL10 Person.phone;
 //unsigned packed decimal containing 10 digits,
 // occupying 5 bytes in a flat file

END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

45

ECL Language Reference
Value Types

STRING
[StringType] STRING[n]

A character string of n bytes, space padded (not null-terminated). If n is omitted, the string is variable length
to the size needed to contain the result of the cast or passed parameter. You may use set indexing into
any string to parse out a substring.

The optional StringType may specify ASCII or EBCDIC. If the StringType is missing, the data is in ASCII
format. Defining an EBCDIC STRING Attribute as a string constant value implies an ASCII to EBCDIC
conversion.

The upper size limit for any STRING value is 4GB.

Example:

STRING1 MyString := IF(SomeAttribute > 10,'1','0');
 // declares MyString a 1-byte ASCII string

EBCDIC STRING3 MyString1 := 'ABC';
 //implicit ASCII to EBCDIC conversion
OUTPUT(MyString);
OUTPUT(MyString1);

See Also: LENGTH, TRIM, Set Ordering and Indexing, Hexadecimal String

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

46

ECL Language Reference
Value Types

QSTRING
QSTRING[n]

A data-compressed variation of STRING that uses only 6-bits per character to reduce storage requirements
for large strings. The character set is limited to capital letters A-Z, the numbers 0-9, the blank space, and
the following set of special characters:

! " # $ % & ' () * + , - . / ; < = > ? @ [\] ^ _

If n is omitted, the QSTRING is variable length to the size needed to contain the result of a cast or passed
parameter. You may use set indexing into any QSTRING to parse out a substring.

The upper size limit for any QSTRING value is 4GB.

Example:

QSTRING12 CompanyName := 'LEXISNEXIS';
 // uses only 9 bytes of storage instead of 12
OUTPUT(CompanyName)

See Also: STRING, LENGTH, TRIM, Set Ordering and Indexing.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

47

ECL Language Reference
Value Types

UNICODE
UNICODE[_locale][n]

A UTF-16 encoded unicode character string of n characters, space-padded just as STRING is. If n is omitted,
the string is variable length to the size needed to contain the result of the cast or passed parameter. The
optional locale specifies a valid unicode locale code, as specified in ISO standards 639 and 3166 (not
needed if LOCALE is specified on the RECORD structure containing the field definition).

Type casting UNICODE to VARUNICODE, STRING, or DATA is allowed, while casting to any other type
will first implicitly cast to STRING and then cast to the target value type.

The upper size limit for any UNICODE value is 4GB.

Example:

UNICODE16 MyUNIString := U'1234567890ABCDEF';
 // utf-16-encoded string
UNICODE4 MyUnicodeString := U'abcd';
 // same as: (UNICODE)'abcd'
UNICODE_de5 MyUnicodeString_de := U'abcd\353';
 // becomes 'abcdë' with a German locale
UNICODE_de5 MyUnicodeString_de5 := U'abcdë';
 // same as previous example

OUTPUT(MyUNIString);
OUTPUT(MyUnicodeString);
OUTPUT(MyUnicodeString_de);
OUTPUT(MyUnicodeString_de5);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

48

ECL Language Reference
Value Types

UTF8
UTF8[_locale][_n]

A UTF-8 encoded unicode character string of n characters, space-padded just as STRING is. If _n is omitted,
the string is variable length to the size needed to contain the result of the cast or passed parameter. The
optional locale specifies a valid unicode locale code, as specified in ISO standards 639 and 3166 (not
needed if LOCALE is specified on the RECORD structure containing the field definition).

Type casting UTF8 to UNICODE, VARUNICODE, STRING, or DATA is allowed, while casting to any other
type will first implicitly cast to STRING and then cast to the target value type.

The upper size limit for any UTF8 value is 4GB.

Example:

UTF8 FirstName := U8'Noël'; // utf-8-encoded string
UTF8_de MyUnicodeString := U8'abcd\353'; // becomes 'abcdë' with a German locale
UTF8_4 FirstName4 := U8'Noël'; // 4-character utf-8-encoded string
UTF8_de_5 MyUnicodeString_de5 := U8'abcd\353'; // becomes 'abcdë' with a German locale

OUTPUT(FirstName);
OUTPUT(MyUnicodeString);
OUTPUT(FirstName4);
OUTPUT(MyUnicodeString_de5);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

49

ECL Language Reference
Value Types

DATA
DATA[n]

A "packed hexadecimal" data block of n bytes, zero padded (not space-padded). If n is omitted, the DATA
is variable length to the size needed to contain the result of the cast or passed parameter. Type casting is
allowed but only to a STRING or UNICODE of the same number of bytes.

This type is particularly useful for containing BLOB (Binary Large OBject) data. See the Programmer's Guide
article Working with BLOBs for more information on this subject.

The upper size limit for any DATA value is 4GB.

Example:

DATA8 MyHexString := x'1234567890ABCDEF';
 // an 8-byte data block - hex values 12 34 56 78 90 AB CD EF
OUTPUT(MyHexString);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

50

ECL Language Reference
Value Types

VARSTRING
VARSTRING[n]

A null-terminated character string containing n bytes of data. If n is omitted, the string is variable length to
the size needed to contain the result of the cast or passed parameter. You may use set indexing into any
string to parse out a substring.

The upper size limit for any VARSTRING value is 4GB.

Example:

VARSTRING3 MyString := 'ABC';
 // declares MyString a 3-byte null-terminated string
OUTPUT(MyString);

See Also: LENGTH, TRIM, Set Ordering and Indexing

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

51

ECL Language Reference
Value Types

VARUNICODE
VARUNICODE[_locale][n]

A UTF-16 encoded Unicode character string of n characters, null terminated (not space-padded). The n
may be omitted only when used as a parameter type. The optional locale specifies a valid Unicode locale
code, as specified in ISO standards 639 and 3166 (not needed if LOCALE is specified on the RECORD
structure containing the field definition).

Type casting VARUNICODE to UNICODE, STRING, or DATA is allowed, while casting to any other type
will first implicitly cast to STRING and then cast to the target value type.

The upper size limit for any VARUNICODE value is 4GB.

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

52

ECL Language Reference
Value Types

SET OF
SET [OF type]

type The value type of the data in the set. Valid value types are: INTEGER, REAL,
BOOLEAN, STRING, UNICODE, DATA, or DATASET(recstruct). If omitted,
the type is INTEGER.

The SET OF value type defines Attributes that are a set of data elements. All elements of the set must be
of the same value type. The default value for SET OF when used to define a passed parameter may be a
defined set, the keyword ALL to indicate all possible values for that type of set, or empty square brackets
([]) to indicate no possible value for that type of set.

Example:

SET OF INTEGER1 SetIntOnes := [1,2,3,4,5];
SET OF STRING1 SetStrOnes := ['1','2','3','4','5'];
SET OF STRING1 SetStrOne1 := (SET OF STRING1)SetIntOnes;
 //type casting sets is allowed
r := {STRING F1, STRING2 F2};
SET OF DATASET(r) SetDS := [ds1, ds2, ds3];

StringSetFunc(SET OF STRING passedset) := AstringValue IN passedset;
 //a set of string constants will be passed to this function
HasNarCode(SET s) := Trades.trd_narr1 IN s OR Trades.trd_narr2 IN s;
 // HasNarCode takes a parameter that specifies the set of valid
 // Narrative Code values (all INTEGERs)
SET OF INTEGER1 SetClsdNar := [65,66,90,114,115,123];
NarCodeTrades := Trades(HasNarCode(SetClsdNar));
 // Using HasNarCode(SetClsdNar) is equivalent to:
 // Trades.trd_narr1 IN [65,66,90,114,115,123] OR
 // Trades.trd_narr2 IN [65,66,90,114,115,123]

See Also: Functions (Parameter Passing), Set Ordering and Indexing

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

53

ECL Language Reference
Value Types

TYPEOF
TYPEOF(expression)

expression An expression defining the value type. This may be the name of a data field,
passed parameter, function, or Attribute providing the value type (including
RECORD structures). This must be a legal expression for the current scope
but is not evaluated for its value.

The TYPEOF declaration allows you to define an Attribute or parameter whose value type is "just like" the
expression. It is valid for use anywhere an explicit value type is valid.

Its most typical use would be to specify the return type of a TRANSFORM function as "just like" a dataset
or recordset structure.

Example:

STRING3 Fred := 'ABC'; //declare Fred as a 3-byte string
TYPEOF(Fred) Sue := Fred; //declare Sue as "just like" Fred
OUTPUT(Fred);
OUTPUT(Sue);

See Also: TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

54

ECL Language Reference
Value Types

RECORDOF
RECORDOF(recordset , [LOOKUP])

recordset The set of data records whose RECORD structure to use. This may be a
DATASET or any derived recordset. If the LOOKUP attribute is used, this may
be a filename.

LOOKUP Optional. Specifies that the file layout should be looked up at compile time.
See File Layout Resolution at Compile Time in the Programmer's Guide for
more details.

The RECORDOF declaration specifies use of just the record layout of the recordset in those situations
where you need to inherit the structure of the fields but not their default values, such as child DATASET
declarations inside RECORD structures.

This function allows you to keep RECORD structures local to the DATASET whose layout they define and
still be able to reference the structure (only, without default values) where needed.

Example:

Layout_People_Slim := RECORD
 STD_People.RecID;
 STD_People.ID;
 STD_People.FirstName;
 STD_People.LastName;
 STD_People.MiddleName;
 STD_People.NameSuffix;
 STD_People.FileDate;
 STD_People.BureauCode;
 STD_People.Gender;
 STD_People.BirthDate;
 STD_People.StreetAddress;
 UNSIGNED8 CSZ_ID;
END;

STD_Accounts := TABLE(UID_Accounts,Layout_STD_AcctsFile);

CombinedRec := RECORD,MAXLENGTH(100000)
 Layout_People_Slim;
 UNSIGNED1 ChildCount;
 DATASET(RECORDOF(STD_Accounts)) ChildAccts;
END;
 //This ChildAccts definition is equivalent to:
 // DATASET(Layout_STD_AcctsFile) ChildAccts;
 //but doesn't require Layout_STD_AcctsFile to be visible (SHARED or
 // EXPORT)

See Also: DATASET, RECORD Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

55

ECL Language Reference
Value Types

ENUM
ENUM([type ,] name [=value] [, name [=value] ...])

type The numeric value type of the values. If omitted, defaults to UNSIGNED4.

name The label of the enumerated value.

value The numeric value to associate with the name. If omitted, the value is the pre-
vious value plus one (1). If all values are omitted, the enumeration starts with
one (1).

The ENUM declaration specifies constant values to make code more readable.

Example:

GenderEnum := ENUM(UNSIGNED1,Male,Female,NonBinary,Unknown);
 //values are 1, 2, 3, 4
personFlag := ENUM(None=0,Dead=1,Foreign=2,Terrorist=4,Wanted=Terrorist*2);
 //values are 0, 1, 2, 4, 8
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 GenderEnum gender;
 UNSIGNED1 personFlag := 0;
END;

namesTable2 := DATASET([{'Boreman','George',GenderEnum.Male,personFlag.Foreign},
 {'Bin','O',GenderEnum.Male,personFlag.Foreign+personFlag.Terrorist+personFlag.Wanted}
], namesRecord);
OUTPUT(namesTable2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

56

ECL Language Reference
Value Types

Type Casting
Explicit Casting
The most common use of value types is to explicitly cast from one type to another in expressions. To do
this, you simply place the value type to cast to within parentheses. That creates a casting operator. Then
place that casting operator immediately to the left of the expression to cast.

This converts the data from its original form to the new form (to keep the same bit-pattern, see the
TRANSFER built-in function).

SomeAttribute :=11;
MyBoolean := (BOOLEAN) IF(SomeAttribute > 10,1,0);
 // casts the INTEGER values 1 and 0 to a BOOLEAN TRUE or FALSE
MyString := (STRING1) IF(SomeAttribute > 10,1,0);
 // casts the INTEGER values 1 and 0 to a 1-character string
 // containing '1' or '0'
MyValue := (INTEGER) MAP(MyString = '1' => MyString, '0');
 // casts the STRING values '1' and '0' to an INTEGER 1 or 0
MySet := (SET OF INTEGER1) [1,2,3,4,5,6,7,8,9,10];
 //casts from a SET OF INTEGER8 (the default) to SET OF INTEGER1

OUTPUT(MyBoolean);
OUTPUT(MyString);
OUTPUT(MyValue);
OUTPUT(MySet);

Implicit Casting
During expression evaluation, different value types may be implicitly cast in order to properly evaluate the
expression. Implicit casting always means promoting one value type to another: INTEGER to STRING or
INTEGER to REAL. BOOLEAN types may not be involved in mixed mode expressions. For example, when
evaluating an expression using both INTEGER and REAL values, the INTEGER is promoted to REAL at
the point where the two mix, and the result is a REAL value.

INTEGER and REAL may be freely mixed in expressions. At the point of contact between them the expres-
sion is treated as REAL. Until that point of contact the expression may be evaluated at INTEGER width.
Division on INTEGER values implicitly promotes both operands to REAL before performing the division.

The following expression: (1+2+3+4)*(1.0*5)

evaluates as: (REAL)((INTEGER)1+(INTEGER)2+(INTEGER)3+(INTEGER)4)*(1.0*(REAL)5)

and: 5/2+4+5 evaluates as: (REAL)5/(REAL)2+(REAL)4+(REAL)5

while: '5' + 4 evaluates as: 5 + (STRING)4 //concatenation

Comparison operators are treated as any other mixed mode expression. Built-in Functions that take multiple
values, any of which may be returned (such as MAP or IF), are treated as mixed mode expressions and will
return the common base type. This common type must be reachable by standard implicit conversions.

Type Transfer
Type casting converts data from its original form to the new form. To keep the same bit-pattern you must
use either the TRANSFER built-in function or the type transfer syntax, which is similar to type casting syntax
with the addition of angle brackets (>valuetype<).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

57

ECL Language Reference
Value Types

INTEGER1 MyInt := 65; //MyInt is an integer value 65
STRING1 MyVal := (>STRING1<) MyInt; //MyVal is "A" (ASCII 65)
OUTPUT(MyInt);
OUTPUT(MyVal);

Casting Rules

From To Results in

INTEGER STRING ASCII or EBCDIC representation of the value

DECIMAL STRING ASCII or EBCDIC representation of the value, including decimal
and sign

REAL STRING ASCII or EBCDIC representation of the value, including decimal
and sign--may be expressed in scientific notation

UNICODE STRING ASCII or EBCDIC representation with any non-existent charac-
ters appearing as the SUBstitute control code (0x1A in ASCII or
0x3F in EBCDIC) and any non-valid ASCII or EBCDIC charac-
ters appearing as the substitution codepoint (0xFFFD)

UTF8 STRING ASCII or EBCDIC representation with any non-existent charac-
ters appearing as the SUBstitute control code (0x1A in ASCII or
0x3F in EBCDIC) and any non-valid ASCII or EBCDIC charac-
ters appearing as the substitution codepoint (0xFFFD)

STRING QSTRING Uppercase ASCII representation

INTEGER UNICODE UNICODE representation of the value

DECIMAL UNICODE UNICODE representation of the value, including decimal and
sign

REAL UNICODE UNICODE representation of the value, including decimal and
sign--may be expressed in scientific notation

INTEGER UTF8 UTF8 representation of the value

DECIMAL UTF8 UTF8 representation of the value, including decimal and sign

REAL UTF8 UTF8 representation of the value, including decimal and sign--
may be expressed in scientific notation

INTEGER REAL Value is cast with loss of precision when the value is greater
than 15 significant digits

INTEGER REAL4 Value is cast with loss of precision when the value is greater
than 7 significant digits

STRING REAL Sign, integer, and decimal portion of the string value

DECIMAL REAL Value is cast with loss of precision when the value is greater
than 15 significant digits

DECIMAL REAL4 Value is cast with loss of precision when the value is greater
than 7 significant digits

INTEGER DECIMAL Loss of precision if the DECIMAL is too small

REAL DECIMAL Loss of precision if the DECIMAL is too small

STRING DECIMAL Sign, integer, and decimal portion of the string value

STRING INTEGER Sign and integer portions of the string value

REAL INTEGER Integer value, only--decimal portion is truncated

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

58

ECL Language Reference
Value Types

DECIMAL INTEGER Integer value, only--decimal portion is truncated

INTEGER BOOLEAN 0 = FALSE, anything else = TRUE

BOOLEAN INTEGER FALSE = 0, TRUE = 1

STRING BOOLEAN '' = FALSE, anything else = TRUE

BOOLEAN STRING FALSE = '', TRUE = '1'

DATA STRING Value is cast with no translation

STRING DATA Value is cast with no translation

DATA UNICODE Value is cast with no translation

UNICODE DATA Value is cast with no translation

DATA UTF8 Value is cast with no translation

UTF8 DATA Value is cast with no translation

UTF8 UNICODE Value is cast with no translation

UNICODE UTF8 Value is cast with no translation

The casting rules for STRING to and from any numeric type apply equally to all string types, also. All casting
rules apply equally to sets (using the SET OF type syntax).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

59

ECL Language Reference
Record Structures and Files

Record Structures and Files

RECORD Structure
attr := RECORD [(baserec)] [, MAXLENGTH(length)] [, LOCALE(locale)] [, PACKED]

fields ;

[IFBLOCK(condition)

fields ;

END;]

[=> payload]

END;

attr The name of the RECORD structure for later use in other definitions.

baserec Optional. The name of a RECORD structure from which to inherit all fields.
Any RECORD structure that inherits the baserecfields in this manner becomes
compatible with any TRANSFORM function defined to take a parameter of
baserec type (the extra fields will, of course, be lost).

MAXLENGTH Optional. This option is used to create indexes that are backward compatible
for platform versions prior to 3.0. Specifies the maximum number of charac-
ters allowed in the RECORD structure or field. MAXLENGTH on the RECORD
structure overrides any MAXLENGTH on a field definition, which overrides any
MAXLENGTH specified in the TYPE structure if the datatype names an alien
data type. This option defines the maximum size of variable-length records.
If omitted, fixed size records use the minimum size required and variable
length records produce a warning. The default maximum size of a record con-
taining variable-length fields is 4096 bytes (this may be overridden by using
#OPTION(maxLength,####) to change the default). The maximum record size
should be set as conservatively as possible, and is better set on a per-field
basis (see the Field Modifiers section below).

length An integer constant specifying the maximum number of characters allowed.

LOCALE Optional. Specifies the Unicode locale for any UNICODE fields.

locale A string constant containing a valid locale code, as specified in ISO standards
639 and 3166.

PACKED Optional. Specifies the order of the fields may be changed to improve efficiency
(such as moving variable-length fields after the fixed-length fields)..

fields Field declarations. See below for the appropriate syntaxes.

IFBLOCK Optional. A block of fields that receive "live" data only if the condition is
met. The IFBLOCK must be terminated by an END. This is used to define
variable-length records. If the condition expression references fields in the
RECORD preceding the IFBLOCK, those references must use SELF. prepend-
ed to the fieldname to disambiguate the reference. This is only for use in
RECORD structures that define files on disk.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

60

ECL Language Reference
Record Structures and Files

condition A logical expression that defines when the fields within the IFBLOCK receive
"live" data. If the expression is not true, the fields receive their declared default
values. If there's no default value, the fields receive blanks or zeros.

=> Optional. The delimiter between the list of key fields and the payload when the
RECORD structure is used by the DICTIONARY declaration. Typically, this is
an inline structure using curly braces ({ }) instead of RECORD and END.

payload The list of non-keyed fields in the DICTIONARY.

Record layouts are definitions whose expression is a RECORD structure terminated by the END keyword.
The attr name creates a user-defined value type that can be used in built-in functions and TRANSFORM
function definitions. The delimiter between field definitions in a RECORD structure can be either the se-
mi-colon (;) or a comma (,).

IFBLOCK and alien data types (TYPE) should only be used when accessing external data files. It is much
more efficient to use the native types for general processing. In particular, some optimizations to project
and filter files remotely are not supported on IFBLOCKs and alien datatypes.

In-line Record Definitions
Curly braces ({}) are lexical equivalents to the keywords RECORD and END that can be used anywhere
RECORD and END are appropriate. Either form (RECORD/END or {}) can be used to create "on-the-fly"
record formats within those functions that require record structures (OUTPUT, TABLE, DATASET etc.),
instead of defining the record as a separate definition.

If the RECORD structure is defining an INDEX, you can also use the "results in" operator (=>) before payload
fields as shown below.

VehicleKey2 := INDEX(Vehicles,SearchTerms,Payload,'vkey::st.city2');
BUILD(VehicleKey2);

// Using "results in" operator (=>) for payload fields
VehicleKey3 := INDEX(Vehicles,{st,city => lname},'vkey::st.city3');
BUILD(VehicleKey3);

Field Definitions
All field declarations in a RECORD Structure must use one of the following syntaxes:

 datatype identifier [{modifier}] [:= defaultvalue] ;

 identifier := defaultvalue ;

 defaultvalue ;

 sourcefield ;

 recstruct [identifier] ;

 sourcedataset ;

 childdataset identifier [{ modifier }];

datatype The value type of the data field. This may be a child dataset (see DATASET).
If omitted, the value type is the result type of the defaultvalue expression.

identifier The name of the field. If omitted, the defaultvalue expression defines a column
with no name that may not be referenced in subsequent ECL.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

61

ECL Language Reference
Record Structures and Files

defaultvalue Optional. An expression defining the source of the data (for operations that
require a data source, such as TABLE and PARSE). This may be a constant,
expression, or definition providing the value.

modifier Optional. One of the keywords listed in the Field Modifierssection below.

sourcefield A previously defined data field, which implicitly provides the datatype, identifier,
and defaultvalue for the new field--inherited from the sourcefield.

recstruct A previously defined RECORD structure. See the Field Inheritancesection
below.

sourcedataset A previously defined DATASET or derived recordset definition. See the Field
Inheritancesection below.

childdataset A child dataset declaration (see DATASET and DICTIONARY discussions),
which implicitly defines all the fields of the child at their already defined
datatype, identifier, and defaultvalue (if present in the child dataset's RECORD
structure).

Field definitions must always define the datatype and identifier of each field, either implicitly or explicitly. If
the RECORD structure will be used by TABLE, PARSE, ROW, or any other function that creates an output
recordset, then the defaultvalue must also be implicitly or explicitly defined for each field. In the case where
a field is defined in terms of a field in a dataset already in scope, you may name the identifier with a name
already in use in the dataset already in scope as long as you explicitly define the datatype.

Field Inheritance
Field definitions may be inherited from a previously defined RECORD structure or DATASET. When a rec-
struct (a RECORD Structure) is specified from which to inherit the fields, the new fields are implicitly defined
using the datatype and identifier of all the existing field definitions in the recstruct. When a sourcedataset
(a previously defined DATASET or recordset definition) is specified to inherit the fields, the new fields are
implicitly defined using the datatype, identifier, and defaultvalue of all the fields (making it usable by oper-
ations that require a data source, such as TABLE and PARSE). Either of these forms may optionally have
its own identifier to allow reference to the entire set of inherited fields as a single entity.

You may also use logical operators (AND, OR, and NOT) to include/exclude certain fields from the inheri-
tance, as described here:

R1 AND R2 Intersection All fields declared in both R1 and R2

R1 OR R2 Union All fields declared in either R1 or R2

R1 AND NOT R2 Difference All fields in R1 that are not in R2

R1 AND NOT F1 Exception All fields in R1 except the specified field (F1)

R1 AND NOT [F1, F2] Exception All fields in R1 except those in listed in the brackets
(F1andF2)

The minus sign (-) is a synonym for AND NOT, so R1-R2 is equivalent to R1 AND NOT R2.

It is an error if the records contain the same field names whose value types don't match, or if you end up
with no fields (such as: A-A). You must ensure that any MAXLENGTH/MAXCOUNT is specified correctly
on each field in both RECORD Structures.

Example:

R1 := {STRING1 F1,STRING1 F2,STRING1 F3,STRING1 F4,STRING1 F5};
R2 := {STRING1 F4,STRING1 F5,STRING1 F6};
R3 := {R1 AND R2}; //Intersection - fields F4 and F5 only

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

62

ECL Language Reference
Record Structures and Files

R4 := {R1 OR R2}; //Union - all fields F1 - F6
R5 := {R1 AND NOT R2}; //Difference - fields F1 - F3
R6 := {R1 AND NOT F1}; //Exception - fields F2 - F5
R7 := {R1 AND NOT [F1,F2]}; //Exception - fields F3 - F5

//the following two RECORD structures are equivalent:
C := RECORD,MAXLENGTH(x)
 R1 OR R2;
END;

D := RECORD, MAXLENGTH(x)
 R1;
 R2 AND NOT R1;
END;

Field Modifiers
The following list of field modifiers are available for use on field definitions:

 { MAXLENGTH(length) }

 { MAXCOUNT(records) }

 { XPATH('tag') }

 { XMLDEFAULT('value') }

 { DEFAULT(value) }

 { VIRTUAL(fileposition) }

 { VIRTUAL(localfileposition) }

 { VIRTUAL(logicalfilename) }

 { BLOB }

{ MAXLENGTH(length) } Specifies the maximum number of characters allowed in the
field (see MAXLENGTH option above).

{ MAXCOUNT(records) } Specifies the maximum number of records allowed in a child
DATASET field (similar to MAXLENGTH above).

{ XPATH('tag') } Specifies the XML or JSON tag that contains the data, in
a RECORD structure that defines XML or JSON data. This
overrides the default tag name (the lowercase field identifier).
See the XPATH Support section below for details.

{ XMLDEFAULT('value') } Specifies a default XML value for the field. The value must
be constant.

{ DEFAULT(value) } Specifies a default value for the field. The value must be con-
stant. This value will be used:

1. When a DICTIONARY lookup returns no match.

2. When an out-of-range record is fetched using ds[n] (as in
ds[5] when ds contains only 4 records).

3. In the default records passed to TRANSFORM functions
in non-INNER JOINS where there is no corresponding row.

4. When defaulting field values in a TRANSFORM using
SELF = [].

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

63

ECL Language Reference
Record Structures and Files

{ VIRTUAL(fileposition) } Specifies the field is a VIRTUAL field containing the relative
byte position of the record within the entire file (the record
pointer). This must be an UNSIGNED8 field and must be the
last field, because it only truly exists when the file is loaded
into memory from disk (hence, the "virtual").

{ VIRTUAL(localfileposition) } Specifies the local byte position within a part of the distrib-
uted file on a single node: the first bit is set, the next 15
bits specify the part number, and the last 48 bits specify
the relative byte position within the part. This must be an
UNSIGNED8 field and must be the last field, because it on-
ly truly exists when the file is loaded into memory from disk
(hence, the "virtual").

{ VIRTUAL(logicalfilename) } Specifies the logical file name of the distributed file. This
must be a STRING field. If reading from a superfile, the value
is the current logical file within the superfile.

{ BLOB } Specifies the field is stored separately from the leaf node
entry in the INDEX. This is applicable specifically to fields in
the payload of an INDEX to allow more than 32K of data per
index entry. The BLOB data is stored within the index file,
but not with the rest of the record. Accessing the BLOB data
requires an additional seek.

XPATH Support
XPATH support is a limited subset of the full XPATH specification, basically expressed as:

node[qualifier] / node[qualifier] ...

node Can contain wildcards.

qualifier Can be a node or attribute, or a simple single expression of equality, inequality,
or numeric or alphanumeric comparisons, or node index values. No functions
or inline arithmetic, etc. are supported. String comparison is indicated when
the right hand side of the expression is quoted.

These operators are valid for comparisons:

<, <=, >, >=, =, !=

An example of a supported xpath:

/a/*/c*/*d/e[@attr]/f[child]/g[@attr="x"]/h[child>="5"]/i[@x!="2"]/j

You can emulate AND conditions like this:

/a/b[@x="1"][@y="2"]

Also, there is a non-standard XPATH convention for extracting the text of a match using empty angle brack-
ets (<>):

R := RECORD
STRING blah{xpath('a/b<>')};
//contains all of b, including any child definitions and values
END;

An XPATH for a value cannot be ambiguous. If the element occurs multiple times, you must use the ordinal
operation (for example, /foo[1]/bar) to explicit select the first occurrence.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

64

ECL Language Reference
Record Structures and Files

For XML or JSON DATASETs reading and processing results of the SOAPCALL function, the following
XPATH syntax is specifically supported:

1) For simple scalar value fields, if there is an XPATH specified then it is used, otherwise the lower case
identifier of the field is used.

STRING name; //matches: <name>Kevin</name>
STRING Fname{xpath('Fname')}; //matches: <Fname>Kevin</Fname>

2) For a field whose type is a RECORD structure, the specified XPATH is prefixed to all the fields it contains,
otherwise the lower case identifier of the field followed by '/' is prefixed onto the fields it contains. Note that
an XPATH of '' (empty single quotes) will prefix nothing.

NameRec := RECORD
 STRING Fname{xpath('Fname')}; //matches: <Fname>Kevin</Fname>
 STRING Mname{xpath('Mname')}; //matches: <Mname>Alfonso</Mname>
 STRING Lname{xpath('Lname')}; //matches: <Lname>Jones</Lname>
END;

PersonRec := RECORD
 STRING Uid{xpath('Person[@UID]')};
 NameRec Name{xpath('Name')};
 /*matches: <Name>
 <Fname>Kevin</Fname>
 <Mname>Alfonso</Mname>
 <Lname>Jones</Lname>
 </Name> */
END;

3) For a child DATASET field, the specified XPATH can have one of two formats: "Container/Repeated"
or "/Repeated." Each "/Repeated" tag within the optional Container is iterated to provide the values. If no
XPATH is specified, then the default value for the Container is the lower case field name, and the default
value for Repeated is "Row." For example, this demonstrates "Container/Repeated":

DATASET(PeopleNames) People{xpath('people/name')};
 /*matches: <people>
 <name>Gavin</name>
 <name>Ricardo</name>
 </people> */

This demonstrates "/Repeated":

DATASET(Names) Names{xpath('/name')};
 /*matches: <name>Gavin</name>
 <name>Ricardo</name> */

"Container" and "Repeated" may also contain xpath filters, like this:

DATASET(doctorRec) doctors{xpath('person[@job=\'doctor\']')};
 /*matches: <person job='doctor'>
 <FName>Kevin</FName>
 <LName>Richards</LName>
 </person> */

4) For a SET OF type field, an xpath on a set field can have one of three formats: "Repeated", "Contain-
er/Repeated" or "Container/Repeated/@attr". They are processed in a similar way to datasets, except for
the following. If Container is specified, then the XML reading checks for a tag "Container/All", and if present
the set contains all possible values. The third form allows you to read XML attribute values.

SET OF STRING people;
 //matches: <people><All/></people>
 //or: <people><Item>Kevin</Item><Item>Richard</Item></people>

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

65

ECL Language Reference
Record Structures and Files

SET OF STRING Npeople{xpath('Name')};
 //matches: <Name>Kevin</Name><Name>Richard</Name>
SET OF STRING Xpeople{xpath('/Name/@id')};
 //matches: <Name id='Kevin'/><Name id='Richard'/>

For writing XML or JSON files using OUTPUT, the rules are similar with the following exceptions:

• For scalar fields, simple tag names and XML/JSON attributes are supported.

• For SET fields, <All> will only be generated if the container name is specified.

• xpath filters are not supported.

• The "Container/Repeated/@attr" form for a SET is not supported.

Example:

For DATASET or the result type of a TRANSFORM function, you need only specify the value type and name
of each field in the layout:

R1 := RECORD
 UNSIGNED1 F1; //only value type and name required
 UNSIGNED4 F2;
 STRING100 F3;
END;

D1 := DATASET('~LR::SomeFile',R1,THOR);

For "vertical slice" TABLE, you need to specify the value type, name, and data source for each field in the
layout:

R2 := RECORD
 UNSIGNED1 F1 := D1.F1; //value type, name, data source all explicit
 D1.F2; //value type, name, data source all implicit
END;

T1 := TABLE(D1,R2);

For "crosstab report" TABLE:

R3 := RECORD
 D1.F1; //"group by" fields must come first
 UNSIGNED4 GrpCount := COUNT(GROUP);
 //value type, column name, and aggregate
 GrpSum := SUM(GROUP,D1.F2); //no value type -- defaults to INTEGER
 MAX(GROUP,D1.F2); //no column name in output
END;

T2 := TABLE(D1,R3,F1);

Form1 := RECORD
 Person.per_last_name; //field name is per_last_name - size
 //is as declared in the person dataset
 STRING25 LocalID := Person.per_first_name;
 //the name of this field is LocalID and it
 //gets its data from Person.per_first_name
 INTEGER8 COUNT(Trades); //this field is unnamed in the output file
 BOOLEAN HasBogey := FALSE;
 //HasBogey defaults to false
 REAL4 Valu8024;
 //value from the Valu8024 definition
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

66

ECL Language Reference
Record Structures and Files

Form2 := RECORD
 Trades; //include all fields from the Trades dataset at their
 // already-defined names, types and sizes
 UNSIGNED8 fpos {VIRTUAL(fileposition)};
 //contains the relative byte position within the file
END;

Form3 := {Trades,UNSIGNED8 local_fpos {VIRTUAL(localfileposition)}};
 //use of {} instead of RECORD/END
 //"Trades" includes all fields from the dataset at their
 // already-defined names, types and sizes
 //local_fpos is the relative byte position in each part

Form4 := RECORD, MAXLENGTH(10000)
 STRING VarStringName1{MAXLENGTH(5000)};
 //this field is variable size to a 5000 byte maximum

 STRING VarStringName2{MAXLENGTH(4000)};
 //this field is variable size to a 4000 byte maximum

 IFBLOCK(MyCondition = TRUE) //following fields receive values
 //only if MyCondition = TRUE

 BOOLEAN HasLife := TRUE;
 //defaults to true unless MyCondition = FALSE

 INTEGER8 COUNT(Inquiries);
 //this field is zero if MyCondition = FALSE, even
 //if there are inquiries to count

 END;
END;

in-line record structures, demonstrating same field name use

ds := DATASET('d', { STRING s; }, THOR);
t := TABLE(ds, { STRING60 s := ds.s; });
 // new "s" field is OK with value type explicitly defined

"Child dataset" RECORD structures

ChildRec := RECORD
 UNSIGNED4 person_id;
 STRING20 per_surname;
 STRING20 per_forename;
END;
ParentRecord := RECORD
 UNSIGNED8 id;
 STRING20 address;
 STRING20 CSZ;
 STRING10 postcode;
 UNSIGNED2 numKids;
 DATASET(ChildRec) children{MAXCOUNT(100)};
END;

an example using {XPATH('tag')}

R := RECORD
 STRING10 fname;
 STRING12 lname;
 SET OF STRING1 MySet{XPATH('Set/Element')}; //define set tags
END;
B := DATASET([{'Fred','Bell',['A','B']},
 {'George','Blanda',['C','D']},
 {'Sam','',['E','F'] }], R);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

67

ECL Language Reference
Record Structures and Files

OUTPUT(B,,'~LR::test.xml', XML,OVERWRITE);

/* this example produces XML output that looks like this:
<Dataset>
<Row><fname>Fred </fname><lname>Bell</lname>
 <Set><Element>A</Element><Element>B</Element></Set></Row>
<Row><fname>George</fname><lname>Blanda </lname>
 <Set><Element>C</Element><Element>D</Element></Set></Row>
<Row><fname>Sam </fname><lname> </lname>
<Set><Element>E</Element><Element>F</Element></Set></Row>
</Dataset>
*/

another XML example with a 1-field child dataset

cr := RECORD,MAXLENGTH(1024)
 STRING phoneEx{XPATH('')};
END;
r := RECORD,MAXLENGTH(4096)
 STRING id{XPATH('COMP-ID')};cr := RECORD,MAXLENGTH(1024)
 STRING phoneEx{XPATH('')};
END;
r := RECORD,MAXLENGTH(4096)
 STRING id{XPATH('COMP-ID')};
 STRING phone{XPATH('PHONE-NUMBER')};
 DATASET(cr) Fred{XPATH('PHONE-NUMBER-EXP')};
END;

DS := DATASET([{'1002','1352,9493',['1352','9493']},
 {'1003','4846,4582,0779',['4846','4582','0779']}],r);

OUTPUT(ds,,'~LR::XMLtest2',
 XML('RECORD',
 HEADING('<?xml version="1.0" encoding="UTF-8"?><RECORDS>',
 '</RECORDS>')),OVERWRITE);

/* this example produces XML output that looks like this:
<?xml version="1.0" encoding="UTF-8"?>
 <RECORDS>
 <RECORD>
 <COMP-ID>1002</COMP-ID>
 <PHONE-NUMBER>1352,9493</PHONE-NUMBER>
 <PHONE-NUMBER-EXP>1352</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>9493</PHONE-NUMBER-EXP>
 </RECORD>
 <RECORD>
 <COMP-ID>1003</COMP-ID>
 <PHONE-NUMBER>4846,4582,0779</PHONE-NUMBER>
 <PHONE-NUMBER-EXP>4846</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>4582</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>0779</PHONE-NUMBER-EXP>
 </RECORD>
 </RECORDS>
 */

XPATH can also be used to define a JSON file

/* a JSON file called "mybooks.json" contains this data:
[
 {
 "id" : "978-0641723445",
 "name" : "The Lightning Thief",
 "author" : "Rick Riordan"
 }

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

68

ECL Language Reference
Record Structures and Files

,
 {
 "id" : "978-1423103349",
 "name" : "The Sea of Monsters",
 "author" : "Rick Riordan"
 }
]
*/

BookRec := RECORD
 STRING ID {XPATH('id')}; //data from id tag -- renames field to uppercase
 STRING title {XPATH('name')}; //data from name tag, renaming the field
 STRING author; //data from author tag, tag name is lowercase and matches field name
END;

books := DATASET('~LR::mybooks.json',BookRec,JSON('/'));
OUTPUT(books);

See Also: DATASET, DICTIONARY, INDEX, OUTPUT, TABLE, TRANSFORM Structure, TYPE Structure,
SOAPCALL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

69

ECL Language Reference
Record Structures and Files

DATASET
attr := DATASET(file, struct, filetype [,LOOKUP]);

attr := DATASET(dataset, file, filetype [,LOOKUP]);

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

[attr :=] DATASET(recordset [, recstruct]);

DATASET(row)

DATASET(childstruct [, COUNT(count) | LENGTH(size)] [, CHOOSEN(maxrecs)])

[GROUPED] [LINKCOUNTED] [STREAMED] DATASET(struct)

DATASET(dict)

DATASET(count, transform [, DISTRIBUTED | LOCAL])

attr The name of the DATASET for later use in other definitions.

file A string constant containing the logical file name. See the Scope & Logical
Filenames section for more on logical filenames.

struct The RECORD structure defining the layout of the fields. This may use
RECORDOF.

filetype One of the following keywords, optionally followed by relevant options for that
specific type of file: THOR /FLAT, CSV, XML, JSON, PIPE. Each of these is
discussed in its own section, below.

dataset A previously-defined DATASET or recordset from which the record layout is
derived. This form is primarily used by the BUILD action and is equivalent to:

 ds := DATASET('filename',RECORDOF(anotherdataset), ...)

LOOKUP Optional. Specifies that the file layout should be looked up at compile time.
See File Layout Resolution at Compile Time in the Programmer's Guide for
more details.

WORKUNIT Specifies the DATASET is the result of an OUTPUT with the NAMED option
within the same or another workunit.

wuid Optional. A string expression that specifies the workunit identifier of the job
that produced the NAMED OUTPUT.

namedoutput A string expression that specifies the name given in the NAMED option.

recordset A set of in-line data records. This can simply name a previously-defined set
definition or explicitly use square brackets to indicate an in-line set definition.
Within the square brackets records are separated by commas. The records
are specified by either:

1) Using curly braces ({}) to surround the field values for each record. The field
values within each record are comma-delimited.

2) A comma-delimited list of in-line transform functions that produce the data
rows. All the transform functions in the list must produce records in the same
result format.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

70

ECL Language Reference
Record Structures and Files

recstruct Optional. The RECORD structure of the recordset. Omittable only if the record-
set parameter is just one record or a list of in-line transform functions.

row A single data record. This may be a single-record passed parameter, or the
ROW or PROJECT function that defines a 1-row dataset.

childstruct The RECORD structure of the child records being defined. This may use the
RECORDOF function.

COUNT Optional. Specifies the number of child records attached to the parent (for use
when interfacing to external file formats).

count An expression defining the number of child records. This may be a constant or
a field in the enclosing RECORD structure (addressed as SELF.fieldname).

LENGTH Optional. Specifies the size of the child records attached to the parent (for use
when interfacing to external file formats).

size An expression defining the size of child records. This may be a constant or a
field in the enclosing RECORD structure (addressed as SELF.fieldname).

CHOOSEN Optional. Limits the number of child records attached to the parent. This im-
plicitly uses the CHOOSEN function wherever the child dataset is read.

maxrecs An expression defining the maximum number of child records for a single par-
ent.

GROUPED Specifies the DATASET being passed has been grouped using the GROUP
function.

LINKCOUNTED Specifies the DATASET being passed or returned uses the link counted format
(each row is stored as a separate memory allocation) instead of the default
(embedded) format where the rows of a dataset are all stored in a single block
of memory. This is primarily for use in BEGINC++ functions or external C++
library functions.

STREAMED Specifies the DATASET being returned is returned as a pointer to an
IRowStream interface (see the eclhelper.hpp include file for the defini-
tion).Valid only as a return type. This is primarily for use in BEGINC++ func-
tions or external C++ library functions.

struct The RECORD structure of the dataset field or parameter. This may use the
RECORDOF function.

dict The name of a DICTIONARY definition.

count An integer expression specifying the number of records to create.

transform The TRANSFORM function that will create the records. This may take an in-
teger COUNTER parameter.

DISTRIBUTED Optional. Specifies distributing the created records across all nodes of the clus-
ter. If omitted, all records are created on node 1.

LOCAL Optional. Specifies records are created on every node.

The DATASET declaration defines a file of records, on disk or in memory. The layout of the records is
specified by a RECORD structure (the struct or recstruct parameters described above). The distribution of
records across execution nodes is undefined in general, as it depends on how the DATASET came to be
(sprayed in from a landing zone or written to disk by an OUTPUT action), the size of the cluster on which it
resides, and the size of the cluster on which it is used (to specify distribution requirements for a particular
operation, see the DISTRIBUTE function).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

71

ECL Language Reference
Record Structures and Files

The first two forms are alternatives to each other and either may be used with any of the filetypes described
below (THOR/FLAT, CSV, XML, JSON, PIPE).

The third form defines the result of an OUTPUT with the NAMED option within the same workunit or the
workunit specified by the wuid (see Named Output DATASETs below).

The fourth form defines an in-line dataset (see In-line DATASETs below).

The fifth form is only used in an expression context to allow you to in-line a single record dataset (see
Single-row DATASET Expressions below).

The sixth form is only used as a value type in a RECORD structure to define a child dataset (see Child
DATASETs below).

The seventh form is only used as a value type to pass DATASET parameters (see DATASET as a Para-
meter Type below).

The eighth form is used to define a DICTIONARY as a DATASET (see DATASET from DICTIONARY
below).

The ninth form is used to create a DATASET using a TRANSFORM function (see DATASET from TRANS-
FORM below)

THOR/FLAT Files

attr := DATASET(file, struct, THOR [,__COMPRESSED__][,OPT] [,UNSORTED][,PRELOAD([nbr])]
[,ENCRYPT(key)]);

attr := DATASET(file, struct, FLAT [,__COMPRESSED__] [,OPT] [,UNSORTED] [,PRELOAD([nbr])]
[,ENCRYPT(key)]);

THOR Specifies the file is in the Data Refinery (may optionally be specified as FLAT,
which is synonymous with THOR in this context).

__COMPRESSED__ Optional. Specifies that the THOR file is compressed because it is a result
of the PERSIST Workflow Service or was OUTPUT with the COMPRESSED
option.

__GROUPED__ Specifies the DATASET has been grouped using the GROUP function.

OPT Optional. Specifies that using dataset when the THOR file doesn't exist results
in an empty recordset instead of an error condition.

UNSORTED Optional. Specifies the THOR file is not sorted, as a hint to the optimizer.

PRELOAD Optional. Specifies the file is left in memory after loading (valid only for Rapid
Data Delivery Engine use).

nbr Optional. An integer constant specifying how many indexes to create "on the
fly" for speedier access to the dataset. If > 1000, specifies the amount of mem-
ory set aside for these indexes.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

This form defines a THOR file that exists in the Data Refinery. This could contain either fixed-length or
variable-length records, depending on the layout specified in the RECORD struct.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

72

ECL Language Reference
Record Structures and Files

The struct may contain an UNSIGNED8 field with either {VIRTUAL(fileposition)} or {VIRTUAL(localfileposi-
tion)} appended to the field name. This indicates the field contains the record's position within the file (or
part), and is used for those instances where a usable pointer to the record is needed, such as the BUILD
function.

Example:

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;
 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

Tbl := TABLE(Person,PtblRec);

PtblOut := OUTPUT(Tbl,,'RTTEMP::TestFile');
 //write a THOR file

Ptbl := DATASET('~Thor400::RTTEMP::TestFile',
 {PtblRec,UNSIGNED8 __fpos {VIRTUAL(fileposition)}},
 THOR,OPT);
 // __fpos contains the "pointer" to each record
 // Thor400 is the scope name and RTTEMP is the
 // directory in which TestFile is located
 //using ENCRYPT
OUTPUT(Tbl,,'~Thor400::RTTEMP::TestFileEncrypted',ENCRYPT('mykey'));
PtblE := DATASET('~LR::TestFileEncrypted',
 PtblRec,
 THOR,OPT,ENCRYPT('mykey'));

CSV Files
attr := DATASET(file, struct, CSV [([HEADING(n)] [, SEPARATOR(f_delimiters)]

[, TERMINATOR(r_delimiters)] [, QUOTE(characters)] [, ESCAPE(esc)] [, MAXLENGTH(size)]

[ASCII | EBCDIC | UNICODE] [, NOTRIM])] [,ENCRYPT(key)] [, __COMPRESSED__]);

CSV Specifies the file is a "comma separated values" ASCII file.

HEADING(n) Optional. The number of header records in the file. If omitted, the default is
zero (0).

SEPARATOR Optional. The field delimiter. If omitted, the default is a comma (',') or the de-
limiter specified in the spray operation that put the file on disk.

f_delimiters A single string constant, or set of string constants, that define the character(s)
used as the field delimiter. If Unicode constants are used, then the UTF8 rep-
resentation of the character(s) will be used.

TERMINATOR Optional. The record delimiter. If omitted, the default is a line feed ('\n') or the
delimiter specified in the spray operation that put the file on disk.

r_delimiters A single string constant, or set of string constants, that define the character(s)
used as the record delimiter.

QUOTE Optional. The string quote character used. If omitted, the default is a single
quote ('\'') or the delimiter specified in the spray operation that put the file on
disk.

characters A single string constant, or set of string constants, that define the character(s)
used as the string value delimiter.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

73

ECL Language Reference
Record Structures and Files

ESCAPE Optional. The string escape character used to indicate the next character (usu-
ally a control character) is part of the data and not to be interpreted as a field
or row delimiter. If omitted, the default is the escape character specified in the
spray operation that put the file on disk (if any).

esc A single string constant, or set of string constants, that define the character(s)
used to escape control characters.

MAXLENGTH(size) Optional. Maximum record length in the file in bytes. If omitted, the default is
4096. There is a hard limit of 10MB but that can be overridden using #OP-
TION(maxCSVRowSizeMb,nn) where nn is the maximum size in MB. The
maximum record size should be set as conservatively as possible.

ASCII Specifies all input is in ASCII format, including any EBCDIC or UNICODE
fields.

EBCDIC Specifies all input is in EBCDIC format except the SEPARATOR and TERMI-
NATOR (which are expressed as ASCII values).

UNICODE Specifies all input is in Unicode UTF8 format.

NOTRIM Specifies preserving all whitespace in the input data (the default is to trim lead-
ing blanks).

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

__COMPRESSED__ Optional. Specifies that the file is compressed because it was OUTPUT with
the COMPRESSED option.

This form is used to read an ASCII CSV file. This can also be used to read any variable-length record file
that has a defined record delimiter. If none of the ASCII, EBCDIC, or UNICODE options are specified, the
default input is in ASCII format with any UNICODE fields in UTF8 format.

Example:

CSVRecord := RECORD
 UNSIGNED4 person_id;
 STRING20 per_surname;
 STRING20 per_forename;
END;

file1 := DATASET('MyFile.CSV',CSVrecord,CSV); //all defaults
file2 := DATASET('MyFile.CSV',CSVrecord,CSV(HEADING(1)); //1 header
file3 := DATASET('MyFile.CSV',
 CSVrecord,
 CSV(HEADING(1),
 SEPARATOR([',','\t']),
 TERMINATOR(['\n','\r\n','\n\r'])));
 //1 header record, either comma or tab field delimiters,
 // either LF or CR/LF or LF/CR record delimiters

XML Files
attr := DATASET(file, struct, XML(xpath [, NOROOT]) [,ENCRYPT(key)]);

XML Specifies the file is an XML file.

xpath A string constant containing the full XPATH to the tag that delimits the records
in the file.

NOROOT Specifies the file is an XML file with no file tags, only row tags.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

74

ECL Language Reference
Record Structures and Files

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

This form is used to read an XML file into the Data Refinery. The xpath parameter defines the record delimiter
tag using a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support section
under the RECORD structure discussion for a description of the supported subset).

The key to getting individual field values from the XML lies in the RECORD structure field definitions. If the
field name exactly matches a lower case XML tag containing the data, then nothing special is required.
Otherwise, {xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing
standard XPATH syntax) is required to extract the data. An XPATH consisting of empty angle brackets (<>)
indicates the field receives the entire record. An absolute XPATH is used to access properties of parent
elements. Because XML is case sensitive, and ECL identifiers are case insensitive, xpaths need to be
specified if the tag contains any upper case characters.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In
particular, if the specified xpath matches a very large amount of data, then a large data structure will be
provided to the transform. Therefore, the more you match, the more resources you consume per match.
For example, if you have a very large document and you match an element near the root that virtually
encompasses the whole thing, then the whole thing will be constructed as a referenceable structure that
the ECL can get at.

Example:

/* an XML file called "MyFile" contains this XML data:
<library>
 <book isbn="123456789X">
 <author>Bayliss</author>
 <title>A Way Too Far</title>
 </book>
 <book isbn="1234567801">
 <author>Smith</author>
 <title>A Way Too Short</title>
 </book>
</library>
*/

rform := RECORD
 STRING author; //data from author tag -- tag name is lowercase and matches field name
 STRING name {XPATH('title')}; //data from title tag, renaming the field
 STRING isbn {XPATH('@isbn')}; //isbn definition data from book tag
tag
END;
books := DATASET('MyFile',rform,XML('library/book'));

JSON Files
attr := DATASET(file, struct, JSON(xpath [, NOROOT]) [,ENCRYPT(key)]);

JSON Specifies the file is a JSON file.

xpath A string constant containing the full XPATH to the tag that delimits the records
in the file.

NOROOT Specifies the file is a JSON file with no root level markup, only a collection of
objects.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

75

ECL Language Reference
Record Structures and Files

key A string constant containing the encryption key used to create the file.

This form is used to read a JSON file. The xpath parameter defines the path used to locate records within the
JSON content using a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support
section under the RECORD structure discussion for a description of the supported subset).

The key to getting individual field values from the JSON lies in the RECORD structure field definitions. If the
field name exactly matches a lower case JSON tag containing the data, then nothing special is required.
Otherwise, {xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing
standard XPATH syntax) is required to extract the data. An XPATH consisting of empty quotes ('') indicates
the field receives the entire record. An absolute XPATH is used to access properties of child elements.
Because JSON is case sensitive, and ECL identifiers are case insensitive, xpaths need to be specified if
the tag contains any upper case characters.

NOTE: JSON reading and parsing can consume a large amount of memory, depending on the usage. In
particular, if the specified xpath matches a very large amount of data, then a large data structure will be
provided to the transform. Therefore, the more you match, the more resources you consume per match.
For example, if you have a very large document and you match an element near the root that virtually
encompasses the whole thing, then the whole thing will be constructed as a referenceable structure that
the ECL can get at.

Example:

/* a JSON file called "mybooks.json" contains this data:
[
 {
 "id" : "978-0641723445",
 "name" : "The Lightning Thief",
 "author" : "Rick Riordan"
 }
,
 {
 "id" : "978-1423103349",
 "name" : "The Sea of Monsters",
 "author" : "Rick Riordan"
 }
]
*/

BookRec := RECORD
 STRING ID {XPATH('id')}; //data from id tag -- renames field to uppercase
 STRING title {XPATH('name')}; //data from name tag, renaming the field
 STRING author; //data from author tag -- tag name is lowercase and matches field name
END;

books := DATASET('~LR::mybooks.json',BookRec,JSON('/'));
OUTPUT(books);

PIPE Files
attr := DATASET(file, struct, PIPE(command [, CSV | XML]));

PIPE Specifies the filecomes from the commandprogram. This is a "read" pipe.

command The name of the program to execute, which must output records in the struct
format to standard output.

CSV Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

76

ECL Language Reference
Record Structures and Files

This form uses PIPE(command) to send the file to the command program, which then returns the records
to standard output in the struct format. This is also known as an input PIPE (analogous to the PIPE function
and PIPE option on OUTPUT).

Example:

PtblRec := RECORD
 STRING2 State;
 STRING20 City;
 STRING25 Lname;
 STRING15 Fname;
END;

Ptbl := DATASET('~LR::TestFile',
 PtblRec,
 PIPE('ProcessFile'));
 // ProcessFile is the input pipe

Named Output DATASETs
attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

This form allows you to use as a DATASET the result of an OUTPUT with the NAMED option within the
same workunit, or the workunit specified by the wuid (workunit ID). This is a feature most useful in the Rapid
Data Delivery Engine.

Example:

//Named Output DATASET in the same workunit:
a := OUTPUT(Person(per_st='FL') ,NAMED('FloridaFolk'));
x := DATASET(WORKUNIT('FloridaFolk'),
 RECORDOF(Person));
b := OUTPUT(x(per_first_name[1..4]='RICH'));

SEQUENTIAL(a,b);

//Named Output DATASET in separate workunits:
//First Workunit (wuid=W20051202-155102) contains this code:
MyRec := {STRING1 Value1,STRING1 Value2, INTEGER1 Value3};
SomeFile := DATASET([{'C','G',1},{'C','C',2},{'A','X',3},
 {'B','G',4},{'A','B',5}],MyRec);
OUTPUT(SomeFile,NAMED('Fred'));

// Second workunit contains this code, producing the same result:
ds := DATASET(WORKUNIT('W20051202-155102','Fred'), MyRec);
OUTPUT(ds);

In-line DATASETs
[attr :=] DATASET(recordset , recstruct);

This form allows you to in-line a set of data and have it treated as a file. This is useful in situations where file
operations are needed on dynamically generated data (such as the runtime values of a set of pre-defined
expressions). It is also useful to test any boundary conditions for definitions by creating a small well-defined
set of records with constant values that specifically exercise those boundaries. This form may be used in
an expression context.

Nested RECORD structures may be represented by nesting records within records. Nested child datasets
may also be initialized inside TRANSFORM functions using inline datasets (see the Child DATASETs
discussion).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

77

ECL Language Reference
Record Structures and Files

Example:

//Inline DATASET using definition values
myrec := {REAL diff, INTEGER1 reason};
rms5008 := 10.0;
rms5009 := 11.0;
rms5010 := 12.0;
btable := DATASET([{rms5008,72},{rms5009,7},{rms5010,65}], myrec);

//Inline DATASET with nested RECORD structures
nameRecord := {STRING20 lname,STRING10 fname,STRING1 initial := ''};
personRecord := RECORD
 nameRecord primary;
 nameRecord mother;
 nameRecord father;
END;
personDataset := DATASET([{{'James','Walters','C'},
 {'Jessie','Blenger'},
 {'Horatio','Walters'}},
 {{'Anne','Winston'},
 {'Sant','Aclause'},
 {'Elfin','And'}}], personRecord);

// Inline DATASET containing a Child DATASET
childPersonRecord := {STRING fname,UNSIGNED1 age};
personRecord := RECORD
 STRING20 fname;
 STRING20 lname;
 UNSIGNED2 numChildren;
 DATASET(childPersonRecord) children;
END;

personDataset := DATASET([{'Kevin','Hall',2,[{'Abby',2},{'Nat',2}]},
 {'Jon','Simms',3,[{'Jen',18},{'Ali',16},{'Andy',13}]}],
 personRecord);

// Inline DATASET derived from a dynamic SET function
SetIDs(STRING fname) := SET(People(firstname=fname),id);
ds := DATASET(SetIDs('RICHARD'),{People.id});

// Inline DATASET derived from a list of transforms
IDtype := UNSIGNED8;
FMtype := STRING15;
Ltype := STRING25;

resultRec := RECORD
 IDtype id;
 FMtype firstname;
 Ltype lastname;
 FMtype middlename;
END;

T1(IDtype idval,FMtype fname,Ltype lname) :=
 TRANSFORM(resultRec,
 SELF.id := idval,
 SELF.firstname := fname,
 SELF.lastname := lname,
 SELF := []);

T2(IDtype idval,FMtype fname,FMtype mname, Ltype lname) :=
 TRANSFORM(resultRec,
 SELF.id := idval,
 SELF.firstname := fname,

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

78

ECL Language Reference
Record Structures and Files

 SELF.middlename := mname,
 SELF.lastname := lname);
ds := DATASET([T1(123,'Fred','Jones'),
 T2(456,'John','Q','Public'),
 T1(789,'Susie','Smith')]);

// You can construct a DATASET from a SET.
SET OF STRING s := ['Jim','Bob','Richard','Tom'];
DATASET(s,{STRING txt});

Single-row DATASET Expressions
DATASET(row)

This form is only used in an expression context. It allows you to in-line a single record dataset.

Example:

//the following examples demonstrate 4 ways to do the same thing:
personRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
END;

namesRecord := RECORD
 UNSIGNED id;
 personRecord;
END;

namesTable := DATASET('~LR::TestRow',namesRecord,THOR);
//simple dataset file declaration form

addressRecord := RECORD
 UNSIGNED id;
 DATASET(personRecord) people; //child dataset form
 STRING40 street;
 STRING40 town;
 STRING2 st;
END;

personRecord tc0(namesRecord L) := TRANSFORM
 SELF := L;
END;

//** 1st way - using in-line dataset form in an expression context
addressRecord t0(namesRecord L) := TRANSFORM
 SELF.people := PROJECT(DATASET([{L.id,L.surname,L.forename,L.age}],
 namesRecord),
 tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;

p0 := PROJECT(namesTable, t0(LEFT));
OUTPUT(p0);

//** 2nd way - using single-row dataset form
addressRecord t1(namesRecord L) := TRANSFORM
 SELF.people := PROJECT(DATASET(L), tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

79

ECL Language Reference
Record Structures and Files

p1 := PROJECT(namesTable, t1(LEFT));
OUTPUT(p1);

//** 3rd way - using single-row dataset form and ROW function
addressRecord t2(namesRecord L) := TRANSFORM
 SELF.people := DATASET(ROW(L,personRecord));
 SELF.id := L.id;
 SELF := [];
END;

p2 := PROJECT(namesTable, t2(LEFT));
OUTPUT(p2);

//** 4th way - using in-line dataset form in an expression context
addressRecord t4(namesRecord l) := TRANSFORM
 SELF.people := PROJECT(DATASET([L], namesRecord), tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;
p3 := PROJECT(namesTable, t4(LEFT));
OUTPUT(p3);

Child DATASETs
DATASET(childstruct [, COUNT(count) | LENGTH(size)] [, CHOOSEN(maxrecs)])

This form is used as a value type inside a RECORD structure to define child dataset records in a non-
normalized flat file. The form without COUNT or LENGTH is the simplest to use, and just means that the
dataset the length and data are stored within myfield. The COUNT form limits the number of elements to
the count expression. The LENGTH form specifies the size in another field instead of the count. This can
only be used for dataset input.

The following alternative syntaxes are also supported:

childstruct fieldname [SELF.count]

DATASET newname := fieldname

DATASET fieldname (deprecated form -- will go away post-SR9)

Any operation may be performed on child datasets in hthor and the Rapid Data Delivery Engine (Roxie),
but only the following operations are supported in the Data Refinery (Thor):

1) PROJECT, CHOOSEN, TABLE (non-grouped), and filters on child tables.

2) Aggregate operations are allowed on any of the above

3) Several aggregates can be calculated at once by using

 summary := TABLE(x.children,{ f1 := COUNT(GROUP),
 f2 := SUM(GROUP,x),
 f3 := MAX(GROUP,y)});
 summary.f1;

4) DATASET[n] is supported to index the child elements

5) SORT(dataset, a, b)[1] is also supported to retrieve the best match.

6) Concatenation of datasets is supported.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

80

ECL Language Reference
Record Structures and Files

7) Temporary TABLEs can be used in conjunction.

8) Initialization of child datasets in temp TABLE definitions allows [] to be used to initialize 0 elements.

Note that,

TABLE(ds, { ds.id, ds.children(age != 10) });

is not supported, because a dataset in a record definition means "expand all the fields from the dataset in
the output." However adding an identifier creates a form that is supported:

TABLE(ds, { ds.id, newChildren := ds.children(age != 10); });

Example:

ParentRec := {INTEGER1 NameID, STRING20 Name};
ParentTable := DATASET([{1,'Kevin'},{2,'Liz'},
 {3,'Mr Nobody'},{4,'Anywhere'}], ParentRec);
ChildRec := {INTEGER1 NameID, STRING20 Addr};
ChildTable := DATASET([{1,'10 Malt Lane'},{2,'10 Malt Lane'},
 {2,'3 The cottages'},{4,'Here'},{4,'There'},
 {4,'Near'},{4,'Far'}],ChildRec);
DenormedRec := RECORD
 INTEGER1 NameID;
 STRING20 Name;
 UNSIGNED1 NumRows;
 DATASET(ChildRec) Children;
// ChildRec Children; //alternative syntax
END;

DenormedRec ParentMove(ParentRec L) := TRANSFORM
 SELF.NumRows := 0;
 SELF.Children := [];
 SELF := L;
END;

ParentOnly := PROJECT(ParentTable, ParentMove(LEFT));
DenormedRec ChildMove(DenormedRec L,ChildRec R,INTEGER C):=TRANSFORM
 SELF.NumRows := C;
 SELF.Children := L.Children + R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(ParentOnly, ChildTable,
 LEFT.NameID = RIGHT.NameID,
 ChildMove(LEFT,RIGHT,COUNTER));
OUTPUT(DeNormedRecs,,'RTTEMP::TestChildDatasets');

// Using inline DATASET in a TRANSFORM to initialize child records
AkaRec := {STRING20 forename,STRING20 surname};
outputRec := RECORD
 UNSIGNED id;
 DATASET(AkaRec) children;
END;

inputRec := RECORD
 UNSIGNED id;
 STRING20 forename;
 STRING20 surname;
END;

inPeople := DATASET([
 {1,'Kevin','Halliday'},{1,'Kevin','Hall'},{1,'Gawain',''},
 {2,'Liz','Halliday'},{2,'Elizabeth','Halliday'},
 {2,'Elizabeth','MaidenName'},{3,'Lorraine','Chapman'},

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

81

ECL Language Reference
Record Structures and Files

 {4,'Richard','Chapman'},{4,'John','Doe'}], inputRec);
outputRec makeFatRecord(inputRec l) := TRANSFORM
 SELF.id := l.id;
 SELF.children := DATASET([{ l.forename, l.surname }], AkaRec);
END;

fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec l, outputRec r) := TRANSFORM
 SELF.id := l.id;
 SELF.children := l.children + ROW({r.children[1].forename,
 r.children[1].surname},
 AkaRec);
END;

r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));

DATASET as a Parameter Type
[GROUPED] [LINKCOUNTED] [STREAMED] DATASET(struct)

This form is only used as a Value Type for passing parameters, specifying function return types, or defin-
ing a SET OF datasets. If GROUPED is present, the passed parameter must have been grouped using
the GROUP function. The LINKCOUNTED and STREAMED keywords are primarily for use in BEGINC++
functions or external C++ library functions.

Example:

MyRec := {STRING1 Letter};
SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],MyRec);

//Passing a DATASET parameter
FilteredDS(DATASET(MyRec) ds) := ds(Letter NOT IN ['A','C','E']);
 //passed dataset referenced as "ds" in expression

OUTPUT(FilteredDS(SomeFile));

//***
// The following example demonstrates using DATASET as both a
// parameter type and a return type
rec_Person := RECORD
 STRING20 FirstName;
 STRING20 LastName;
END;

rec_Person_exp := RECORD(rec_Person)
 STRING20 NameOption;
END;

rec_Person_exp xfm_DisplayNames(rec_Person l, INTEGER w) :=
 TRANSFORM
 SELF.NameOption :=
 CHOOSE(w,
 TRIM(l.FirstName) + ' ' + l.LastName,
 TRIM(l.LastName) + ', ' + l.FirstName,
 l.FirstName[1] + l.LastName[1],
 l.LastName);
 SELF := l;
END;

DATASET(rec_Person_exp) prototype(DATASET(rec_Person) ds) :=
 DATASET([], rec_Person_exp);

DATASET(rec_Person_exp) DisplayFullName(DATASET(rec_Person) ds) :=

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

82

ECL Language Reference
Record Structures and Files

 PROJECT(ds, xfm_DisplayNames(LEFT,1));

DATASET(rec_Person_exp) DisplayRevName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,2));

DATASET(rec_Person_exp) DisplayFirstName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,3));

DATASET(rec_Person_exp) DisplayLastName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,4));

DATASET(rec_Person_exp) PlayWithName(DATASET(rec_Person) ds_in,
 prototype PassedFunc,
 STRING1 SortOrder='A',
 UNSIGNED1 FieldToSort=1,
 UNSIGNED1 PrePostFlag=1) := FUNCTION
 FieldPre := CHOOSE(FieldToSort,ds_in.FirstName,ds_in.LastName);
 SortedDSPre(DATASET(rec_Person) ds) :=
 IF(SortOrder='A',
 SORT(ds,FieldPre),
 SORT(ds,-FieldPre));
 InDS := IF(PrePostFlag=1,SortedDSPre(ds_in),ds_in);

 PDS := PassedFunc(InDS); //call the passed function parameter

 FieldPost := CHOOSE(FieldToSort,
 PDS.FirstName,
 PDS.LastName,
 PDS.NameOption);
 SortedDSPost(DATASET(rec_Person_exp) ds) :=
 IF(SortOrder = 'A',
 SORT(ds,FieldPost),
 SORT(ds,-FieldPost));

 OutDS := IF(PrePostFlag=1,PDS,SortedDSPost(PDS));
 RETURN OutDS;
END;

 //define inline datasets to use.
ds_names1 := DATASET([{'John','Smith'},{'Henry','Jackson'},
 {'Harry','Potter'}], rec_Person);
ds_names2 := DATASET([{'George','Foreman'},
 {'Sugar Ray','Robinson'},
 {'Joe','Louis'}], rec_Person);

//get name you want by passing the appropriate function parameter:
s_Name1 := PlayWithName(ds_names1, DisplayFullName, 'A',1,1);
s_Name2 := PlayWithName(ds_names2, DisplayRevName, 'D',3,2);
a_Name := PlayWithName(ds_names1, DisplayFirstName,'A',1,1);
b_Name := PlayWithName(ds_names2, DisplayLastName, 'D',1,1);
OUTPUT(s_Name1);
OUTPUT(s_Name2);
OUTPUT(a_Name);
OUTPUT(b_Name);

DATASET from DICTIONARY
DATASET(dict)

This form re-defines the dict as a DATASET.

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

83

ECL Language Reference
Record Structures and Files

rec := {STRING color,UNSIGNED1 code, STRING name};
ColorCodes := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Sam'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code});

ds := DATASET(ColorCodesDCT);
OUTPUT(ds);

See Also: OUTPUT, RECORD Structure, TABLE, ROW, RECORDOF, TRANSFORM Structure, DIC-
TIONARY

DATASET from TRANSFORM
DATASET(count, transform [, DISTRIBUTED | LOCAL])

This form uses the transform to create the records. The result type of the transform function determines
the structure. The integer COUNTER can be used to number each iteration of the transform function.

LOCAL executes separately and independently on each node.

Example:

IMPORT STD;
msg(UNSIGNED c) := 'Rec ' + (STRING)c + ' on node ' + (STRING)(STD.system.Thorlib.Node()+1);

// DISTRIBUTED example
DS := DATASET(CLUSTERSIZE * 2,
 TRANSFORM({STRING line},
 SELF.line := msg(COUNTER)),
 DISTRIBUTED);
OUTPUT(DS);
/* creates a result like this:
 Rec 1 on node 1
 Rec 2 on node 1
 Rec 3 on node 2
 Rec 4 on node 2
 Rec 5 on node 3
 Rec 6 on node 3
*/

// LOCAL example

DS2 := DATASET(2,
 TRANSFORM({STRING line},
 SELF.line := msg(COUNTER)),
 LOCAL);
OUTPUT(DS2);

/* An alternative (and clearer) way
creates a result like this:
 Rec 1 on node 1
 Rec 2 on node 1
 Rec 1 on node 2
 Rec 2 on node 2
 Rec 1 on node 3
 Rec 2 on node 3
*/

See Also: RECORD Structure, TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

84

ECL Language Reference
Record Structures and Files

DICTIONARY
attr := DICTIONARY(dataset, structure);

DICTIONARY(structure)

attr The name of the DICTIONARY for later use in other definitions.

dataset The name of a DATASET or recordset from which to derive the DICTIONARY.
This may be defined inline (similar to an inline DATASET).

structure The RECORD structure (often defined inline) specifying the layout of the fields.
The first field(s) are key fields, optionally followed the "results in" operator (=>)
and additional payload fields. This is similar to the payload version of an IN-
DEX. The payload may specify individual fields or may use the name of the
dataset to payload all the non-key fields.

A DICTIONARY allows you to efficiently check whether a particular data value is in a list (using the IN
operator), or to simply map data. It is similar to a LOOKUP JOIN that can be used in any context.

DICTIONARY Definition
The DICTIONARY declaration defines a set of unique records derived from the dataset parameter and
indexed by the first field(s) named in the structure parameter. The DICTIONARY will contain one record for
each unique value(s) in the key field(s). You can access an individual record by appending square brackets
([]) to the attr name of the DICTIONARY, which contain the key field value(s) that identify the specific
record to access.

DICTIONARY as a Value Type
The second form of DICTIONARY is a value type with the structure parameter specifying the RECORD
structure of the data. This data type usage allows you to specify a DICTIONARY as a child dataset, similar
to the way DATASET may be used to define a child dataset. This may also be used to pass a DICTIONARY
as a parameter.

Example:

ColorCodes := DATASET([{'Black' ,0 },
 {'Brown' ,1 },
 {'Red' ,2 },
 {'Orange',3 },
 {'Yellow',4 },
 {'Green' ,5 },
 {'Blue' ,6 },
 {'Violet',7 },
 {'Grey' ,8 },
 {'White' ,9 }], {STRING color,UNSIGNED1 code});

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code}); //multi-field key
ColorCodeDCT := DICTIONARY(ColorCodes,{Color => Code}); //payload field
CodeColorDCT := DICTIONARY(ColorCodes,{Code => Color});

//mapping examples
MapCode2Color(UNSIGNED1 code) := CodeColorDCT[code].color;
MapColor2Code(STRING color) := ColorCodeDCT[color].code;

OUTPUT(MapColor2Code('Red')); //2

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

85

ECL Language Reference
Record Structures and Files

OUTPUT(MapCode2Color(4)); //'Yellow'

//Search term examples
OUTPUT('Green' IN ColorCodeDCT); //true
OUTPUT(6 IN CodeColorDCT); //true
OUTPUT(ROW({'Red',2},RECORDOF(ColorCodes)) IN ColorCodesDCT); //multi-field key, true

//multi-field payload examples
rec := RECORD
 STRING10 color;
 UNSIGNED1 code;
 STRING10 name;
END;
Ds := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Seth'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

DsDCT := DICTIONARY(DS,{color => DS});

OUTPUT('Red' IN DsDCT); //true
DsDCT['Red'].code; //2
DsDCT['Red'].name; //Sue

//inline DCT examples
InlineDCT := DICTIONARY([{'Black' => 0 , 'Fred'},
 {'Brown' => 1 , 'Sam'},
 {'Red' => 2 , 'Sue'},
 {'White' => 3 , 'Jo'}],
 {STRING10 color => UNSIGNED1 code,STRING10 name});

OUTPUT('Red' IN InlineDCT); //true
InlineDCT['Red'].code; //2
InlineDCT['Red'].name; //Sue
InlineDCT['Red']; //Red 2 Sue

//Form 2 examples -- parameter passing
MyDCTfunc(DICTIONARY({STRING10 color => UNSIGNED1 code,STRING10 name}) DCT,
 STRING10 key) := DCT[key].name;
MyDCTfunc(InlineDCT,'White'); //Jo
MyDCTfunc(DsDCT,'Brown'); //Seth

See Also: DATASET, RECORD Structure, INDEX, IN Operator

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

86

ECL Language Reference
Record Structures and Files

INDEX
attr := INDEX([baserecset,] keys, indexfile [,SORTED] [,OPT] [,COMPRESSED(LZW | ROW | FIRST)]
[,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(**value**)]]);

attr := INDEX([baserecset,] keys, payload, indexfile [,SORTED] [,OPT] [,COMPRESSED(option)]
[,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(value)]]);

attr := INDEX(index,newindexfile [, MAXLENGTH[(value)]]);

attr The name of the INDEX for later use in other attributes.

baserecset Optional. The set of data records for which the index file has been created. If
omitted, all fields in the keysand payloadparameters must be fully qualified.

keys The RECORD structure of key fields that reference into the baserecset (the
"search terms" for the INDEX). Key fields may be baserecset fields or comput-
ed fields. REAL and DECIMAL types are not supported as "search term" fields.
If omitted, all fields in the baserecset are used. This RECORD structure is typ-
ically defined inline within the INDEX using curly braces ({}), but may also be a
separately defined RECORD structure. If the RECORD structure is separately
defined it must meet the same requirements as used by the TABLE() function
(the RECORD structure must define the type, name, and source of the data
for each field), otherwise the BUILD action will not syntax check.

payload The RECORD structure of the indexfile that contains additional fields not used
as "search term" keys. This may contain fields from the baserecordset and/or
computed fields. If the name of the baserecset is in this structure, it specifies
"all other fields not already named in the keys parameter" are added. The pay-
load fields do not take up space in the non-leaf nodes of the index and cannot
be referenced in a KEYED() filter clause. Any field with the {BLOB} modifier (to
allow more than 32K of data per index entry) is stored within the indexfile, but
not with the rest of the record; accessing the BLOB data requires an additional
seek. This RECORD structure is typically defined inline within the INDEX using
curly braces ({}), but may also be a separately defined RECORD structure. If
the RECORD structure is separately defined it must meet the same require-
ments as used by the TABLE() function (the RECORD structure must define
the type, name, and source of the data for each field), otherwise the BUILD
action will not syntax check.

indexfile A string constant containing the logical filename of the index. See the Scope
& Logical Filenames section for more on logical filenames.

SORTED Optional. Specifies that when the index is accessed the records come out in
the order of the keys. If omitted, the returned record order is undefined.

OPT Optional. Specifies that using the index when the indexfile doesn't exist results
in an empty recordset instead of an error condition.

COMPRESSED Optional. Specifies the index should be compressed using the type of com-
pression specified. If omitted, the default is LZW, a variant of the Lempel-Ziv-
Welch algorithm.

option See Indexes and Compression for options.

DISTRIBUTED Optional. Specifies that the index was created with the DISTRIBUTED option
on the BUILD action or the BUILD action simply referenced the INDEX decla-
ration with the DISTRIBUTED option. The INDEX is therefore accessed locally
on each node (similar to the LOCAL function, which is preferred), is not glob-

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

87

ECL Language Reference
Record Structures and Files

ally sorted, and there is no root index to indicate which part of the index will
contain a particular entry. This may be useful in Roxie queries in conjunction
with ALLNODES use.

FILEPOSITION Optional. If flag is FALSE, prevents the normal behavior of implicit fileposition
field being created and will not treat a trailing integer field any differently from
the rest of the payload.

flag Optional. TRUE or FALSE, indicating whether or not to create the implicit file-
position field.

index The name of a previously defined INDEX attribute to duplicate.

newindexfile A string constant containing the logical filename of the new index. See the
Scope & Logical Filenames section for more on logical filenames.

MAXLENGTH Optional. This option is used to create indexes that are backward compati-
ble for platform versions prior to 3.0. Specifies the maximum length of a vari-
able-length index record. Fixed length records always use the minimum size
required. If the default maximum length causes inefficiency problems, it can
be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the max-
imum size is calculated from the record structure. Variable-length records that
do not specify MAXLENGTH may be slightly inefficient

INDEX declares a previously created index for use. INDEX is related to BUILD (or BUILDINDEX) in the
same manner that DATASET is to OUTPUT--BUILD creates an index file that INDEX then defines for use
in ECL code. Index files are compressed. A single index record must be defined as less than 32K and result
in a less than 8K page after compression.

The Binary-tree metakey portion of the INDEX is a separate 32K file part on the first node of the Thor cluster
on which it was built, but deployed to every node of a Roxie cluster. There are as many leaf-node file parts
as there are nodes to the Thor cluster on which it was built. The specific distribution of the leaf-node records
across execution nodes is undefined in general, as it depends on the size of the cluster on which it was
built and the size of the cluster on which it is used.

These data types are supported in the keyed portion of an INDEX:

• BOOLEAN

• INTEGER

• UNSIGNED

• STRING

• DATA

• QSTRING

All STRINGs must be fixed length.

Keyed Access INDEX
This form defines an index file to allow keyed access to the baserecset. The index is used primarily by the
FETCH and JOIN (with the KEYED option) operations.

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

88

ECL Language Reference
Record Structures and Files

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;
 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

PtblOut := OUTPUT(TABLE(Person,PtblRec),,'RTTEMP::TestFetch');

Ptbl := DATASET('RTTEMP::TestFetch',
 {PtblRec,UNSIGNED8 RecPtr {VIRTUAL(fileposition)}},
 FLAT);

AlphaInStateCity := INDEX(Ptbl,
 {state,city,lname,fname,RecPtr},
 'RTTEMPkey::TestFetch');
Bld := BUILDINDEX(AlphaInStateCity);

Payload INDEX
This form defines an index file containing extra payload fields in addition to the keys. The payload may
contain fields with the {BLOB} modifier to allow more than 32K of data per index entry. These BLOB fields
are stored within the indexfile, but not with the rest of the record; accessing the BLOB data requires an
additional seek.

This form is used primarily by "half-key" JOIN operations to eliminate the need to directly access the baserec-
set, thus increasing performance over the "full-keyed" version of the same operation (done with the KEYED
option on the JOIN). By default, payload fields are not sorted during the BUILD action to minimize space on
the leaf nodes of the key. This sorting behavior can be controlled by using sortIndexPayload in a #OPTION
statement.

You can also use the "results in" operator (=>) before payload fields as shown below.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,STRING20 city,STRING20 lname,
 UNSIGNED8 fpos{VIRTUAL(fileposition)}},FLAT);

VehicleKey1 := INDEX(Vehicles,{st,city},{lname,fpos},'vkey::st.city1');
BUILD(VehicleKey1);

SearchTerms := RECORD
 Vehicles.st;
 Vehicles.city;
END;
Payload := RECORD
 Vehicles.lname;
END;
VehicleKey2 := INDEX(Vehicles,SearchTerms,Payload,'vkey::st.city2');
BUILD(VehicleKey2);

// Using "results in" operator (=>) for payload fields
VehicleKey3 := INDEX(Vehicles,{st,city => lname},'vkey::st.city3');
BUILD(VehicleKey3);

Duplicate INDEX
This form defines a newindexfile that is identical to the previously defined index.

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

89

ECL Language Reference
Record Structures and Files

NewVehicleKey := INDEX(VehicleKey,'NEW::vkey::st.city');
 //define NewVehicleKey like VehicleKey

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

90

ECL Language Reference
Record Structures and Files

Indexes and Compression
Compression Options:

LZW The default compression. A variant of the Lempel-Ziv-Welch algorithm.

ROW Compresses index entries based on differences between rows (for use with fixed-
length records only). It typically does not compress as well as LZW, but takes up less
space in memory because the rows are expanded on demand.

'inplace' Causes the index to be built using the inplace compression format. The payload de-
faults to using lz4 compression.

'inplace:lz4hc' Causes inplace compression on the key fields and lz4hc compression on the payload.
The resulting index can be smaller than using lz4.

'inplace:lz4s' Causes inplace compression on the key fields and lz4s compression on the payload.
This uses the LZ4 stream API to avoid recompressing the data and reduce the index
build times.

'inplace:lz4shc' Causes inplace compression on the key fields and lz4shc compression on the payload.
This uses the high compression (HC) version of the LZ4 stream API to avoid recom-
pressing the data and reduce the index build times. The default compression for inplace
indexes in versions after versions 9.6.90, 9.8.66, and 9.10.12.

'inplace:zstds' Causes inplace compression using the Zstandard (zstd) algorithm, a fast compression
algorithm, providing high compression ratios.

The inplace index compression format (introduced in version 9.2.0) improves compression of keyed fields
and allows them to be searched without decompression. The original index compression implementation
decompresses the rows when they are read from disk.

The lz4s and lz4hc inplace index compression formats (introduced in versions 9.6.90, 9.8.66, and 9.10.12
9.2.0 or later) improves compression and reduces build time. These formats require an engine that supports
it. In other words, if you build an index using the lz4s or lz4shc formats, you must use a platform later
than 9.6.90, 9.8.66, and 9.10.12 to read those indexes.

The same is true for indexes built using the zstds format. If you build an index using the zstds format,
you must use a platform later than 9.10.40 or 9.12.14 to read those indexes.

If you attempt to read an index with the inplace compression format on a system that does not support it,
you will receive an error message.

Because the branch nodes can be searched without decompression more branch nodes fit into memory
which can improve search performance. The lz4 compression used for the payload is significantly faster at
decompressing leaf pages than the previous LZW compression. Whether performance is better with lz4hc
(a high-compression variant of lz4) on the payload fields depends on the access characteristics of the data
and how much of the index is cached in memory.

Compression Levels :

hclevel An integer between 3 and 12 to specify the level of compression. The default is
3. Higher levels increase the compression, but also increase the compression
times. This may be cost effective depending on the length of time the data is
stored, and the storage costs compared to the compute costs to build the index.

maxcompression The maximum desired compression ratio. This avoids the leaf nodes getting too
large when expanded, but increases the size of some indexes. The default is 20.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

91

ECL Language Reference
Record Structures and Files

maxrecompress Specifies the number of times the entire input dataset should be recompressed
to free up space. Increasing the number decreases the size of the indexes, and
will probably decrease the decompress time slightly (because there are fewer
stream blocks), but will increase the build time. The default is 1.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,STRING20 city,STRING20 lname},FLAT);

SearchTerms := RECORD
 Vehicles.st;
 Vehicles.city;
END;
Payload := RECORD
 Vehicles.lname;
END;
VehicleKey := INDEX(Vehicles,SearchTerms,Payload,'vkey::st.city',
 COMPRESSED('inplace:lz4shc,compressopt(hclevel=9,
 maxcompression=25,
 maxrecompress=4)'));
BUILD(VehicleKey);

See Also: DATASET, BUILDINDEX, JOIN, FETCH, KEYED/WILD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

92

ECL Language Reference
Record Structures and Files

Scope and Logical Filenames
File Scope
The logical filenames used in DATASET and INDEX attribute definitions and the OUTPUT and BUILD (or
BUILDINDEX) actions can optionally begin with a ~ meaning it is absolute, otherwise it is relative (the
platform configured scope prefix is prepended). It may contain scopes delimited by double colons (::) with
the final portion being the filename. It cannot have a trailing double colons (::). A cluster qualifier can be
specified. For example, ~myfile@mythor2 points to one file where the file is on multiple clusters in the same
scope. Valid characters of a scope or filename are ASCII >32 < 127 except * " / : < > ? and |.

To reference uppercase characters in physical file paths and filenames, use the caret character (^). For
example, '~file::10.150.254.6::var::lib::^h^p^c^c^systems::mydropzone::^people.txt'.

The presence of a scope in the filename allows you to override the default scope name for the cluster.
For example, assuming you are operating on a cluster whose default scope name is "Training" then the
following two OUTPUT actions result in the same scope:

OUTPUT(SomeFile,,'SomeDir::SomeFileOut1');
OUTPUT(SomeFile,,'~Training::SomeDir::SomeFileOut2');

The presence of the leading tilde in the filename only defines the scope name and does not change the set
of disks to which the data is written (files are always written to the disks of the cluster on which the
code executes). The DATASET declarations for these files might look like this:

RecStruct := {STRING line};
ds1 := DATASET('SomeDir::SomeFileOut1',RecStruct,THOR);
ds2 := DATASET('~Training::SomeDir::SomeFileOut2',RecStruct,THOR);

These two files are in the same scope, so that when you use the DATASETs in a workunit the Distributed
File Utility (DFU) will look for both files in the Training scope.

However, once you know the scope name you can reference files from any other cluster within the same
environment. For example, assuming you are operating on a cluster whose default scope name is "Produc-
tion" and you want to use the data in the above two files. Then the following two DATASET definitions allow
you to access that data:

FileX := DATASET('~Training::SomeDir::SomeFileOut1',RecStruct,THOR);
FileY := DATASET('~Training::SomeDir::SomeFileOut2',RecStruct,THOR);

Notice the presence of the scope name in both of these definitions. This is required because the files are
in another scope.

You should be frugal with file scope usage. The depth of file scopes can have a performance cost in systems
with File Scope Security enabled. This cost is higher still when File Scope Scans are enabled because the
system must make an external LDAP call to check every level in the scope, from the top to the bottom.

Foreign Files
Similar to the scoping rules described above, you can also reference files in separate environments serviced
by a different Dali. This allows a read-only reference to remote files (both logical files and superfiles).

NOTE: If LDAP authentication is enabled on the foreign Dali, the user's credentials are verified before
processing the file access request. If LDAP file scope security is enabled on the foreign Dali, the
user's file access permissions are also verified.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

93

ECL Language Reference
Record Structures and Files

The syntax looks like this:

'~foreign::<dali-ip>::<scope>::<tail>'

For example,

MyFile :=DATASET('~foreign::10.150.50.11::training::thor::myfile',
 RecStruct,FLAT);

gives read-only access to the remote training::thor::myfile file in the 10.150.50.11 environment.

Landing Zone Files
You can also directly read and write files on a landing zone (or any other IP-addressable box) that have
not been sprayed to Thor. The landing zone must be running the dafileserv utility program. If the box is a
Windows box, dafileserv must be installed as a service.

The syntax looks like this:

'~file::<LZ-ip>::<path>::<filename>'

For example,

MyFile :=DATASET('~file::10.150.50.12::c$::training::import::myfile',RecStruct,FLAT);

gives access to the remote c$/training/import/myfile file on the linux-based 10.150.50.12 landing zone.

ECL logical filenames are case insensitive and physical names default to lower case, which can cause
problems when the landing zone is a Linux box (Linux is case sensitive). The case of characters can be
explicitly uppercased by escaping them with a leading caret (^), as in this example:

MyFile :=DATASET('~file::10.150.50.12::c$::^Advanced^E^C^L::myfile',RecStruct,FLAT);

gives access to the remote c$/AdvancedECL/myfile file on the linux-based 10.150.50.12 landing zone.

Dynamic Files
In Roxie queries (only) you can also read files that may not exist at query deployment time, but that will
exist at query runtime by making the filename DYNAMIC.

The syntax looks like this:

DYNAMIC('<filename>')

For example,

MyFile :=DATASET(DYNAMIC('~training::import::myfile'),RecStruct,FLAT);

This causes the file to be resolved when the query is executed instead of when it is deployed.

Temporary SuperFiles
A SuperFile is a collection of logical files treated as a single entity (see the SuperFile Overview article in
the Programmer's Guide). You can specify a temporary SuperFile by naming the set of sub-files within curly
braces in the string that names the logical file for the DATASET declaration. The syntax looks like this:

DATASET('{ listoffiles } ', recstruct, THOR);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

94

ECL Language Reference
Record Structures and Files

listoffiles A comma-delimited list of the set of logical files to treat as a single SuperFile. The logical filenames
must follow the rules listed above for logical filenames with the one exception that the tilde indicating scope
name override may be specified either on each appropriate file in the list, or outside the curly braces.

For example, assuming the default scope name is "thor," the following examples both define the same
SuperFile:

MyFile :=DATASET('{in::file1,
 in::file2,
 ~train::in::file3}'),
 RecStruct,THOR);

MyFile :=DATASET('~{thor::in::file1,
 thor::in::file2,
 train::in::file3}'),
 RecStruct,THOR);

You cannot use this form of logical filename to do an OUTPUT or PERSIST; this form is read-only.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

95

ECL Language Reference
Record Structures and Files

Implicit Dataset Relationality
Nested child datasets in a Data Refinery (Thor) or Rapid Data Delivery Engine (Roxie) cluster are inherently
relational, since all the parent-child data is contained within a single physical record. The following rules
apply to all inherent relationships.

The scope level of a particular query is defined by the primary dataset for the query. During the query, the
assumption is that you are working with a single record from that primary dataset.

Assuming that you have the following relational structure in your database:

 Household Parent
 Person Child of Household
 Accounts Child of Person, Grandchild of Household

This means that, at the primary scope level:

a) All fields from any file that has a 1:M relationship with the primary file are available. That is, all fields in
any parent (or grandparent, etc.) record are available to the child. For example, if the Person dataset is the
primary scope, then all the fields in the Household dataset are available.

b) All child datasets (or grandchildren, etc.) can be used in sub-queries to filter the parent, as long as the
sub-query uses an aggregate function or operates at the level of the existence of a set of child records that
meet the filter criteria (see EXISTS).You can use specific fields from within a child record at the scope level
of the parent record by the use of EVALUATE or subscripting ([]) to a specific child record. For example, if
the Person dataset is the primary scope, then you may filter the set of related Accounts records and check
to see if you've filtered out all the related Accounts records.

c) If a dataset is used in a scope where it is not a child of the primary dataset, it is evaluated in the enclosing
scope. For example, the expression:

Household(Person(personage > AVE(Person,personage))

means "households containing people whose age is above the average age for the household." It does
not mean "households containing people whose age is above the average for all the households." This is
because the primary dataset (Household) encloses the child dataset (Person), making the evaluation of the
AVE function operate at the level of the persons within the household.

d) An attribute defined with the STORED() workflow service is evaluated at the global level. It is an error if
it cannot be evaluated independently of other datasets. This can lead to some slightly strange behaviour:

AveAge := AVE(Person,personage);
MyHouses := Household(Person(personage > aveAge));

means "households containing people whose age is above the average age for the household." However,

AveAge := AVE(Person,personage) : STORED('AveAge');
MyHouses := Household(Person(personage > aveAge));

Means "households containing people whose age is above the average for all the households." This is
because the AveAge attribute is now evaluated outside the enclosing Household scope.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

96

ECL Language Reference
Alien Data Types

Alien Data Types

TYPE Structure
TypeName := TYPE

functions;

END;

TypeName The name of the TYPE structure.

functions Function Attribute definitions. There are usually multiple functions.

The TYPE structure defines a series of functions that are implicitly invoked when the TypeName is subse-
quently used in a RECORD structure as a value type. Parameters may be passed to the TYPE structure
Attribute which may then be used in any of the function definitions. To pass the parameters, simply append
them to the TypeName used in the RECORD structure to define the value type for the field.

Alien data types (TYPE) should only be used when accessing external data files. It is much more efficient
to use the native types for general processing. In particular, some optimizations to project and filter files
remotely are not supported on alien datatypes.

A TYPE structure may only contain function definitions from the the list of available Special Functions (see
TYPE Structure Special Functions).

Example:

STRING4 Rev(STRING4 S) := S[4] + S[3] + S[2] + S[1];
EXPORT ReverseString4 := TYPE
 EXPORT STRING4 LOAD(STRING4 S) := Rev(S);
 EXPORT STRING4 STORE(STRING4 S) := Rev(S);
END;
NeedC(INTEGER len) := TYPE
 EXPORT STRING LOAD(STRING S) := 'C' + S[1..len];
 EXPORT STRING STORE(STRING S) := S[2..len+1];
 EXPORT INTEGER PHYSICALLENGTH(STRING S) := len;
END;
ScaleInt := TYPE
 EXPORT REAL LOAD(INTEGER4 I) := I / 100;
 EXPORT INTEGER4 STORE(REAL R) := ROUND(R * 100);
END;
R := RECORD
 ReverseString4 F1;
 // Defines a field size of 4 bytes. When R.F1 is used,
 // the ReverseString4.Load function is called passing
 // in those four bytes and returning a string result.
 NeedC(5) F2;

 // Defines a field size of 5 bytes. When R.F2 is used,
 // those 5 bytes are passed in to NeedC.Load (along with
 // the length 5) and a 6 byte string is returned.
 ScaleInt F3;

 // Defines a field size of 4. When R.F3 is used, the
 // ScaleInt.Load function returns the number / 100.
END;

See Also: RECORD Structure, TYPE Structure Special Functions

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

97

ECL Language Reference
Alien Data Types

TYPE Structure Special Functions
LOAD
EXPORT LogicalType LOAD(PhysicalType alias) := expression;

LogicalType The value type of the resulting output of the function.

PhysicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

LOAD defines the callback function to be applied to the bytes of the record to create the data value to be
used in the computation. This function defines how the system reads the data from disk.

STORE
EXPORT PhysicalType STORE(LogicalType alias) := expression;

PhysicalType The value type of the resulting output of the function.

LogicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

STORE defines the callback function to be applied to the computed value to store it within the record. This
function defines how the system writes the data to disk.

PHYSICALLENGTH
EXPORT INTEGER PHYSICALLENGTH(type alias) := expression;

type The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

PHYSICALLENGTH defines the callback function to determine the storage requirements of the logical for-
mat in the specified physical format. This function defines how many bytes the data occupies on disk.

MAXLENGTH
EXPORT INTEGER MAXLENGTH := expression;

expression An integer constant defining the maximum physical length of the data.

MAXLENGTH defines the callback function to determine the maximum physical length of variable-length
data.

GETISVALID
EXPORT BOOLEAN GETISVALID(PhysicalType alias) := expression;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

98

ECL Language Reference
Alien Data Types

PhysicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

GETISVALID defines the callback function to determine that data values are in the specified physical format.

Example:

EXPORT NeedC(INTEGER len) := TYPE
 EXPORT STRING LOAD(STRING S) := 'C' + S[1..len];
 EXPORT STRING STORE(STRING S) := S[2..len+1];
 EXPORT INTEGER PHYSICALLENGTH(STRING S) := len;
 EXPORT INTEGER MAXLENGTH(STRING S) := len;
 EXPORT BOOLEAN GETISVALID(STRING S) := S[1] <> 'C';
END;

// delimited string data type
EXPORT dstring(STRING del) := TYPE
 EXPORT INTEGER PHYSICALLENGTH(STRING s) :=
 Std.Str.Find(s,del)+length(del)-1;
 EXPORT STRING LOAD(STRING s) :=
 s[1..Std.Str.Find(s,del)-1];
 EXPORT STRING STORE(STRING s) := s + del;
END;

See Also: TYPE Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

99

ECL Language Reference
Parsing Support

Parsing Support

Parsing Support
Natural Language Parsing is accomplished in ECL by combining pattern definitions with an output RECORD
structure (or TRANSFORM function) specifically designed to receive the parsed values, then using the
PARSE function to perform the operation.

Pattern definitions are used to detect "interesting" text within the data. Just as with all other attribute defini-
tions, these patterns typically define specific parsing elements and may be combined to form more complex
patterns, tokens, and rules.

The output RECORD structure (or TRANSFORM function) defines the format of the resulting recordset. It
typically contains specific pattern matching functions that return the "interesting" text, its length or position.

The PARSE function implements the parsing operation. It returns a recordset that may then be post-
processed as needed using standard ECL syntax, or simply output.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

100

ECL Language Reference
Parsing Support

PARSE Pattern Value Types
There are three value types specifically designed and required to define parsing pattern attributes:

PATTERN patternid := parsepattern;

patternid The attribute name of the pattern.

parsepattern The pattern, very similar to regular expressions. This may contain other previ-
ously defined PATTERN attributes. See ParsePattern Definitions below.

The PATTERN value type defines a parsing expression very similar to regular expression patterns.

TOKEN tokenid := parsepattern;

tokenid The attribute name of the token.

parsepattern The token pattern, very similar to regular expressions. This may contain PAT-
TERN attributes but no TOKEN or RULE attributes. See ParsePattern Defi-
nitions below.

The TOKEN value type defines a parsing expression very similar to a PATTERN, but once matched, the
parser doesn't backtrack to find alternative matches as it would with PATTERN.

RULE [(recstruct)] ruleid := rulePattern;

recstruct Optional. The attribute name of a RECORD structure attribute (valid only when
the PARSE option is used on the PARSE function).

ruleid The attribute name of the rule.

rulePattern The rule pattern, very similar to regular expressions. This may contain PAT-
TERN attributes, TOKEN attributes, or RULE attributes. See ParsePattern
Definitions below.

The RULE value type defines a parsing expression containing combinations of TOKENs. If a RULE definition
contains a PATTERN it is implicitly converted to a TOKEN. Like PATTERN, once matched, the parser
backtracks to find alternative RULE matches.

If the PARSE option is present on the PARSE function (thereby implementing tomita parsing for the oper-
ation), each alternative RULE rulePattern may have an associated TRANSFORM function. The different
input patterns can be referred to using $1, $2 etc. If the pattern has an associated recstruct then $1 is a
row, otherwise it is a string. Default TRANSFORM functions are created in two circumstances:

1. If there are no patterns, the default transform clears the row. For example:

RULE(myRecord) := ; //empty expression = cleared row

2. If there is only a single pattern with an associated record, and that record matches the
type of the rule being defined. For example:

RULE(myRecord) e0 := '(' USE(myRecord, 'expression') ')';

ParsePattern Definitions
A parsepattern may contain any combination of the following elements:

pattern-name The name of any previously defined PATTERN attribute.

(pattern) Parentheses may be used for grouping.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

101

ECL Language Reference
Parsing Support

pattern1 pattern2 Pattern1 followed by pattern2.

'string' A fixed text string, which may contain escaped octal string control characters
(for example, CtrlZ is '\032').

FIRST Matches the start of the string to search. This is similar to the regular expres-
sion ^ token, which is not supported.

LAST Matches the end of the string to search. This is similar to the regular expres-
sion $ token, which is not supported.

ANY Matches any character.

REPEAT(pattern) Repeat the pattern any number of times. The regular expression syntax pat-
tern* is supported as a shorthand for REPEAT(pattern).

REPEAT(pattern, expres-
sion)

Repeat the pattern expression times. The regular expression syntax pat-
tern*<count> is supported as a shorthand for REPEAT(pattern,expression),
but the regular expression bounded repeats syntax pattern{expression} is not.

REPEAT(pattern, low,
ANY [,MIN])

Repeat the pattern low or more times (with the MIN option making it a minimal
match). The regular expression syntax pattern+ is supported as a shorthand
for REPEAT(pattern,low,ANY), but the regular expression bounded repeats
syntax pattern{expression ,} is not.

REPEAT(pattern, low,
high)

Repeat the pattern from low to high times. The regular expression bounded
repeats syntax pattern{low,high} is not supported.

OPT(pattern) An optional pattern. The regular expression syntax pattern? is supported as
a shorthand for OPT(pattern).

pattern1 OR pattern2 Either pattern1 or pattern2. The regular expression syntax pattern1 | pattern2
is supported as a shorthand for OR.

[list-of-patterns] A comma-delimited list of alternative patterns, useful for string sets. This is
the same as OR.

pattern1 [NOT] IN pattern2 Does the text matched with pattern1 also match pattern2? Pattern1 [NOT] =
pattern2 and pattern1 != pattern2 are the same as using IN, but may make
more sense in some situations.

pattern1 [NOT] BEFORE
pattern2

Check if the given pattern2 does [not] follow pattern1. Pattern2 is not con-
sumed from the input.

pattern1 [NOT] AFTER
pattern2

Check if the given pattern2 does [not] precede pattern1. Pattern2 does not
consume any input. It must also be a fixed length.

pattern LENGTH(range) Check whether the length of a pattern is in the range. Range can have the
form <value>,<min>..<max>,<min>.. or ..<max> So "digit*3 NOT BEFORE
digit" could be represented as "digit* LENGTH(3)." This is more efficient, and
digit* can be defined as a token. "digit* LENGTH(4..6)" matches 4,5 and 6
digit sequences.

VALIDATE(pattern, is-
ValidExpression)

Evaluate isValidExpression to check if the pattern is valid or not. isValid-
Expression should use MATCHTEXT or MATCHUNICODE to refer to the
text that matched the pattern. For example, VALIDATE(alpha*, MATCHTEX-
T[4]='Q') is equivalent to alpha* = ANY*3 'Q' ANY* or more usefully: VALI-
DATE(alpha*,isSurnameService(MATCHTEXT));

VALIDATE(pattern, is-
ValidAsciiExpression, is-
ValidUnicodeExpression)

A two parameter variant. Use the first isValidAsciiExpression if the string being
searched is ASCII; use the second if it is Unicode.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

102

ECL Language Reference
Parsing Support

NOCASE(pattern) Matches the pattern case insensitively, overriding the CASE option on the
PARSE function. This may be nested within a CASE pattern.

CASE(pattern) Matches the pattern case sensitively, overriding the NOCASE option on the
PARSE function. This may be nested within a NOCASE pattern.

pattern PENALTY(cost) Associate a penalty cost with this match of the pattern. This can be used to
recover from grammars with unknown words. This requires use of the BEST
option on the PARSE operation.

TOKEN(pattern) Treat the pattern as a token.

PATTERN('regular expres-
sion')

Define a pattern using a regular expression built from
the following supported syntax elements:
 (x) Grouping (not used for matching)
 x|y Alteratives x or y
 xy Concatenation of x and y.
 x* x*? Zero or more. Greedy and minimal versions.
 x+ x+? One or more. Greedy and minimal versions.
 x? x?? Zero or one. Greedy and minimal versions.
 x{m} x{m,} x{m,n} Bounded repeats, also minimal versions
 [0-9abcdef] A set of characters
 (may use ^ for exclusion list)
 (?=...) (?!...) Look ahead assertion
 (?<=...) (?<!...) Look behind assertion

Escape sequences can be used to define UNICODE Character ranges.
The encoding is UTF-16 Big Endian.
For example:
PATTERN AnyChar := PATTERN(U'[\u0001-\u7fff]');

 The following character class expressions are supported
(inside sets):
[:alnum:] [:cntrl:] [:lower:] [:upper:] [:space:]
[:alpha:] [:digit:] [:print:] [:blank:] [:graph:]
[:punct:] [:xdigit:]

 Regular expressions do not support:
 ^ $ to mark the beginning/end of the string
 Collating symbols [.ch.]
 Equivalence class [=e=]

USE([recstruct ,] 'sym-
bolname')

Specifies using a pattern defined later with the DEFINE('symbolname') func-
tion. This creates a forward reference, practical only on RULE patterns for
tomita parsing (the PARSE option is present on the PARSE function).

SELF References the pattern being defined (recursive). This is practical only in
RULE patterns for tomita parsing (the PARSE option is present on the PARSE
function).

Examples:

rs := RECORD
STRING100 line;
END;
ds := DATASET([{'the fox; and the hen'}], rs);

PATTERN ws := PATTERN('[\t\r\n]');
PATTERN Alpha := PATTERN('[A-Za-z]');
PATTERN Word := Alpha+;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

103

ECL Language Reference
Parsing Support

PATTERN Article := ['the', 'A'];
PATTERN JustAWord := Word PENALTY(1);
PATTERN notHen := VALIDATE(Word, MATCHTEXT != 'hen');
PATTERN NoHenWord := notHen PENALTY(1);
RULE NounPhraseComponent1 := JustAWord | Article ws Word;
RULE NounPhraseComponent2 := NoHenWord | Article ws Word;
ps1 := RECORD
 out1 := MATCHTEXT(NounPhraseComponent1);
END;

ps2 := RECORD
 out2 := MATCHTEXT(NounPhraseComponent2);
END;

p1 := PARSE(ds, line, NounPhraseComponent1, ps1, BEST, MANY, NOCASE);
p2 := PARSE(ds, line, NounPhraseComponent2, ps2, BEST, MANY, NOCASE);
OUTPUT(p1);
OUTPUT(p2);

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

104

ECL Language Reference
Parsing Support

NLP RECORD and TRANSFORM Func-
tions
The following functions are used in field definition expressions within the RECORD structure or TRANS-
FORM function that defines the result set from the PARSE function:

MATCHED([patternreference])

MATCHED returns true or false as to whether the patternreference found a match. If the patternreference
is omitted, it indicates whether the entire pattern matched or not (for use with the NOT MATCHED option).

MATCHTEXT [(patternreference)]

MATCHTEXT returns the matching ASCII text the patternreference found, or blank if not found. If the pat-
ternreference is omitted, MATCHTEXT returns all matching text.

MATCHUNICODE(patternreference)

MATCHUNICODE returns the matching Unicode text the patternreference found, or blank if not found.

MATCHLENGTH(patternreference)

MATCHLENGTH returns the number of characters in the matching text the patternreference found, or 0
if not found.

MATCHPOSITION(patternreference)

MATCHPOSITION returns the position within the text of the first character in the matching text the pattern-
reference found, or 0 if not found.

MATCHROW(patternreference)

MATCHROW returns the entire row of the matching text the patternreference found for a RULE (valid only
when the PARSE option is used on the PARSE function). This may be used to fully qualify a field in the
RECORD structure of the row.

Pattern References
The patternreference parameter to these functions is a slash-delimited (/) list of previously defined PAT-
TERN, TOKEN, or RULE attributes with or without an instance number appended in square brackets.

If an instance number is supplied, the patternreference matches a particular occurrence, otherwise it match-
es any. The patternreference provides a path through the regular expression grammar to a particular result.
The path to a particular attribute can either be fully or partially specified.

Examples:

PATTERN ws := PATTERN('[\t\r\n]');
PATTERN arb := PATTERN('[-!.,\t a-zA-Z0-9]')+;
PATTERN number := PATTERN('[0-9]')+;
PATTERN age := '(' number OPT('/I') ')';
PATTERN role := '[' arb ']';
PATTERN m_rank := '<' number '>';
PATTERN actor := arb OPT(ws '(I)' ws);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

105

ECL Language Reference
Parsing Support

NLP_layout_actor_movie := RECORD
 STRING30 actor_name := MATCHTEXT(actor);
 STRING50 movie_name := MATCHTEXT(arb[2]); //2nd instance of arb
 UNSIGNED2 movie_year := (UNSIGNED)MATCHTEXT(age/number);
 //number within age
 STRING20 movie_role := MATCHTEXT(role/arb); //arb within role
 UNSIGNED1 cast_rank := (UNSIGNED)MATCHTEXT(m_rank/number);
END;

Tomita Example:

// This example demonstrates the use of productions in PARSE code
//(only supported in the tomita version of PARSE).
PATTERN ws := [' ','\t'];
TOKEN number := PATTERN('[0-9]+');
TOKEN plus := '+';
TOKEN minus := '-';

attrRec := RECORD
 INTEGER val;
END;

RULE(attrRec) e0 :=
 '(' USE(attrRec,expr)? ')' |
 number TRANSFORM(attrRec, SELF.val := (INTEGER)$1;) |
 '-' SELF TRANSFORM(attrRec, SELF.val := -$2.val;);
RULE(attrRec) e1 :=
 e0 |
 SELF '*' e0 TRANSFORM(attrRec, SELF.val := $1.val * $3.val;) |
 USE(attrRec, e1) '/' e0
 TRANSFORM(attrRec, SELF.val := $1.val / $3.val;);
RULE(attrRec) e2 :=
 e1 |
 SELF plus e1 TRANSFORM(attrRec, SELF.val := $1.val + $3.val;) |
 SELF minus e1 TRANSFORM(attrRec, SELF.val := $1.val - $3.val;);
RULE(attrRec) expr := e2;

infile := DATASET([{'1+2*3'},{'1+2*z'},{'1+2+(3+4)*4/2'}],
 { STRING line });
resultsRec := RECORD
 RECORDOF(infile);
 attrRec;
 STRING exprText;
 INTEGER value3;
END;

resultsRec extractResults(infile l, attrRec attr) := TRANSFORM
 SELF := l;
 SELF := attr;
 SELF.exprText := MATCHTEXT;
 SELF.value3 := MATCHROW(e0[3]).val;
END;

OUTPUT(PARSE(infile,line,expr,extractResults(LEFT, $1),
 FIRST,WHOLE,PARSE,SKIP(ws)));

See Also: PARSE, RECORD Structure, TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

106

ECL Language Reference
Parsing Support

XML Parsing RECORD and TRANS-
FORM Functions
The following functions are valid for use only in field definition expressions within a RECORD structure or
TRANSFORM function that is used to define the result set from the PARSE function, or the input RECORD
structure for a DATASET containing XML data.

XMLTEXT(xmltag)

XMLTEXT returns the ASCII text from the xmltag.

XMLUNICODE(xmltag)

XMLUNICODE returns the Unicode text from the xmltag.

XMLPROJECT(xmltag, transform)

XMLPROJECT returns the text from the xmltag as a child dataset.

xmltag A string constant naming the XPATH to the tag containing the data (see the
XPATH Support section under the RECORD structure discussion). This may
contain an instance number (such as tagname[1]).

transform The TRANSFORM function that produces the child dataset.

Example:

d := DATASET([{'<library><book isbn="123456789X">' +
 '<author>Bayliss</author><title>A Way Too Far</title></book>' +
 '<book isbn="1234567801">' +
 '<author>Smith</author><title>A Way Too Short</title></book>' +
 '</library>'}],
 {STRING line });

rform := RECORD
 STRING author := XMLTEXT('author');
 STRING title := XMLTEXT('title');
END;

books := PARSE(d,line,rform,XML('library/book'));

OUTPUT(books);

//***
/* The following XML can be parsed using XMLPROJECT
<XML>
<Field name='surname' distinct=2>
<Value count=3>Halliday</Value>
<Value count=2>Chapman</Value>
</Field>
<XML>
*/
extractedValueRec := RECORD
 STRING value;
 UNSIGNED cnt;
END;

extractedRec := RECORD
 STRING name;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

107

ECL Language Reference
Parsing Support

 UNSIGNED cnt;
 DATASET(extractedValueRec) values;
END;

x := DATASET([{'<XML>' +
 '<Field name="surname" distinct="2">' +
 '<Value count="3">Halliday</Value>' +
 '<Value count="2">Chapman</Value>' +
 '</Field>' +
 '</XML>'}],{STRING line});

extractedRec t1 := TRANSFORM
 SELF.name := XMLTEXT('@name');
 SELF.cnt := (UNSIGNED)XMLTEXT('@distinct');
 SELF.values := XMLPROJECT('Value',
 TRANSFORM(extractedValueRec,
 SELF.value := XMLTEXT(''),
 SELF.cnt :=
 (UNSIGNED)XMLTEXT('@count')))(cnt > 1);
 END;
p := PARSE(x, line, t1, XML('XML/Field'));
OUTPUT(p);

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

108

ECL Language Reference
Reserved Keywords

Reserved Keywords

ALL
ALL

The ALL keyword specifies the set of all possible values when used as the default value for a passed SET
parameter or as a substitute for a SET in operations that expect a defined SET of values.

Example:

MyFunc(STRING1 val, SET OF STRING1 S=ALL) := val IN S;
 //check for presence in passed set, if passed

SET OF INTEGER4 MySet := IF(SomeCondition=TRUE,
 [88888,99999,66666,33333,55555],ALL);
MyRecs := MyFile(Zip IN MySet);

See Also: SET OF, Attribute Functions (Parameter Passing)

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

109

ECL Language Reference
Reserved Keywords

EXCEPT
EXCEPT fieldlist

fields A comma-delimited list of data fields in a RECORD structure.

The EXCEPT keyword specifies a list of fields not to use in a SORT, GROUP, DEDUP, or ROLLUP opera-
tion. This allows you to perform the operation on all fields in the RECORD EXCEPT those fields you name,
making the code more readable and maintainable.

Example:

x := DATASET([{'Taylor','Richard','Jackson' ,'M'},
 {'Taylor','David' ,'Boca' ,'M'},
 {'Taylor','Rita' ,'Boca' ,'F'},
 {'Smith' ,'Richard','Mansfield','M'},
 {'Smith' ,'Oscar' ,'Boca' ,'M'},
 {'Smith' ,'Rita' ,'Boca' ,'F'}],
 {STRING10 lname, STRING10 fname,
 STRING10 city, STRING1 sex });
y := SORT(x,EXCEPT sex); //sort on all fields but sex

OUTPUT(y)

See Also: SORT, GROUP, DEDUP, ROLLUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

110

ECL Language Reference
Reserved Keywords

EXPORT
EXPORT [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.

definition A valid definition.

The EXPORT keyword explicitly allows other definitions to import the specified definition for use. It may be
IMPORTed from code in any folder, therefore its visibility scope is global.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This
definition may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as
MODULE, INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the
name of the single EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords are local to the file within which they reside (see
Definition Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore
they must precede that file's EXPORT or SHARED definition.

Example:

EXPORT MyDefinition := 5;
// allows other definitions to use MyModule.MyDefinition if they import MyModule
// the filename must be MyDefinition.ecl

//and in AnotherDef.ecl we have this code:
EXPORT AnotherDef := MODULE(x)
 EXPORT INTEGER a := c * 3;
 EXPORT INTEGER b := 2;
 EXPORT VIRTUAL INTEGER c := 3; //this def is VIRTUAL
END;

See Also: IMPORT, SHARED, Definition Visibility, MODULE Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

111

ECL Language Reference
Reserved Keywords

GROUP keyword
GROUP

The GROUP keyword is used within output format parameter (RECORD Structure) of a TABLE definition
where optional group by expressions are also present. GROUP replaces the recordset parameter of any
aggregate built-in function used in the output to indicate the operation is performed for each group of the
expression. This is similar to an SQL "GROUP BY" clause. The most common usage is to output a table
as a crosstab report.

There is also a GROUP built-in function which provides a similar functionality.

Example:

A := TABLE(Person,{per_st,per_sex,COUNT(GROUP)},per_st,per_sex);
 // create a crosstab report of each sex in each state

See Also: TABLE, COUNT, AVE, MAX, MIN, SUM, VARIANCE, COVARIANCE, CORRELATION, COM-
BINE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

112

ECL Language Reference
Reserved Keywords

IMPORT
IMPORT module-selector-list;

IMPORT folder AS alias ;

IMPORT symbol-list FROM folder ;

IMPORTlanguage;

module-selector-list A comma-delimited list of folder or file names in the repository. The dollar sign
($) makes all definitions in the current folder available. The caret symbol (^) can
be used as shorthand for the container of the current folder. Using a caret within
the module specifier (such as, myModule.^) selects the container of that folder.
A leading caret specifies the logical root of the file tree.

folder A folder (or file name containing an EXPORTed MODULE structure) in the repos-
itory.

AS Defines a local alias name for the folder, typically used to create shorter local
names for easier typing.

alias The short name to use instead of the folder name.

symbol-list A comma-delimited list of definitions from the folder to make available without
qualification. A single asterisk (*) may be used to make all definitions from the
folder available without qualification.

FROM Specifies the folder name in which the symbol-list resides.

language Specifies the name of an external programming language whose code you wish
to embed in your ECL. A language support module for that language must have
been installed in your plugins directory. This makes the language available for
use by the EMBED structure and/or the IMPORT function.

The IMPORT keyword makes EXPORT definitions (and SHARED definitions from the same folder) available
for use in the current ECL code.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

113

ECL Language Reference
Reserved Keywords

Examples:

IMPORT $; //makes all definitions from the same folder available

IMPORT $, Std; //makes the standard library functions available, also

IMPORT MyModule; //makes available the definitions from MyModule folder

IMPORT $.^.MyOtherModule //makes available the definitions from MyOtherModule folder,
 //located in the same container as the current folder

IMPORT $.^.^.SomeOtherModule //makes available the definitions from SomeOtherModule folder,
 //which is located in the grandparent folder of current folder

IMPORT SomeFolder.SomeFile; // make available a specific file
 // containing an EXPORTed MODULE

IMPORT SomeReallyLongFolderName AS SN; //alias the long name as "SN"

IMPORT ^ AS root; //allows access to non-modules defined
 //in the root of the repository

IMPORT Def1,Def2 FROM Fred; //makes Def1 and Def2 from Fred folder available, unqualified

IMPORT * FROM Fred; //makes everything from Fred available, unqualified

IMPORT Dev.Me.Project1; //makes the Dev/Me/Project1 folder available

IMPORT Python; //makes Python language code embeddable

See Also: EXPORT, SHARED, EMBED Structure, IMPORT function

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

114

ECL Language Reference
Reserved Keywords

KEYED and WILD
KEYED(expression [, OPT])

WILD(field)

expression An INDEX filter condition.

OPT Only generate An INDEX filter condition.

field A single field in an INDEX.

The KEYED and WILD keywords are valid only for filters on INDEX attributes (which also qualifies as part of
the joincondition for a "half-keyed" JOIN). They indicate to the compiler which of the leading index fields are
used as filters (KEYED) or wildcarded (WILD) so that the compiler can warn you if you've gotten it wrong.
Trailing fields not used in the filter are ignored (always treated as wildcards).

Prior to version 7.0, KEYED(expression) on a disk read filter would give a compile-time error if the field
being filtered was not fixed size. In version 7.0 and later versions, it won't.

The rules for their use are as follows (the term "segmonitor" refers to an internal object created to represent
the possible match conditions for a single keyable field):

1. KEYED generates a segmonitor. The segmonitor may be a wild one if the expression can never be false,
such as:

 KEYED(inputval = '' OR field = inputval)

2. WILD generates a wild segmonitor, unless there is also a KEYED() filter on the same field.

3. KEYED, OPT generates a non-wild segmonitor only if the preceding field did.

4. Any field that is both KEYED and KEYED OPT creates a compile time error.

5. If WILD or KEYED are not specified for any fields, segmonitors are generated for all keyable conditions.

6. An INDEX filter condition with no KEYED specified generates a wild segmonitor (except as specified by 5).

7. KEYED limits are based upon all non-wild segmonitors.

8. Conditions that do not generate segmonitors are post-filtered.

Example:

ds := DATASET('~LR::person',
 { STRING15 f1, STRING15 f2, STRING15 f3, STRING15 f4,
 UNSIGNED8 filepos{VIRTUAL(fileposition)} }, FLAT);
ix := INDEX(ds, { ds },'\\lexis\\person.name_first.key');

/*** Valid examples ****/

COUNT(ix(KEYED(f1='Kevin1')));
 // legal because only f1 is used.

COUNT(ix(KEYED(f1='Kevin2' and f2='Halliday')));
 // legal because both f1 and f2 are used

COUNT(ix(KEYED(f2='Kevin3') and WILD(f1)));
 // keyed f2, but ok because f1 is marked as wild.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

115

ECL Language Reference
Reserved Keywords

COUNT(ix(f2='Halliday'));
 // ok - if keyed isn't used then it doesn't have to have
 // a wild on f1

COUNT(ix(KEYED(f1='Kevin3') and KEYED(f2='Kevin4') and WILD(f1)));
 // it is ok to mark as wild and keyed otherwise you can get
 // in a mess with compound queries.

COUNT(ix(f1='Kevin3' and KEYED(f2='Kevin4') and WILD(f1)));
 // can also be wild and a general expression.

/***Error examples ***/

COUNT(ix(KEYED(f3='Kevin3' and f2='Halliday')));
 // missing WILD(f1) before keyed

COUNT(ix(KEYED(f3='Kevin3') and f2='Halliday'));
 // missing WILD(f1) before keyed after valid field

COUNT(ix(KEYED(f3='Kevin3') and WILD(f2)));
 // missing WILD(f1) before a wild

COUNT(ix(WILD(f3) and f2='Halliday'));
 // missing WILD(f1) before wild after valid field

COUNT(ds(KEYED(f1='Kevin')));
 //KEYED not valid in DATASET filters

See Also: INDEX, JOIN, FETCH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

116

ECL Language Reference
Reserved Keywords

LEFT and RIGHT
LEFT

RIGHT

The LEFT and RIGHT keywords indicate the left and right records of a record set. These may be used to
substitute as parameters passed to TRANSFORM functions or in expressions in functions where a left and
right record are implicit, such as DEDUP and JOIN.

Example:

dup_flags := JOIN(person,person,
 LEFT.current_address_key=RIGHT.current_address_key
 AND fuzzy_equal,req_output(LEFT,RIGHT));

See Also: TRANSFORM Structure, DEDUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

117

ECL Language Reference
Reserved Keywords

LIKELY and UNLIKELY
LIKELY(filtercondition, [likelihood]);

UNLIKELY(filtercondition);

filtercondition A filter condition for the hint.

likelihood The probability value expressed in a decimal value between 0 and 1.

The LIKELY/UNLIKELY hint can be wrapped around a filter condition to indicate to the code generator the
likelihood that the filter condition will filter the record.

LIKELY specifies that the filter condition is likely to match most records. UNLIKELY specifies that very few
records are likely to be matched.

Specific probability value may be provided for LIKELY. The probability value is decimal value greater than
0 and less than 1. The closer this value is to 1.0 the more likely that the filter condition is likely to match
a record. The closer the value is to 0.0 the less likely the filter condition is to match records. The code
generator makes use of the likelihood information to produce better code.

The code generator uses the LIKELY/UNLIKELY hint together with the count of usage, to determine the
cost of spilling and the cost of re-filtering the dataset every time it is used. Spills are only be generated when
the cost of spilling is lower than the cost of re-filtering the dataset every time.

For example, say there is a dataset of people with millions of records. A filter is created to retain all records
where the age is less than 100. The filter is expected to retain 99.9% of records. This filter result is used by 3
different activities. The cost of spilling the results of the filter is likely to be significantly higher than the simply
re-filtering the input dataset every time it used. LIKELY can be used to share this likelihood information with
the code generator so that it may make sensible decisions regarding when to spill.

Example:

PeopleYoungerThan100 := AllPeople(LIKELY(age < 100, 0.999));
// Probably not worth spilling PeopleYoungerThan100

PeopleOlderThan100 := AllPeople(UNLIKELY(age>100));
// Probably worth spilling even if PeopleOlderThan100 is used by only a couple of activities

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

118

ECL Language Reference
Reserved Keywords

ROWS(LEFT) and ROWS(RIGHT)
ROWS(LEFT)

ROWS(RIGHT)

The ROWS(LEFT) and ROWS(RIGHT) keywords indicate the parameter being passed to the TRANSFORM
function is a record set. These are used in functions where a dataset is being passed, such as COMBINE,
ROLLUP, JOIN, DENORMALIZE, and LOOP.

Example:

NormRec := RECORD
 STRING20 thename;
 STRING20 addr;
END;
NamesRec := RECORD
 UNSIGNED1 numRows;
 STRING20 thename;
 DATASET(NormRec) addresses;
END;
NamesTable := DATASET([{0,'Kevin',[]},{0,'Liz',[]},
 {0,'Mr Nobody',[]},{0,'Anywhere',[]}],
 NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, DATASET(NormRec) R) := TRANSFORM
 SELF.NumRows := COUNT(R);
 SELF.addresses := R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 GROUP,
 DeNormThem(LEFT,ROWS(RIGHT)));
OUTPUT(DeNormedRecs);

See Also: TRANSFORM Structure, COMBINE, ROLLUP , JOIN, DENORMALIZE, LOOP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

119

ECL Language Reference
Reserved Keywords

SELF
SELF.element

element The name of a field in the result type RECORD structure of a TRANSFORM structure.

The SELF keyword is used in TRANSFORM structures to indicate a field in the output structure. It should
not be used on the right hand side of any attribute definition.

Example:

Ages := RECORD
 INTEGER8 Age; //a field named "Age"
END;

TodaysYear := 2001;
Ages req_output(person l) := TRANSFORM
 SELF.Age := TodaysYear - l.birthdate[1..4];
END;

See Also: TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

120

ECL Language Reference
Reserved Keywords

SHARED
SHARED [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.

definition A valid definition.

The SHARED keyword explicitly allows other definitions within the same folder to import the specified def-
inition for use throughout the module/folder/directory (i.e. module scope), but not outside that scope.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This
definition may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as
MODULE, INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the
name of the single EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords are local to the file within which they reside (see
Definition Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore
they must precede that file's EXPORT or SHARED definition.

Example:

//this code is contained in the GoodHouses.ecl file
BadPeople := Person(EXISTS(trades(EXISTS(phr(phr_rate > '4'))));
 //local only to the GoodHouses definition
SHARED GoodHouses := Household(~EXISTS(BadPeople));
 //available all thru the module

//and in AnotherDef.ecl we have this code:
EXPORT AnotherDef := MODULE(x)
 EXPORT INTEGER a := c * 3;
 EXPORT INTEGER b := 2;
 SHARED VIRTUAL INTEGER c := 3; //this def is VIRTUAL
 EXPORT VIRTUAL INTEGER d := c + 3; //this def is VIRTUAL
 EXPORT VIRTUAL INTEGER e := c + 3; //this def is VIRTUAL
END;

See Also: IMPORT, EXPORT, Definition Visibility, MODULE Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

121

ECL Language Reference
Reserved Keywords

SKIP
SKIP

SKIP is valid for use only within a TRANSFORM structure and may be used anywhere an expression can
be used to indicate the current output record should not be generated into the result set. COUNTER values
are incremented even when SKIP eliminates generating the current record.

Example:

SequencedAges := RECORD
 Ages;
 INTEGER8 Sequence := 0;
END;

SequencedAges AddSequence(Ages l, INTEGER c) := TRANSFORM
 SELF.Sequence := IF(c % 2 = 0, SKIP,c); //skip the even recs
 SELF := l;
END;

SequencedAgedRecs := PROJECT(AgedRecs, AddSequence(LEFT,COUNTER));

See Also: TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

122

ECL Language Reference
Reserved Keywords

TRUE and FALSE
TRUE

FALSE

The TRUE and FALSE keywords are Boolean constants.

Example:

BooleanTrue := TRUE;
Booleanfalse := FALSE;

OUTPUT(BooleanTrue);
OUTPUT(BooleanFalse)

See Also: BOOLEAN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

123

ECL Language Reference
Special Structures

Special Structures

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

124

ECL Language Reference
Special Structures

BEGINC++ Structure
resulttype funcname (parameterlist) := BEGINC++

code

ENDC++;

resulttype The ECL return value type of the C++ function.

funcname The ECL definition name of the function.

parameterlist A comma separated list of the parameters to pass to the function.

code The C++ function source code.

The BEGINC++ structure makes it possible to add in-line C++ code to your ECL. This is useful where string
or bit processing would be complicated in ECL, and would be more easily done in C++, typically for a one-
off use. For more commonly used C++ code, writing a plugin would be a better solution (see the External
Service Implementation discussion).

The implementation must be written to be thread safe and any calls to external libraries must be made to
thread safe versions of those libraries.

You can use EMBED instead of BEGINC++ to embed C++ code and specify additional options (for example,
DISTRIBUTED) using this form:

myFunction(string name) := EMBED(C++ [: options])
 ... text
ENDEMBED

WARNING: This feature could create memory corruption and/or security issues, so great care and
forethought are advised--consult with Technical Support before using.

ECL to C++ Mapping
Types are passed as follows:

//The following typedefs are used below:
typedef unsigned size32_t;
typedef wchar_t UChar; [unsigned short in linux]

The following list describes the mappings from ECL to C++. For embedded C++ the parameters are always
converted to lower case, and capitalized in conjunctions (see below).

ECL C++ [Linux in brackets]
BOOOLEAN xyz bool xyz
INTEGER1 xyz signed char xyz
INTEGER2 xyz int16_t xyz
INTEGER4 xyz int32_t xyz
INTEGER8 xyz signed __int64 xyz [long long]
UNSIGNED1 xyz unsigned char xyz
UNSIGNED2 xyz uint16_t xyz
UNSIGNED4 xyz uint32_t xyz
UNSIGNED8 xyz unsigned __int64 xyz [unsigned long long xyz]
REAL4 xyz float xyz
REAL/REAL8 xyz double xyz
DATA xyz size32_t lenXyz, void * xyz
STRING xyz size32_t lenXyz, char * xyz
VARSTRING xyz char * xyz;
QSTRING xyz size32_t lenXyz, char * xyz

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

125

ECL Language Reference
Special Structures

UNICODE xyz size32_t lenXyz, UChar * xyz
VARUNICODE xyz UChar * xyz
DATA<nn> xyz void * xyz
STRING<nn> xyz char * xyz
QSTRING<nn> xyz char * xyz
UNICODE<nn> xyz UChar * xyz
SET OF ... xyz bool isAllXyz, size32_t lenXyz, void * xyz

Note that strings of unknown length are passed differently from those with a known length. A variable length
input string is passed as a number of characters, not the size (i.e. qstring/unicode), followed by a pointer
to the data, like this (size32_t is an UNSIGNED4):

STRING ABC -> size32_t lenAbc, const char * abc;
UNICODE ABC -> size32_t lenABC, const UChar * abc;

A dataset is passed as a size/pointer pair. The length gives the size of the following dataset in bytes. The
same naming convention is used:

DATASET(r) ABC -> size32_t lenAbc, const void * abc
 The rows are accessed as x+0, x + length(row1), x + length(row1) + length(row2)

LINKCOUNTED DATASET(r) ABC -> size32_t countAbc, const byte * * abc
 The rows are accessed as x[0], x[1], x[2]

NOTE: variable length strings within a record are stored as a 4 byte number of characters, followed by the
string data.

Sets are passed as a set of parameters (all, size, pointer):

SET OF UNSIGNED4 ABC -> bool isAllAbc, size32_t lenAbc, const void * abc

Return types are handled as C++ functions returning the same types with some exceptions. The exceptions
have some extra initial parameters to return the results in:

ECL C++ [Linux in brackets]
DATA xyz size32_t & __lenResult, void * & __result
STRING xyz size32_t & __lenResult, char * & __result
CONST STRING xyz size32_t lenXyz, const char * xyz
QSTRING xyz size32_t & __lenResult, char * & __result
UNICODE xyz size32_t & __lenResult, UChar * & __result
CONST UNICODE xyz size32_t & __lenResult, const UChar * & __result
DATA<nn> xyz void * __result
STRING<nn> xyz char * __result
QSTRING<nn> xyz char * __result
UNICODE<nn> xyz UChar * __result
SET OF ... xyz bool __isAllResult, size32_t & __lenResult, void * & __result

DATASET(r) size32_t & __lenResult, void * & __result

LINKCOUNTED DATASET(r)
 size32_t & __countResult, byte * * & __result

STREAMED DATASET(r)
 returns a pointer to an IRowStream interface
 (see the eclhelper.hpp include file for the definition)

For example,

STRING process(STRING value, INTEGER4 len)

has the prototype:

void process(size32_t & __lenResult, char * & __result,
 size32_t lenValue, char * value, int len);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

126

ECL Language Reference
Special Structures

A function that takes a string parameter should also have the type prefixed by const in the ECL code so
that modern compilers don't report errors when constant strings are passed to the function.

BOOLEAN isUpper(const string mystring) := BEGINC++
 size_t i=0;
 while (i < lenMystring)
 {
 if (!isupper((byte)mystring[i]))
 return false;
 i++;
 }
 return true;
ENDC++;
isUpper('JIM');

Parameters can also include streamed datasets.

If stream is specified on the dataset then the parameter is passed as an IRowStream. The next row from
the dataset is obtained by calling:

dataset->nextRow();

After it has been processed the row must be freed by calling

rtlReleaseRow(next);

For example:

traceDataset(STREAMED DATASET(r) ds, BOOLEAN isLocal = FALSE) := EMBED(C++)
#include <stdio.h>
#body
 for(;;)
 {
 const byte * next = (const byte *)ds->nextRow();
 if (!next)
 return;
 unsigned __int64 id = *(__uint64 *)(next);
 size32_t lenName = *(size32_t *)(next + sizeof(__uint64));
 const char * name = (char *)(next + sizeof(__uint64) + sizeof(size32_t));
 printf("id(%u) name(%.*s)\n", (unsigned)id, lenName, name);
 rtlReleaseRow(next);
 }
ENDEMBED;

If the result of a C++ function is a streamed dataset, then it needs to return an instance of an IRowStream
interface. The function will also be passed an extra implicit parameter:

IEngineRowAllocator * _resultAllocator

which is used to allocate the rows that are returned from the function.

For example:

// This function takes two streamed inputs and outputs the result of two values
// from the left multiplied together and added to a row from the right.

STREAMED DATASET(r) myDataset(STREAMED DATASET(r) ds1, STREAMED DATASET(r) ds2)
 := EMBED(C++ : activity)
#include <stdio.h>
#body
 class MyStreamInlineDataset : public RtlCInterface, implements IRowStream
 {

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

127

ECL Language Reference
Special Structures

 public:

 MyStreamInlineDataset(IEngineRowAllocator * _resultAllocator, IRowStream * _ds1,
 IRowStream * _ds2)
 : resultAllocator(_resultAllocator), ds1(_ds1), ds2(_ds2)
 {
 }
 RTLIMPLEMENT_IINTERFACE virtual const void *nextRow() override
 {
 const byte * next1a = (const byte *)ds1->nextRow();
 if (!next1a)
 return nullptr;
 const byte * next1b = (const byte *)ds1->nextRow();
 const byte * next2 = (const byte *)ds2->nextRow();
 if (!next1b || !next2)
 rtlFailUnexpected();
 unsigned __int64 value1a = *(const unsigned __int64 *)next1a;
 unsigned __int64 value1b = *(const unsigned __int64 *)next1b;
 unsigned __int64 value2 = *(const unsigned __int64 *)next2;
 rtlReleaseRow(next1a);
 rtlReleaseRow(next1b);
 rtlReleaseRow(next2);

 unsigned __int64 result = value1a * value1b + value2;
 RtlDynamicRowBuilder rowBuilder(resultAllocator);
 byte * row = rowBuilder.getSelf();
 *(__uint64 *)(row) = result;
 return rowBuilder.finalizeRowClear(sizeof(unsigned __int64));
 }
 virtual void stop() override
 {
 ds1->stop();
 ds2->stop();
 }
 protected:
 Linked<IEngineRowAllocator> resultAllocator;
 IRowStream * ds1;
 IRowStream * ds2;
 }; return new MyStreamInlineDataset(_resultAllocator, ds1, ds2);
ENDEMBED;

Note: If the resulting row does not have a fixed size, you should call:

byte * row = rowBuilder.ensureCapacity(<totalSize>, nullptr);

instead of:

byte * row = rowBuilder.getSelf();

This code uses a RtlDynamicRowBuilder which is a class used by the code generator. Instead of using the
RtlDynamicRowBuilder class, you could directly call resultAllocator->createRow().

When a data type is included in an input row, rather than being passed as a parameter, the format is the
same as the parameters, except that instead of having a pointer to the string etc., the string follows the 4-
byte length. The data in the row is not aligned; that is, it has packing of 1.

Available Options
#option pure By default, embedded C++ functions are assumed to have side-effects, which

means the generated code won't be as efficient as it might be since the calls
can't be shared. Adding #option pure inside the embedded C++ code causes
it to be treated as a pure function without side effects.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

128

ECL Language Reference
Special Structures

#option once Indicates the function has no side effects and is evaluated at query execution
time, even if the parameters are constant, allowing the optimizer to make more
efficient calls to the function in some cases.

#option action Indicates side effects, requiring the optimizer to keep all calls to the function.

#body Delimits the beginning of executable code. All code that precedes #body (such
as #include) is generated outside the function definition; all code that follows
it is generated inside the function definition.

Example:

//static int add(int x,int y) {
INTEGER4 add(INTEGER4 x, INTEGER4 y) := BEGINC++
 #option pure
 return x + y;
ENDC++;

OUTPUT(add(10,20));

//static void reverseString(size32_t & __lenResult,char * & __result,
// size32_t lenValue,char * value) {
STRING reverseString(STRING value) := BEGINC++
 size32_t len = lenValue;
 char * out = (char *)rtlMalloc(len);
 for (unsigned i= 0; i < len; i++)
 out[i] = value[len-1-i];
 __lenResult = len;
 __result = out;
ENDC++;
OUTPUT(reverseString('Kevin'));
// This is a function returning an unknown length string via the
// special reference parameters __lenResult and __result

//this function demonstrates #body, allowing #include to be used
BOOLEAN nocaseInList(STRING search,
 SET OF STRING values) := BEGINC++
#include <string.h>
#body
 if (isAllValues)
 return true;
 const byte * cur = (const byte *)values;
 const byte * end = cur + lenValues;
 while (cur != end)
 {
 unsigned len = *(unsigned *)cur;
 cur += sizeof(unsigned);
 if (lenSearch == len && memicmp(search, cur, len) == 0)
 return true;
 cur += len;
 }
 return false;
ENDC++;

//and another example, generating a variable number of Xes
STRING buildString(INTEGER4 value) := BEGINC++
 char * out = (char *)rtlMalloc(value);
 for (unsigned i= 0; i < value; i++)
 out[i] = 'X';
 __lenResult = value;
 __result = out;
ENDC++;

//examples of embedded, LINKCOUNTED, and STREAMED DATASETs

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

129

ECL Language Reference
Special Structures

inRec := { unsigned id };
doneRec := { unsigned4 execid };
out1rec := { unsigned id; };
out2rec := { real id; };

DATASET(doneRec) doSomethingNasty(DATASET(inRec) input) := BEGINC++
 __lenResult = 4;
 __result = rtlMalloc(8);
 *(unsigned *)__result = 91823;
ENDC++;

DATASET(out1Rec) extractResult1(doneRec done) := BEGINC++
 const unsigned id = *(unsigned *)done;
 const unsigned cnt = 10;
 __lenResult = cnt * sizeof(unsigned __int64);
 __result = rtlMalloc(__lenResult);
 for (unsigned i=0; i < cnt; i++)
 ((unsigned __int64 *)__result)[i] = id + i + 1;
ENDC++;

LINKCOUNTED DATASET(out2Rec) extractResult2(doneRec done) := BEGINC++
 const unsigned id = *(unsigned *)done;
 const unsigned cnt = 10;
 __countResult = cnt;
 __result = _resultAllocator->createRowset(cnt);
 for (unsigned i=0; i < cnt; i++)
 {
 size32_t allocSize;
 void * row = _resultAllocator->createRow(allocSize);
 *(double *)row = id + i + 1;
 __result[i] = (byte *)_resultAllocator->finalizeRow(allocSize, row, allocSize);
 }
ENDC++;

STREAMED DATASET(out1Rec) extractResult3(doneRec done) := BEGINC++
 class myStream : public IRowStream, public RtlCInterface
 {
 public:
 myStream(IEngineRowAllocator * _allocator, unsigned _id) : allocator(_allocator), id(_id), idx(0) {}
 RTLIMPLEMENT_IINTERFACE

 virtual const void *nextRow()
 {
 if (idx >= 10)
 return NULL;
 size32_t allocSize;
 void * row = allocator->createRow(allocSize);
 *(unsigned __int64 *)row = id + ++idx;
 return allocator->finalizeRow(allocSize, row, allocSize);
 }
 virtual void stop() {}
 private:
 Linked<IEngineRowAllocator> allocator;
 unsigned id;
 unsigned idx;

 };
 #body
 const unsigned id = *(unsigned *)done;
 return new myStream(_resultAllocator, id);
ENDC++;

ds := DATASET([1,2,3,4], inRec);

processed := doSomethingNasty(ds);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

130

ECL Language Reference
Special Structures

out1 := NORMALIZE(processed, extractResult1(LEFT), TRANSFORM(RIGHT));
out2 := NORMALIZE(processed, extractResult2(LEFT), TRANSFORM(RIGHT));
out3 := NORMALIZE(processed, extractResult3(LEFT), TRANSFORM(RIGHT));

SEQUENTIAL(OUTPUT(out1),OUTPUT(out2),OUTPUT(out3));

See Also: External Service Implementation, EMBED Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

131

ECL Language Reference
Special Structures

EMBED Structure
resulttype funcname (parameterlist) := EMBED(language [:TIME [(label)]]

code

ENDEMBED;

resulttype funcname (parameterlist) := EMBED(language, code [: TIME [(label)]]);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist A comma separated list of the parameters to pass to the function.

language The name of the programming language being embedded. A language support
module for that language must have been installed in your plugins directory.
Modules are provided for languages such as Java and Python. You can write
your own pluggable language support module for any language not already
supported by using the supplied ones as examples or starting points.

code The source code to embed.

TIME Tracks timing of an external function call or embedded source code and reports
them back as metrics to the user.

label Optional. A string constant containing the name to associate with the timer. If
omitted, the default is used.

The EMBED structure makes it possible to add in-line language code to your ECL. This is similar to the
BEGINC++ structure, but available for any language with a pluggable language support module installed,
such as Java and Python. Others may follow or people can write their own using the supplied ones as
templates/examples/starting points. This is not usable with Java code (use the IMPORT function for Java
code).

The parameter types that can be passed and returned will vary by language, but in general the simple scalar
types (INTEGER, REAL, STRING, UNICODE, BOOLEAN, and DATA) and SETs of those scalar types are
supported, so long as there is an appropriate data type in the language to map them to.

The first form of EMBED is the structure that must terminate with ENDEMBED. This may contain any code
in the supported language.

The second form of EMBED is a self-contained function. The code parameter contains all the code to
execute, making this useful only for very simple expressions.

You can use EMBED instead of BEGINC++ to embed C++ code and specify additional options (for example,
DISTRIBUTED) using this form:

myFunction(string name) := EMBED(C++ [: options])
 ... text
ENDEMBED

WARNING: This feature could create memory corruption and/or security issues, so great care and
forethought are advised--consult with Technical Support before using.

Examples:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

132

ECL Language Reference
Special Structures

//First form: a structure
IMPORT Python3 AS Python; //make Python language available

INTEGER addone(INTEGER p) := EMBED(Python :TIME('MyTime'))
Python code that returns one more than the value passed to it
if p < 10:
 return p+1
else:
 return 0
ENDEMBED;
addone(3);
addone(11);

//Second form: a function
IMPORT Python3 as Python;
INTEGER addtwo(INTEGER p) := EMBED(Python, 'p+2' : TIME('MyTime'));
addtwo(27);

See Also: BEGINC++ Structure, IMPORT, IMPORT function

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

133

ECL Language Reference
Special Structures

FUNCTION Structure
[resulttype] funcname (parameterlist) := FUNCTION

code

RETURN retval;

END;

resulttype The return value type of the function. If omitted, the type is implicit from the
retval expression.

funcname The ECL attribute name of the function.

parameterlist A comma separated list of the parameters to pass to the function. These are
available to all attributes defined in the FUNCTION's code.

code The local attribute definitions that comprise the function. These may not be
EXPORT or SHARED attributes, but may include actions (like OUTPUT).

RETURN Specifies the function's return value expression--the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTION structure allows you to pass parameters to a set of related attribute definitions. This makes
it possible to pass parameters to an attribute that is defined in terms of other non-exported attributes without
the need to parameterise all of those as well.

Side-effect actions contained in the code of the FUNCTION must have definition names that must be ref-
erenced by the WHEN function to execute.

Example:

//a coordinated set of 3 examples
IMPORT Std;
NameRec := RECORD
 STRING5 title := '';
 STRING20 fname := '';
 STRING20 mname := '';
 STRING20 lname := '';
 STRING5 name_suffix := '';
 STRING3 name_score := '';
END;
MyRecord := RECORD
 UNSIGNED id;
 STRING uncleanedName;
 NameRec Name;
END;
ds := DATASET([{1,'Mr. John Smith JR'},
 {2,'Mrs. Susie Samantha Jones 3'},
 {3,'Dr. Fred Taylor SR'}],MyRecord);

STRING73 CleanPerson73(STRING inputName) := FUNCTION
 suffix :=[' 0',' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9',
 ' J',' JR',' S',' SR'];
 InWords := Std.Str.CleanSpaces(inputName);
 HasSuffix := InWords[LENGTH(TRIM(InWords))-1 ..] IN suffix;
 WordCount := LENGTH(TRIM(InWords,LEFT,RIGHT)) -
 LENGTH(TRIM(InWords,ALL)) + 1;
 HasMiddle := WordCount = 5 OR (WordCount = 4 AND NOT HasSuffix) ;
 Sp1 := Std.Str.Find(InWords,' ',1);
 Sp2 := Std.Str.Find(InWords,' ',2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

134

ECL Language Reference
Special Structures

 Sp3 := Std.Str.Find(InWords,' ',3);
 Sp4 := Std.Str.Find(InWords,' ',4);
 STRING5 title := InWords[1..Sp1-1];
 STRING20 fname := InWords[Sp1+1..Sp2-1];
 STRING20 mname := IF(HasMiddle,InWords[Sp2+1..Sp3-1],'');
 STRING20 lname := MAP(HasMiddle AND NOT HasSuffix => InWords[Sp3+1..],
 HasMiddle AND HasSuffix => InWords[Sp3+1..Sp4-1],
 NOT HasMiddle AND NOT HasSuffix => InWords[Sp2+1..],
 NOT HasMiddle AND HasSuffix => InWords[Sp2+1..Sp3-1],
 '');
 STRING5 name_suffix := IF(HasSuffix,InWords[LENGTH(TRIM(InWords))-1..],'');
 STRING3 name_score := '';
 RETURN title + fname + mname + lname + name_suffix + name_score;
END;

//Example 1 - a transform to create a row from an uncleaned name
NameRec createRow(STRING inputName) := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
END;
myRecord t(myRecord l) := TRANSFORM
 SELF.Name := ROW(createRow(l.uncleanedName));
 SELF := l;
END;
y := PROJECT(ds, t(LEFT));
OUTPUT(y);

//Example 2 - an attribute using that transform to generate the row.
NameRec cleanedName(STRING inputName) := ROW(createRow(inputName));
myRecord t2(myRecord l) := TRANSFORM
 SELF.Name := cleanedName(l.uncleanedName);
 SELF := l;
END;
y2 := PROJECT(ds, t2(LEFT));
OUTPUT(y2);

//Example 3 = Encapsulate the transform inside the attribute by
// defining a FUNCTION.
NameRec cleanedName2(STRING inputName) := FUNCTION

 NameRec createRow := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
 END;

 RETURN ROW(createRow);
END;

myRecord t3(myRecord l) := TRANSFORM
 SELF.Name := cleanedName2(l.uncleanedName);
 SELF := l;
END;

y3 := PROJECT(ds, t3(LEFT));
OUTPUT(y3);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

135

ECL Language Reference
Special Structures

//***
//Example using MODULE structure to return multiple values from a FUNCTION
OperateOnNumbers(Number1, Number2) := FUNCTION
 result := MODULE
 EXPORT Multiplied := Number1 * Number2;
 EXPORT Differenced := Number1 - Number2;
 EXPORT Summed := Number1 + Number2;
 END;
 RETURN result;
END;

OUTPUT(OperateOnNumbers(23,22).Multiplied); //506
OUTPUT(OperateOnNumbers(23,22).Differenced); //1
OUTPUT(OperateOnNumbers(23,22).Summed); //45

//***
//a FUNCTION with side-effect Action
namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds1 := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds1,o);
END;
z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built
OUTPUT(z);

See Also: MODULE Structure, TRANSFORM Structure, WHEN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

136

ECL Language Reference
Special Structures

FUNCTIONMACRO Structure
[resulttype] funcname (parameterlist) := FUNCTIONMACRO

code

RETURN retval;

ENDMACRO;

resulttype The return value type of the function. If omitted, the type is implicit from the
retval expression.

funcname The ECL definition name of the function/macro.

parameterlist A comma separated list of names (tokens) of the parameters that will be
passed to the function/macro. These names are used in the code and retval
to indicate where the passed parameter values are substituted when the func-
tion/macro is used. Value types for these parameters are not allowed, but de-
fault values may be specified as string constants.

code The local definitions that comprise the function. These may not be EXPORT
or SHARED, but may include actions (like OUTPUT).

RETURN Specifies the return value expression--the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTIONMACRO structure is a code generation tool, like the MACRO structure, coupled with the
code encapsulation benefits of the FUNCTION structure. One advantage the FUNCTIONMACRO has over
the MACRO structure is that it may be called in an expression context, just like a FUNCTION would be.

Unlike the MACRO structure, #UNIQUENAME is not necessary to prevent internal definition name clashes
when the FUNCTIONMACRO is used multiple times within the same visibility scope. However, the LOCAL
keyword must be explicitly used within the FUNCTIONMACRO if a definition name in its code may also
have been defined outside the FUNCTIONMACRO and within the same visibility scope -- LOCAL clearly
identifies that the definition is limited to the code within the FUNCTIONMACRO.

Example:

This example demonstrates the FUNCTIONMACRO used in an expression context. It also shows how the
FUNCTIONMACRO may be called multiple times without name clashes from its internal definitions:

EXPORT Field_Population(infile,infield,compareval) := FUNCTIONMACRO
 c1 := COUNT(infile(infield=compareval));
 c2 := COUNT(infile);
 RETURN DATASET([{'Total Records',c2},
 {'Recs=' + #TEXT(compareval),c1},
 {'Population Pct',(INTEGER)(((c2-c1)/c2)* 100.0)}],
 {STRING15 valuetype,INTEGER val});
ENDMACRO;

ds1 := dataset([{'M'},{'M'},{'M'},{''},{''},{'M'},{''},{'M'},{'M'},{''}],{STRING1 Gender});
ds2 := dataset([{''},{'M'},{'M'},{''},{''},{'M'},{''},{''},{'M'},{''}],{STRING1 Gender});

OUTPUT(Field_Population(ds1,Gender,''));
OUTPUT(Field_Population(ds2,Gender,''));

This example demonstrates use of the LOCAL keyword to prevent name clashes with external definitions
within the same visibility scope as the FUNCTIONMACRO:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

137

ECL Language Reference
Special Structures

numPlus := 'this creates a syntax error without LOCAL in the FUNCTIONMACRO';
AddOne(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 1; //LOCAL required here
 RETURN numPlus;
ENDMACRO;

AddTwo(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 2; //LOCAL required here
 RETURN numPlus;
ENDMACRO;

numPlus;
AddOne(5);
AddTwo(8);

See Also: FUNCTION Structure, MACRO Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

138

ECL Language Reference
Special Structures

INTERFACE Structure
interfacename [(parameters)] := INTERFACE [(inherit)]

members;

END;

interfacename The ECL definition name of the interface.

parameters Optional. The input parameters to the interface.

inherit Optional. A comma-delimited list of INTERFACE structures whose members to
inherit. This may not be a passed parameter. Multiple inherited interfaces may
contain attributes with the same name if they are the same type and receive
the same parameters, but if those inherited members have different values
defined for them, the conflict must be resolved by overriding that member in
the current instance.

members Definitions, which may be EXPORTed or SHARED. These may be similar to
fields defined in a RECORD structure where only the type and name are de-
fined--the expression that defines the value may be left off (except in some
cases where the expression itself defines the type of definition, like TRANS-
FORM structures). If no default value is defined for a member, any MODULE
derived from the INTERFACE must define a value for that member before that
MODULE can be used. These may not include other INTERFACE or abstract
MODULE structures.

The INTERFACE structure defines a structured block of related members that may be passed as a single
parameter to complex queries, instead of passing each attribute individually. It is similar to a MODULE
structure with the VIRTUAL option, except errors are given for private (not SHARED or EXPORTed) member
definitions.

An INTERFACE is an abstract structure--a concrete instance must be defined before it can be used in a
query. A MODULE structure that inherits the INTERFACE and defines the values for the members creates
the concrete instance for use by the query.

Example:

HeaderRec := RECORD
 UNSIGNED4 RecID;
 STRING20 company;
 STRING25 address;
 STRING25 city;
 STRING2 state;
 STRING5 zip;
END;
HeaderFile := DATASET([{1,'ABC Co','123 Main','Boca Raton','FL','33487'},
 {2,'XYZ Co','456 High','Jackson','MI','49202'},
 {3,'ABC Co','619 Eaton','Jackson','MI','49202'},
 {4,'XYZ Co','999 Yamato','Boca Raton','FL','33487'},
 {5,'Joes Eats','666 Slippery Lane','Nether','SC','12345'}
],HeaderRec);

//define an interface
IHeaderFileSearch := INTERFACE
 EXPORT STRING20 company_val;
 EXPORT STRING2 state_val;
 EXPORT STRING25 city_val := '';
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

139

ECL Language Reference
Special Structures

//define a function that uses that interface
FetchAddress(IHeaderFileSearch opts) := FUNCTION

 //define passed values tests
 CompanyPassed := opts.company_val <> '';
 StatePassed := opts.state_val <> '';
 CityPassed := opts.city_val <> '';

 //define passed value filters
 NFilter := HeaderFile.Company = opts.company_val;
 SFilter := HeaderFile.State = opts.state_val;
 CFilter := HeaderFile.City = opts.city_val;

 //define the actual filter to use based on the passed values
 filter := MAP(CompanyPassed AND StatePassed AND CityPassed
 => NFilter AND SFilter AND CFilter,
 CompanyPassed AND StatePassed
 => NFilter AND SFilter ,
 CompanyPassed AND CityPassed
 => NFilter AND CFilter,
 StatePassed AND CityPassed
 => SFilter AND CFilter,
 CompanyPassed => NFilter ,
 StatePassed => SFilter ,
 CityPassed => CFilter,
 TRUE);
 RETURN HeaderFile(filter);
END;

//***
//then you can use the interface

InRec := {HeaderRec AND NOT [RecID,Address,Zip]};

//this MODULE creates a concrete instance
BatchHeaderSearch(InRec l) := MODULE(IHeaderFileSearch)
 EXPORT STRING20 company_val := l.company;
 EXPORT STRING2 state_val := l.state;
 EXPORT STRING25 city_val := l.city;
END;

//that can be used like this
FetchAddress(BatchHeaderSearch(ROW({'ABC Co','',''},InRec)));

//or we can define an input dataset
InFile := DATASET([{'ABC Co','Boca Raton','FL'},
 {'XYZ Co','Jackson','MI'},
 {'ABC Co','',''},
 {'XYZ Co','',''},
 {'Joes Eats','',''}
],InRec);

//and an output nested child structure
HeaderRecs := RECORD
 UNSIGNED4 Pass;
 DATASET(HeaderRec) Headers;
END;

//and allow PROJECT to run the query once for each record in InFile
HeaderRecs XF(InRec L, INTEGER C) := TRANSFORM
 SELF.Pass := C;
 SELF.Headers := FetchAddress(BatchHeaderSearch(L));
END;
batchHeaderLookup := PROJECT(InFile,XF(LEFT,COUNTER));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

140

ECL Language Reference
Special Structures

batchHeaderLookup;

See Also: MODULE Structure, LIBRARY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

141

ECL Language Reference
Special Structures

MACRO Structure
[resulttype] macroname (parameterlist) := MACRO

tokenstream;

ENDMACRO;

resulttype Optional. The result type of the macro. The only valid type is DATASET. If
omitted and the tokenstream contains no Attribute definitions, then the macro
is treated as returning a value (typically INTEGER or STRING).

macroname The name of the function the MACRO structure defines.

parameterlist A comma separated list of names (tokens) of the parameters that will be
passed to the macro. These names are used in the tokenstream to indicate
where the passed parameters are substituted when the macro is used. Value
types for these parameters are not allowed, but default values may be speci-
fied as string constants.

tokenstream The Attribute definitions or Actions that the macro will perform.

The MACRO structure makes it possible to create a function without knowing the value types of the pa-
rameters that will eventually be passed to it. The most common use would be performing functions upon
arbitrary datasets.

A macro behaves as if you had typed the tokenstream into the exact position you use it, using lexical sub-
stitution--the tokens defined in the parameterlist are substituted everywhere they appear in the tokenstream
by the text passed to the macro. This makes it entirely possible to write a valid MACRO definition that could
be called with a set of parameters that result in obscure compile time errors.

There are two basic type of macros: Value or Attribute. A Value macro does not contain any Attribute
definitions, and may therefore be used wherever the value type it will generate would be appropriate to use.
An Attribute macro does contain Attribute definitions (detected by the presence of the := in the tokenstream)
and may therefore only be used where an Attribute definition is valid (a line by itself) and one item in the
parameterlist should generally name the Attribute to be used to contain the result of the macro (so any code
following the macro call can make use of the result).

Example:

// This is a DATASET Value macro that results in a crosstab
DATASET CrossTab(File,X,Y) := MACRO
 TABLE(File,{X, Y, COUNT(GROUP)},X,Y)
ENDMACRO;
// and would be used something like this:
OUTPUT(CrossTab(Person,person.per_st,Person.per_sex))
// this macro usage is the equivalent of:
// OUTPUT(TABLE(Person,{person.per_st,Person.per_sex,COUNT(GROUP)},
// person.per_st,Person.per_sex)
//The advantage of using this macro is that it can be re-used to
// produce another cross-tab without recoding
// The following macro takes a LeftFile and looks up a field of it in
// the RightFile and then sets a field in the LeftFile indicating if
// the lookup worked.
IsThere(OutFile ,RecType,LeftFile,RightFile,LinkId ,SetField) := MACRO
 RecType Trans(RecType L, RecType R) := TRANSFORM
 SELF.SetField := IF(NOT R.LinkId,0,1);
 SELF := L;
 END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

142

ECL Language Reference
Special Structures

 OutFile := JOIN(LeftFile,
 RightFile,
 LEFT.LinkId=RIGHT.LinkId,
 Trans(LEFT,RIGHT),LEFT OUTER);
ENDMACRO;

// and would be used something like this:
MyRec := RECORD
 Person.per_cid;
 Person.per_st;
 Person.per_sex;
 Flag:=FALSE;
END;
MyTable1 := TABLE(Person(per_first_name[1]='R'),MyRec);
MyTable2 := TABLE(Person(per_first_name[1]='R',per_sex='F'),MyRec);

IsThere(MyOutTable,MyRec,MyTable1,MyTable2,per_cid,Flag)

 // This macro call generates the following code:
 // MyRec Trans(MyRec L, MyRec R) := TRANSFORM
 // SELF.Flag := IF(NOT R.per_cid ,0,1);
 // SELF := L;
 // END;
 // MyOutTable := JOIN(MyTable1,
 // MyTable2,
 // LEFT.per_cid=RIGHT.per_cid,
 // Trans(LEFT,RIGHT),
 // LEFT OUTER);

OUTPUT(MyOutTable);
//***
//This macro has defaults for its second and third parameters
MyMac(FirstParm,yParm='22',zParm='42') := MACRO
 FirstParm := yParm + zParm;
ENDMACRO;

// and would be used something like this:
 MyMac(Fred)
 // This macro call generates the following code:
 // Fred := 22 + 42;
 //***
 //This macro uses #EXPAND

MAC_join(attrname, leftDS, rightDS, linkflags) := MACRO
 attrname := JOIN(leftDS,rightDS,#EXPAND(linkflags));
ENDMACRO;
MAC_join(J1,People,Property,'LEFT.ID=RIGHT.PeopleID,LEFT OUTER')
//expands out to:
// J1 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID,LEFT OUTER);

See Also: TRANSFORM Structure, RECORD Structure, #UNIQUENAME, #EXPAND

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

143

ECL Language Reference
Special Structures

MODULE Structure
modulename [(parameters)] := MODULE [(inherit)] [, VIRTUAL] [, LIBRARY(interface)] [, FORWARD]

members;

END;

modulename The ECL definition name of the module.

parameters Optional. The parameters to make available to all the definitions.

inherit A comma-delimited list of INTERFACE or abstract MODULE structures on
which to base this instance. The current instance inherits all the members from
the base structures. This may not be a passed parameter.

members The definitions that comprise the module. These definitions may receive para-
meters, may include actions (such as OUTPUT), and may use the EXPORT or
SHARED scope types. These may not include INTERFACE or abstract MOD-
ULEs (see below). If the LIBRARY option is specified, the definitions must ex-
actly implement the EXPORTed members of the interface.

VIRTUAL Optional. Specifies the MODULE defines an abstract interface whose defini-
tions do not require values to be defined for them.

LIBRARY Optional. Specifies the MODULE implements a query library interface defini-
tion.

interface Specifies the INTERFACE that defines the parameters passed to the query
library. The parameters passed to the MODULE must exactly match the para-
meters passed to the specified interface.

FORWARD Optional. Delays processing of definitions until they are used. Adding ,FOR-
WARD to a MODULE delays processing of definitions within the module until
they are used. This has two main effects: It prevents pulling in dependencies
for definitions that are never used and it allows earlier definitions to refer to
later definitions. Note: Circular references are still illegal.

The MODULE structure is a container that allows you to group related definitions. The parameters passed
to the MODULE are shared by all the related members definitions. This is similar to the FUNCTION structure
except that there is no RETURN.

Definition Visibility Rules
The scoping rules for the members are the same as those previously described in the Definition Visibility
discussion:

• Local definitions are visible only through the next EXPORT or SHARED definition (including members of
the nested MODULE structure, if the next EXPORT or SHARED definition is a MODULE).

• SHARED definitions are visible to all subsequent definitions in the structure (including members of any
nested MODULE structures) but not outside of it.

• EXPORT definitions are visible within the MODULE structure (including members of any subsequent
nested MODULE structures) and outside of it .

Any EXPORT members may be referenced using an additional level of standard object.property syntax. For
example, assuming the EXPORT MyModuleStructure MODULE structure is contained in an ECL Reposi-

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

144

ECL Language Reference
Special Structures

tory module named MyModule and that it contains an EXPORT member named MyDefinition, you would
reference that definition as MyModule.MyModuleStructure.MyDefinition:

MyMod := MODULE
 SHARED x := 88;
 y := 42;
 EXPORT InMod := MODULE //nested MODULE
 EXPORT Val1 := x + 10;
 EXPORT Val2 := y + 10;
 END;
END;

OUTPUT(MyMod.InMod.Val1);
OUTPUT(MyMod.InMod.Val2);

MODULE Side-Effect Actions
Side-effect Actions are allowed in the MODULE only by using the WHEN function, as in this example:

//An Example with a side-effect action
EXPORT customerNames := MODULE
 EXPORT Layout := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 Act := OUTPUT('customer file used by user <x>');
 EXPORT File := WHEN(DATASET([{'x','y',22}],Layout),Act);
END;
BOOLEAN doIt := TRUE : STORED('doIt');
IF (doIt, OUTPUT(customerNames.File));
//This code produces two results: the dataset, and the string

Concrete vs. Abstract (VIRTUAL) Modules
A MODULE may contain a mixture of VIRTUAL and non-VIRTUAL members. The rules are:

• ALL members are VIRTUAL if the MODULE has the VIRTUAL option or is an INTERFACE

• A member is VIRTUAL if it is declared using the EXPORT VIRTUAL or SHARED VIRTUAL keywords

• A member is VIRTUAL if the definition of the same name in the inherited module is VIRTUAL.

• Some members can never be virtual -- RECORD structures.

All EXPORTed and SHARED members of an inherited abstract module can be overridden by re-defining
them in the current instance, whether that current instance is abstract or concrete. Overridden definitions
must exactly match the type and parameters of the inherited members. Multiple inherited interfaces may
contain definitions with the same name if they are the same type and receive the same parameters, but if
those inherited members have different values defined for them, the conflict must be resolved by overriding
that member in the current instance.

LIBRARY Modules
A MODULE with the LIBRARY option defines a related set of functions meant to be used as a query library
(see the LIBRARY function and BUILD action discussions). There are several restrictions on what may be
included in a query library. They are:

• It may not contain side-effect actions (like OUTPUT or BUILD)

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

145

ECL Language Reference
Special Structures

• It may not contain definitions with workflow services attached to them (such as PERSIST, STORED,
SUCCESS, etc.)

It may only EXPORT:

• Dataset/recordset definitions

• Datarow definitions (such as the ROW function)

• Single-valued and Boolean definitions

And may NOT export:

• Actions (like OUTPUT or BUILD)

• TRANSFORM functions

• Other MODULE structures

• MACRO definitions

Example:

namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
END;
namesTable := DATASET([{'Smith','Sue',72},
 {'Jones','Joe',32},
 {'Jones','Fred',82}],namesRecord);

filterDataset1(STRING search, BOOLEAN onlyOldies) := MODULE
 f := namesTable; //local to the "g" definition
 SHARED g := IF (onlyOldies, f(age >= 65), f);
 //SHARED = visible only within the structure
 EXPORT included := g(surname = search);
 EXPORT excluded := g(surname <> search);
 //EXPORT = visible outside the structure
END;
filtered1 := filterDataset1('Smith', TRUE);
OUTPUT(filtered1.included,,NAMED('Included1'));
OUTPUT(filtered1.excluded,,NAMED('Excluded1'));

//same result, different coding style:
filterDataset2(BOOLEAN onlyOldies) := MODULE
 f := namesTable;
 SHARED g := IF (onlyOldies, f(age >= 65), f);
 EXPORT included(STRING search) := g(surname = search);
 EXPORT excluded(STRING search) := g(surname <> search);
END;
filtered2 := filterDataset2(TRUE);
OUTPUT(filtered2.included('Smith'),,NAMED('Included2'));
OUTPUT(filterDataset2(true).excluded('Smith'),,NAMED('Excluded2'));

//VIRTUAL examples
Mod1 := MODULE,VIRTUAL //a fully abstract module
 EXPORT val := 1;
 EXPORT func(INTEGER sc) := val * sc;
END;

Mod2 := MODULE(Mod1) //instance
 EXPORT val := 3; //a concete member, overriding default value

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

146

ECL Language Reference
Special Structures

 //while func remains abstract
END;

Mod3 := MODULE(Mod1) //a fully concete instance
 EXPORT func(INTEGER sc) := val + sc; //overrides inherited func
END;
OUTPUT(Mod2.func(5)); //result is 15
OUTPUT(Mod3.func(5)); //result is 6

//FORWARD example
MyModule := MODULE, FORWARD
 EXPORT INTEGER foo := bar; //forward reference
 EXPORT INTEGER bar := 42;
END;

OUTPUT(MyModule.foo);

See Also: FUNCTION Structure, Definition Visibility, INTERFACE Structure, LIBRARY, BUILD

TRANSFORM Structure
resulttype funcname (parameterlist) := TRANSFORM [, SKIP(condition)]

[locals]

SELF.outfield := transformation;

END;

TRANSFORM(resulttype, assignments)

TRANSFORM(datarow)

resulttype The name of a RECORD structure Attribute that specifies the output format
of the function. You may use TYPEOF here to specify a dataset. Any implicit
relationality of the input dataset is not inherited.

funcname The name of the function the TRANSFORM structure defines.

parameterlist A comma separated list of the value types and labels of the parameters that
will be passed to the TRANSFORM function. These are usually the dataset
records or COUNTER parameters but are not limited to those.

SKIP Optional. Specifies the condition under which the TRANSFORM function op-
eration is skipped.

condition A logical expression defining under what circumstances the TRANSFORM op-
eration does not occur. This may use data from the parameterlist in the same
manner as a transformation expression.

locals Optional. Definitions of local Attributes useful within the TRANSFORM func-
tion. These may be defined to receive parameters and may use any parame-
ters passed to the TRANSFORM.

SELF Specifies the resulting output recordset from the TRANSFORM.

outfield The name of a field in the resulttype structure.

transformation An expression specifying how to produce the value for the outfield. This may
include other TRANSFORM function operations (nested transforms).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

147

ECL Language Reference
Special Structures

assignments A semi-colon delimited list of SELF.outfield:= transformation definitions.

datarow A single record to transform, typically the keyword LEFT.

The TRANSFORM structure makes operations that must be performed on entire datasets (such as a JOIN)
and any iterative type of record processing (PROJECT, ITERATE, etc.), possible. A TRANSFORM defines
the specific operations that must occur on a record-by-record basis. It defines the function that is called each
time the operation that uses the TRANSFORM needs to process record(s). One TRANSFORM function
may be defined in terms of another, and they may be nested.

The TRANSFORM structure specifies exactly how each field in the output record set is to receive its value.
That result value may simply be the value of a field in an input record set, or it may be the result of some
complex calculation or conditional expression evaluation.

The TRANSFORM structure itself is a generic tool; each operation that uses a TRANSFORM function de-
fines what its TRANSFORM needs to receive and what basic functionality it should provide. Therefore, the
real key to understanding TRANSFORM structures is in understanding how it is used by the calling function
-- each function that uses a TRANSFORM documents the type of TRANSFORM required to accomplish the
goal, although the TRANSFORM itself may also provide extra functionality and receive extra parameters
beyond those required by the operation itself.

The SKIP option specifies the condition that results in no output from that iteration of the TRANSFORM.
However, COUNTER values are incremented even when SKIP eliminates generating the current record.

Transformation Attribute Definitions
The attribute definitions inside the TRANSFORM structure are used to convert the data passed in as para-
meters to the output resulttype format. Every field in the resulttype record layout must be fully defined in the
TRANSFORM. You can explicitly define each field, using the SELF.outfield := transformation; expression,
or you can use one of these shortcuts:

SELF := [];

clears all fields in the resulttype output that have not previously been defined in the transform function,
while this form:

SELF.outfield := []; //the outfield names a child DATASET in
 // the resulttype RECORD Structure

clears only the child fields in the outfield, and this form:

SELF := label; //the label names a RECORD structure parameter
// in the parameterlist

defines the output for each field in the resulttype output format that has not previously been defined as
coming from the label parameter's matching named field.

You may also define local attributes inside the TRANSFORM structure to better organize the code. These
local attributes may receive parameters.

TRANSFORM Functions
This form of TRANSFORM must be terminated by the END keyword. The resulttype must be specified,
and the function itself takes parameters in the parameterlist. These parameters are typically RECORD
structures, but may be any type of parameter depending upon the type of TRANSFORM function the using
function expects to call. The exact form a TRANSFORM function must take is always directly associated
with the operation that uses it.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

148

ECL Language Reference
Special Structures

Example:

Ages := RECORD
 AgedRecs.id;
 AgedRecs.id1;
 AgedRecs.id2;
END;
SequencedAges := RECORD
 Ages;
 INTEGER4 Sequence := 0;
END;

SequencedAges AddSequence(AgedRecs L, INTEGER C) :=
 TRANSFORM, SKIP(C % 2 = 0) //skip even recs
 INTEGER1 rangex(UNSIGNED4 divisor) := (l.id DIV divisor) % 100;
 SELF.id1 := rangex(10000);
 SELF.id2 := rangex(100);
 SELF.Sequence := C;
 SELF := L;
END;

SequencedAgedRecs := PROJECT(AgedRecs, AddSequence(LEFT,COUNTER));
//Example of defining a TRANSFORM function in terms of another
namesIdRecord assignId(namesRecord l, UNSIGNED value) := TRANSFORM
 SELF.id := value;
 SELF := l;
END;

assignId1(namesRecord l) := assignId(l, 1);
 //creates an assignId1 TRANSFORM that uses assignId
assignId2(namesRecord l) := assignId(l, 2);
 //creates an assignId2 TRANSFORM that uses assignId

Inline TRANSFORMs
This form of TRANSFORM is used in-line within the operation that uses it. The resulttype must be specified
along with all the assignments. This form is mainly for use where the transform assignments are trivial (such
as SELF := LEFT;).

Example:

namesIdRecord assignId(namesRecord L) := TRANSFORM
 SELF := L; //more like-named fields across
 SELF := []; //clear all other fields
END;

projected1 := PROJECT(namesTable, assignId(LEFT));
projected2 := PROJECT(namesTable, TRANSFORM(namesIdRecord,
 SELF := LEFT;
 SELF := []));
//projected1 and projected2 do the same thing

Shorthand Inline TRANSFORMs
This form of TRANSFORM is a shorthand version of Inline TRANSFORMs. In this form,

TRANSFORM(LEFT)

is directly equivalent to

TRANSFORM(RECORDOF(LEFT), SELF := LEFT)

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

149

ECL Language Reference
Special Structures

namesIdRecord assignId(namesRecord L) := TRANSFORM
 SELF := L; //move like-named fields across
END;
projected1 := PROJECT(namesTable, assignId(LEFT));
projected2 := PROJECT(namesTable, TRANSFORM(namesIdRecord,
 SELF := LEFT));
projected3 := PROJECT(namesTable, TRANSFORM(LEFT));
//projected1, projected2, and projected3 all do the same thing

See Also: RECORD Structure, RECORDOF, TYPEOF, JOIN, PROJECT, ITERATE, ROLLUP, NOR-
MALIZE, DENORMALIZE, FETCH, PARSE, ROW

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

150

ECL Language Reference
Built-in Functions and Actions

Built-in Functions and Actions

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

151

ECL Language Reference
Built-in Functions and Actions

ABS
ABS(expression)

expression The value (REAL or INTEGER) for which to return the absolute value.

Return: ABS returns a single value of the same type as the expression.

The ABS function returns the absolute value of the expression (always a non-negative number).

Example:

AbsVal1 := ABS(1); // returns 1
AbsVal2 := ABS(-1); // returns 1
OUTPUT(AbsVal1);
OUTPUT(AbsVal2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

152

ECL Language Reference
Built-in Functions and Actions

ACOS
ACOS(cosine)

cosine The REAL cosine value for which to find the arccosine.

Return: ACOS returns a single REAL value.

The ACOS function returns the arccosine (inverse) of the cosine, in radians.

Example:

Deg2Rad := 0.0174532925199; //number of radians in a degree
cosineAngle := 0.75;
acos(cosineAngle) * Deg2Rad;

See Also: COS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

153

ECL Language Reference
Built-in Functions and Actions

AGGREGATE
AGGREGATE(recordset, resultrec,maintransform [, mergetransform (RIGHT1,RIGHT2) | groupingfields]
[, LOCAL | FEW | MANY] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process.

resultrec The RECORD structure of the result record set.

maintransform The TRANSFORM function to call for each matching pair of records in the recordset.
This is implicitly a local operation on each node.

mergetransform Optional. The TRANSFORM function to call to globally merge the result records from
the maintransform. If omitted, the compiler will attempt to deduce the merge from the
maintransform.

groupingfields Optional. A comma-delimited list of fields in the recordset to group by. Each field must
be prefaced with the keyword LEFT. If omitted, then all records match.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE. Valid only if the mergetrans-
form is omitted.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This
allows optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in more than 10,000 records.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: AGGREGATE returns a record set.

The AGGREGATE function is similar to ROLLUP except its output format does not need to match the input
format. It also has similarity to TABLE in that the groupingfields (if present) determine the matching records
such that you will get one result for each unique value of the groupingfields. The input recordset does not
need to have been sorted by the groupingfields.

The operation is implicitly local, in that the maintransform is called to process records locally on each node,
and the result records on each node are then merged to produce the global result.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

154

ECL Language Reference
Built-in Functions and Actions

TRANSFORM Function Requirements - AGGREGATE
The maintransform must take at least two parameters: a LEFT record of the same format as the input
recordset and a RIGHT record of the same format as the resultrec. The format of the resulting record set
must be the resultrec. LEFT refers to the next input record and RIGHT the result of the previous transform.

The mergetransform must take at least two parameters: RIGHT1 and RIGHT2 records of the same format
as the resultrec. The format of the resulting record set must be the resultrec. RIGHT1 refers to the result of
the maintransform on one node and RIGHT2 the result of the maintransform on another.

The mergetransform is generated for expressions of the form:

 SELF.x := <RIGHT.x <op> f(LEFT)
 SELF.x := f(LEFT) <op> RIGHT.x

where the <op> is: MAX, MIN, SUM, +, &, |, ^, *

How AGGREGATE Works
In the maintransform, LEFT refers to the next input record and RIGHT the result of the previous transform.

There are 4 interesting cases:

(a) If no records match (and the operation isn't grouped), the output is a single record with all the fields
set to blank values.

(b) If a single record matches, the first record that matches calls the maintransform as you would expect.

(c) If multiple records match on a single node, subsequent records that match call the maintransform but any
field expression in the maintransform that does not reference the RIGHT record is not processed. Therefore
the value for that field is set by the first matching record matched instead of the last.

(d) If multiple records match on multiple nodes, then step (c) performs on each node, and then the summary
records are merged. This requires a mergetransform that takes two records of type RIGHT. Whenever
possible the code generator tries to deduce the mergetransform from the maintransform. If it can't, then the
user will need to specify one.

//Example 1: Produce a list of box contents by concatenating a string:
IMPORT Std;
inRec := RECORD
 UNSIGNED box;
 STRING text{MAXLENGTH(100)};
END;
inds := DATASET([{1,'Fred1'},{1,'Freddy1'},{1,'FredJon1'},
 {3,'Fred3'},{3,'Freddy3'},{3,'FredJon3'},
 {4,'Fred4'},{4,'Freddy4'},{4,'FredJon4'},
 {2,'Freddi'},{2,'Fredrik'}], inRec,DISTRIBUTED);
outRec := RECORD
 UNSIGNED box;
 STRING contents{MAXLENGTH(200)};
END;
outRec t1(inds l, outRec r) := TRANSFORM
 SELF.box := l.box;
 SELF.contents:= r.contents +IF(r.contents <> '', ',', '') +l.text +'-' +(Std.System.ThorLib.Node()+1);
END;

outRec t2(outRec r1, outRec r2) := TRANSFORM
 SELF.box := r1.box;
 SELF.contents := r1.contents + '::' + r2.contents;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

155

ECL Language Reference
Built-in Functions and Actions

END;
OUTPUT(AGGREGATE(inds, outRec, t1(LEFT, RIGHT), t2(RIGHT1, RIGHT2), LEFT.box));
//because there is a "group by" field, this will never call the second TRANSFORM
//because "group by" puts all grouped recs on a single node
//and it produces one result rec for each unique "group by" value

OUTPUT(AGGREGATE(inds, outRec, t1(LEFT, RIGHT), t2(RIGHT1, RIGHT2)));
//without the "group by" field, this calls the second TRANSFORM on a multi-node cluster
//and the second TRANSFORM produces a single result record after merging the results from
//each node

//Example 2: A PIGMIX style grouping operation:
inRecord := RECORD
 UNSIGNED box;
 STRING text{MAXLENGTH(10)};
END;
inTable := DATASET([{1,'Fred'},{1,'Freddy'},
 {2,'Freddi'},{3,'Fredrik'},{1,'FredJon'}], inRecord);

outRecord2 := RECORD
 UNSIGNED box;
 DATASET(inRecord) items;
END;
outRecord2 t3(inRecord l, outRecord2 r) := TRANSFORM
 SELF.box := l.box;
 SELF.items:= r.items + l;
END;
OUTPUT(AGGREGATE(inTable, outRecord2, t3(LEFT, RIGHT), LEFT.box));

See Also: TRANSFORM Structure, RECORD Structure, ROLLUP, TABLE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

156

ECL Language Reference
Built-in Functions and Actions

ALLNODES
ALLNODES(operation)

operation The name of an attribute or in-line code that results in a DATASET
or INDEX.

Return: ALLNODES returns a record set or index.

The ALLNODES function specifies that the operation is performed on all nodes in parallel. Available for
use only in Roxie.

Example:

ds := ALLNODES(JOIN(SomeData,LOCAL(SomeIndex), LEFT.ID = RIGHT.ID));

See Also: THISNODE, LOCAL, NOLOCAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

157

ECL Language Reference
Built-in Functions and Actions

APPLY
[attrname :=] APPLY(dataset, actionlist [, BEFORE(actionlist)] [, AFTER(actionlist [, UNORDERED |
ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name
)])])

attrname Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attrname is used as an action.

dataset The set of records to apply the action to. This must be the name of a physical dataset
of a type that supports this operation.

actionlist A comma-delimited list of the operations to perform on the dataset. Typically, this is an
external service (see SERVICE Structure). This may not be an OUTPUT or any function
that triggers a child query.

BEFORE Specifies executing the enclosed actionlist before the first dataset row is processed. Not
yet implemented in Thor, valid only in hthor and Roxie.

AFTER Specifies executing the enclosed actionlist after the last dataset row is processed. Not
yet implemented in Thor, valid only in hthor and Roxie.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The APPLY action performs all the specified actions in the actionlist on each record of the nominated
dataset. The actions execute in the order they appear in the actionlist.

Example:

EXPORT x := SERVICE
 echo(const string src):library='myfuncs',entrypoint='rtlEcho';
END;
APPLY(person,x.echo(last_name + ':' + first_name));
 // concatenate each person's lastname and firstname and echo it

See Also: SERVICE Structure, DATASET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

158

ECL Language Reference
Built-in Functions and Actions

ASCII
ASCII(recordset [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(
numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: ASCII returns a set of records.

The ASCII function returns the recordset with all STRING fields translated from EBCDIC to ASCII.

Example:

AsciiRecs := ASCII(SomeEBCDICInput);

See Also: EBCDIC

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

159

ECL Language Reference
Built-in Functions and Actions

ASIN
ASIN(sine)

sine The REAL sine value for which to find the arcsine.

Return: ASIN returns a single REAL value.

The ASIN function returns the arcsine (inverse) of the sine, in radians.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
SineAngle := .25;
ArcSine := ASIN(SineAngle)*Rad2Deg;
OUTPUT(ArcSine); // degrees

See Also: ACOS, COS, SIN, TAN, ATAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

160

ECL Language Reference
Built-in Functions and Actions

ASSERT
ASSERT(condition [, message] [, FAIL] [, CONST])

ASSERT(recset, condition [, message] [, FAIL] [, CONST] [, UNORDERED | ORDERED(bool)] [,
STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

ASSERT(recset, assertlist [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

condition The logical expression that should be always be true.

message Optional. The error to display in the workunit. If omitted, a message is
generated from the approximate location in the code and the condition
being checked.

FAIL Optional. Specifies an exception is generated, immediately terminat-
ing the workunit.

CONST Optional. Specifies the condition is evaluated during code generation.

recset The set of records for which to check the condition against each
record.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When
True, specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported
algorithms for the SORT function's STABLE and UNSTABLE options.

assertlist A comma-delimited list of ASSERTs of the first form, used to check
multiple conditions against each record in the recset.

The ASSERT action evaluates the condition, and if false, posts the message in the workunit. The workunit
terminates immediately if the FAIL option is present.

Form one is the scalar form, evaluating the condition once. Form two evaluates the condition once for each
record in the recset. Form three is a variant of form two that nests multiple form one ASSERTs so that each
condition is checked against each record in the recset.

Example:

val1 := 1;
val2 := 1;
val3 := 2;
val4 := 2 : STORED('val4');
ASSERT(val1 = val2);
ASSERT(val1 = val2, 'Abc1');
ASSERT(val1 = val3);
ASSERT(val1 = val3, 'Abc2');

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

161

ECL Language Reference
Built-in Functions and Actions

ASSERT(val1 = val4);
ASSERT(val1 = val4, 'Abc3');
ds := DATASET([1,2],{INTEGER val1}) : GLOBAL;
 // global stops advanced constant folding (if ever done)
ds1 := ASSERT(ds, val1 = val2);
ds2 := ASSERT(ds1, val1 = val2, 'Abc4');
ds3 := ASSERT(ds2, val1 = val3);
ds4 := ASSERT(ds3, val1 = val3, 'Abc5');
ds5 := ASSERT(ds4, val1 = val4);
ds6 := ASSERT(ds5, val1 = val4, 'Abc6');
OUTPUT(ds6);
ds7 := ASSERT(ds(val1 != 99),
 ASSERT(val1 = val2),
 ASSERT(val1 = val2, 'Abc7'),
 ASSERT(val1 = val3),
 ASSERT(val1 = val3, 'Abc8'),
 ASSERT(val1 = val4),
 ASSERT(val1 = val4, 'Abc9'));
OUTPUT(ds7);
rec := RECORD
 INTEGER val1;
 STRING text;
END;
rec t(ds l) := TRANSFORM
 ASSERT(l.val1 <= 3);
 SELF.text := CASE(l.val1,1=>'One',2=>'Two',3=>'Three','Zero');
 SELF := l;
END;
OUTPUT(PROJECT(ds, t(LEFT)));

See Also: FAIL, ERROR

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

162

ECL Language Reference
Built-in Functions and Actions

ASSTRING
ASSTRING(bitmap)

bitmap The value to treat as a string.

Return: ASSTRING returns a single STRING value.

The ASSTRING function returns the bitmap as a string. This is equivalent to TRANSFER(bitmap,STRINGn)
where n is the same number of bytes as the data in the bitmap.

Example:

INTEGER1 MyInt := 65; //MyInt is an integer whose value is 65
MyVal1 := ASSTRING(MyInt); //MyVal1 is "A" (ASCII 65)
OUTPUT(MyVal1);
 // this is directly equivalent to:
 // STRING1 MyVal1 := TRANSFER(MyInt,STRING1);INTEGER1 MyVal3 := (INTEGER)MyVal1;
 //MyVal3 is 0 (zero) because "A" is not a numeric character

See Also: TRANSFER, Type Casting

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

163

ECL Language Reference
Built-in Functions and Actions

ATAN
ATAN(tangent)

tangent The REAL tangent value for which to find the arctangent.

Return: ATAN returns a single REAL value.

The ATAN function returns the arctangent (inverse) of the tangent, in radians.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
TangentAngle := 57.74;
ArcTangent := ATAN(TangentAngle) * Rad2Deg;
OUTPUT(ArcTangent);

See Also: ATAN2, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

164

ECL Language Reference
Built-in Functions and Actions

ATAN2
ATAN2(y, x)

y The REAL numerator value for the tangent.

x The REAL denominator value for the tangent.

Return: ATAN2 returns a single REAL value.

The ATAN2 function returns the arctangent (inverse) of the calculated tangent, in radians. This is similar to
the ATAN function but more accurate and handles the situations where x or y is zero.

Example:

// get the value of tan-1(5.0 / 2.0)
TangentNumerator := 5.0;
TangentDenominator:=2.0;
ArcTangent := ATAN2(TangentNumerator, TangentDenominator);
OUTPUT(ArcTangent); //1.190289949682532

See Also: ATAN, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

165

ECL Language Reference
Built-in Functions and Actions

AVE
AVE(recordset, value [, expression] [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

AVE(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the keyword GROUP to indicate averaging the field values in a group.

value The expression to find the average value of.

expression Optional. A logical expression indicating which records to include in the average. Valid
only when the recordset parameter is the keyword GROUP to indicate averaging the
elements in a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

valuelist A comma-delimited list of expressions to find the average value of. This may also be
a SET of values.

Return: AVE returns a single value.

The AVE function either returns the average value (arithmetic mean) from the specified recordset or the
valuelist. It is defined to return zero if the recordset is empty.

Example:

AvgVal1 := AVE(4,8,16,2,1); //returns 6.2
SetVals := [4,8,16,2,1];
AvgVal2 := AVE(SetVals); //returns 6.2
OUTPUT(AvgVal1);
OUTPUT(AvgVal2);

See Also: MIN, MAX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

166

ECL Language Reference
Built-in Functions and Actions

BUILD
[attrname :=] BUILD(baserecset, [indexrec] , indexfile [, options]);

[attrname :=] BUILD(baserecset, keys, payload, indexfile [, options]);

[attrname :=] BUILD(indexdef [,indexfile] [, options]);

[attrname :=] BUILD(indexdef, dataset, [, options]);

BUILD(library);

attrname Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attrname is used as an action.

baserecset The set of data records for which the index file will be created. This may be a record set
derived from the base data with the key fields and file position.

indexrec Optional. The RECORD structure of the fields in the indexfile that contains key and file po-
sition information for referencing into the baserecset. Field names and types must match
the baserecset fields (REAL and DECIMAL value type fields are not supported). This may
also contain additional fields not present in the baserecset (computed fields). If omitted,
all fields in the baserecset are used. The last field must be the name of an UNSIGNED8
field defined using the {VIRTUAL(filepposition)} field modifier in the DATASET declara-
tion of the baserecset.

keys The RECORD structure of key fields that reference into the baserecset (the "search
terms" for the INDEX). Key fields may be baserecset fields or computed fields. REAL
and DECIMAL types are not supported as "search term" fields. If omitted, all fields in the
baserecset are used. This RECORD structure is typically defined inline within the BUILD
using curly braces ({}), but may also be a separately defined RECORD structure. If the
RECORD structure is separately defined it must meet the same requirements as used
by the TABLE() function (the RECORD structure must define the type, name, and source
of the data for each field), otherwise the BUILD action will not syntax check.

payload The RECORD structure of the indexfile that contains additional fields not used as "search
term" keys. This may contain fields from the baserecordset and/or computed fields. If
the name of the baserecset is in this structure, it specifies "all other fields not already
named in the keys parameter" are added. The payload fields do not take up space in the
non-leaf nodes of the index and cannot be referenced in a KEYED() filter clause. Any
field with the {BLOB} modifier (to allow more than 32K of data per index entry) is stored
within the indexfile, but not with the rest of the record; accessing the BLOB data requires
an additional seek. This RECORD structure is typically defined inline within the INDEX
using curly braces ({}), but may also be a separately defined RECORD structure. If the
RECORD structure is separately defined it must meet the same requirements as used
by the TABLE() function (the RECORD structure must define the type, name, and source
of the data for each field), otherwise the BUILD action will not syntax check.

indexfile A string constant containing the logical filename of the index to produce. See the Scope
& Logical Filenames article for more on logical filenames.

options Optional. One or more of the options listed below.

indexdef The name of the INDEX attribute to build.

dataset The name of the DATASET to use when you omit the base dataset parameter from the
INDEX definition.

library The name of a MODULE attribute with the LIBRARY option.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

167

ECL Language Reference
Built-in Functions and Actions

The first four forms of the BUILD action create index files. Indexes are automatically compressed, minimizing
overhead associated with using indexed record access. The keyword BUILDINDEX may be used in place
of BUILD in these forms.

The fifth form creates an external query library--a workunit that implements the specified library. This is
similar to creating a .DLL in Windows programming, or a .SO in Linux.

Index BUILD Options
The following options are available on all three INDEX forms of BUILD (only):

[, CLUSTER (target)] | [, PLANE (targetPlane)] [, SORTED] [, DISTRIBUTE(key) [, MERGE
]][, DATASET(basedataset)] [, OVERWRITE] [, UPDATE][,EXPIRE([days])][, FEW] [, FILE-
POSITION(false)] [, LOCAL] [, NOROOT] [, DISTRIBUTED][, COMPRESSED(option)] [, WIDTH(nodes
)] [, DEDUP][,SKEW(limit[, target]) [, THRESHOLD(size)]] [, MAXLENGTH[(value)]]][, UNORDERED
| ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name
)][, SET (option, value)]

CLUSTER Specifies writing the indexfile to the specified list of target clusters. If omitted,
the indexfile is written to the cluster on which the workunit executes. The num-
ber of physical file parts written to disk is always determined by the number of
nodes in the cluster on which the workunit executes, regardless of the number
of nodes on the target cluster(s) unless the WIDTH option is also specified.
Use this option for bare-metal deployments.

target A comma-delimited list of string constants containing the names of the clusters
to write the indexfile to. The names must be listed as they appear on the ECL
Watch Activity page or returned by the Std.System.Thorlib.Group() function,
optionally with square brackets containing a comma-delimited list of node-
numbers (1-based) and/or ranges (specified with a dash, as in n-m) to indicate
the specific set of nodes to write to.

PLANE Specifies writing the indexfile to the specified list of target planes. If omitted,
the indexfile is written to the default plane. Planes are used by containerized
systems, but since bare-metal clusters are implicitly backed with a plane with
the same name, you can use PLANE('clustername') for bare-metal deploy-
ments.

targetPlane A comma-delimited list of string constants containing the names of the
plane(s) to write the indexfile to. The targetPlane names must be listed as they
are defined in the deployment.

SORTED Specifies that the baserecset is already sorted, implying that the automatic
sort based on all the indexrec fields is not required before the index is created.

DISTRIBUTE Specifies building the indexfile based on the distribution of the key.

key The name of an existing INDEX attribute definition.

MERGE Optional. Specifies merging the resulting index into the specified key.

DATASET This is only needed when the baserecset is the result of an operation (such
as a JOIN) whose result makes it ambiguous as to which physical dataset is
being indexed (in other words, use this option only when you receive an error
that it cannot be deduced). Naming the basedataset ensures that the proper
record links are used in the index.

basedataset The name of the DATASET attribute from which the baserecset is derived.

OVERWRITE Specifies overwriting the indexfile if it already exists.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

168

ECL Language Reference
Built-in Functions and Actions

UPDATE Specifies that the file should be rewritten only if the code or input data has
changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted
after the specified number of days since the file was read.

FILEPOSITION Optional. If flag is FALSE, prevents the implicit fileposition field from being
created and will not treat a trailing integer field any differently from the rest
of the payload.

flag Optional. TRUE or FALSE, indicating whether or not to create the implicit file-
position field.

days Optional. The number of days from last file read after which the file may be
automatically deleted. If omitted, the default is seven (7).

FEW Specifies the indexfile is created as a single one-part file. Used only for small
datasets (typically lookup-type files, such as 2-character state codes). This
option is now deprecated in favor of using the WIDTH(1).

indexdef The name of an existing INDEX attribute definition that provides the baserec-
set, indexrec, and indexfile parameters to use.

LOCAL Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the
operation maintains the distribution of any previous DISTRIBUTE function.

NOROOT Specifies that the index is not globally sorted, and there is no root index to
indicate which part of the index will contain a particular entry. This may be
useful in Roxie queries in conjunction with ALLNODES use.

DISTRIBUTED Specifies both the LOCAL and NOROOT options (congruent with the
DISTRIBUTED option on an INDEX declaration, which specifies the index was
built with the LOCAL and NOROOT options).

COMPRESSED Optional. Specifies the index should be compressed using the type of com-
pression specified. If omitted, the default is LZW, a variant of the Lempel-Ziv-
Welch algorithm.

option See Indexes and Compression for options.

WIDTH Specifies writing the indexfile to a different number of physical file parts than
the number of nodes in the cluster on which the workunit executes. If omit-
ted, the default is the number of nodes in the cluster on which the workunit
executes. This option is primarily to create indexes on a large Thor that are
destined to be deployed to a smaller Roxie (making the Roxie queries more
efficient).

nodes The number of physical file parts to write. If set to one (1), this operates exactly
the same as the FEW option, above.

DEDUP Specifies that duplicate entries are eliminated from the INDEX.

SKEW Indicates that you know the data will not be spread evenly across nodes (will
be skewed and you choose to override the default by specifying your own limit
value to allow the job to continue despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum per-
centage of skew to allow before the job fails (the default skew is 1.0 / <number
of worker nodes on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired
maximum percentage of skew to allow (the default skew is 1.0 / <number of
worker nodes on cluster>).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

169

ECL Language Reference
Built-in Functions and Actions

THRESHOLD Indicates the minimum size for a single part before the SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part.
Default is 1GB.

MAXLENGTH Optional. This option is used to create indexes that are backward compati-
ble for platform versions prior to 3.0. Specifies the maximum length of a vari-
able-length index record. Fixed length records always use the minimum size
required. If the default maximum length causes inefficiency problems, it can
be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the max-
imum size is calculated from the record structure. Variable-length records that
do not specify MAXLENGTH may be slightly inefficient

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True,
specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algo-
rithms for the SORT function's STABLE and UNSTABLE options.

SET Optional. SET is used to set a value to a named metadata option. This allows
you to set user metadata whose use and purpose is up to the developer. Cur-
rently _nodeSize is the only system-defined metadata, though other names
starting with an underscore (_) should be considered reserved for system use.
You may want to use SET('_nodeSize', '32768') if your hardware and usage
pattern work better with larger page sizes. The default (8192) may not be op-
timal for all scenarios on modern hardware. We recommend using a power of
2 and not smaller than 8k.

option A case sensitive string constant containing the name of the option to set.

value The value to set the option to. This may be any type of value, dependent on
what the option expects to be.

BUILD an Access Index
[attrname :=] BUILD(baserecset, [indexrec] , indexfile [, options]);

Form 1 creates an index file to allow keyed access to the baserecset. The index is used primarily by the
FETCH and JOIN (with the KEYED option) operations.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{VIRTUAL(fileposition)}},
 FLAT);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

170

ECL Language Reference
Built-in Functions and Actions

BUILD(Vehicles,{lname,filepos},'vkey::lname');
 //build key into Vehicles dataset on last name

BUILD a Payload Index
[attrname :=] BUILD(baserecset, keys, payload, indexfile [, options]);

Form 2 creates an index file containing extra payload fields in addition to the keys. This form is used primarily
to create indexes used by "half-key" JOIN operations to eliminate the need to directly access the baserecset,
thus increasing performance over the "full-keyed" version of the same operation (done with the KEYED
option on the JOIN).

By default, the payload fields are sorted during the BUILDINDEX operation to minimize space on the leaf
nodes of the key. This sorting can be controlled by using sortIndexPayload in a #OPTION statement.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{VIRTUAL(fileposition)}},
 FLAT);
BUILD(Vehicles,{st,city},{lname},'vkey::st.city1');
//build key into Vehicles dataset on state and city
//payload the last name

//same index build using non-inline RECORD structures

SearchTerms := RECORD
 Vehicles.st;
 Vehicles.city;
END;
Payload := RECORD
 Vehicles.lname;
END;
BUILD(Vehicles,SearchTerms,Payload,'vkey::st.city2');

BUILD from an INDEX Definition
[attrname :=] BUILD(indexdef [,indexfile] [, options]);

Form 3 creates an index file by using a previously defined INDEX definition.

You can also use this form to build an index based upon two MERGEd indexes. To write a MERGEd index
to disk, you must use the BUILD action and include the optional indexfile parameter.

Example:

nameKey := INDEX(mainTable,{surname,forename,filepos},'name.idx');
BUILD(nameKey); //gets all info from the INDEX definition

// BUILDing a MERGEd index
BUILD(MERGE(idx1,idx2,'~idx::MergedIndex');

See Also: MERGE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

171

ECL Language Reference
Built-in Functions and Actions

Separating INDEX from DATASET
[attrname :=] BUILD(indexdef, dataset, [, options]);

Form 4 allows you to separate the index from the dataset, making it easy to use the INDEX form that does
not require a dataset first parameter.

The usual way of defining and building an INDEX is in terms of the dataset that is used to create it, using
an INDEX declaration where the dataset is named as the first parameter of the INDEX. This is fine when
the dataset is relatively simple, but there are downsides:

• The INDEX can't be logically separated from the dataset it was created from.

• If the dataset is very complicated (Mb of source), when the index is subsequently used in a query all the
code to create it is also parsed.

This form of BUILD allows the two to be separated, so you can omit the base dataset parameter from
the INDEX definition and just specify the dataset to use in the BUILD action. The fields are automatically
mapped (by field name) from the dataset to the index.

Examples:

//usual way to BUILD an INDEX:
ds1 = DATASET(100, TRANSFORM({ UNSIGNED id }, SELF.id := COUNTER));
i1 := INDEX(ds1, { id }, 'myIndex'); //specifies the dataset to always use
BUILD(i1);

//Separated way to BUILD an INDEX:
ds2 = DATASET(100, TRANSFORM({ UNSIGNED id }, SELF.id := COUNTER));
i2 := INDEX({ UNSIGNED id }, 'myIndex');
BUILD(i2, ds2); //builds the i2 INDEX from the ds2 dataset

BUILD a Query Library
BUILD(library);

Form 5 creates an external query library for use in hthor or Roxie, only.

A query library allows a set of related attributes to be packaged as a self contained unit so the code can be
shared between different workunits. This reduces the time required to deploy a set of attributes, and also
reduces the memory footprint for the set of queries within Roxie that use the library. Also, functionality in
the library can be updated without having to re-deploy all the queries that use that functionality.

Query libraries are suitable for packaging together sets of functions that are closely related. They aren't
suited for including attributes defined as MACROs--the meaning of a macro isn't known until its parameters
are substituted.

The name form of #WORKUNIT names the workunit that BUILD creates as the external library. That name
is the external library name used by the LIBRARY function (which provides access to the library from within
the query that uses the library). Since the workunit itself is the external query library, BUILD(library)
must be the only action in the workunit.

Example:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

172

ECL Language Reference
Built-in Functions and Actions

 STRING20 LName;
END;
FilterLibIface1(DATASET(namesRec) ds, STRING search) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

FilterDsLib1(DATASET(namesRec) ds, STRING search) :=
 MODULE,LIBRARY(FilterLibIface1)
 EXPORT matches := ds(Lname = search);
 EXPORT others := ds(Lname != search);
END;
#WORKUNIT('name','Ppass.FilterDsLib')
BUILD(FilterDsLib1);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

173

ECL Language Reference
Built-in Functions and Actions

Indexes and Compression
Compression Options:

LZW The default compression. A variant of the Lempel-Ziv-Welch algorithm.

ROW Compresses index entries based on differences between rows (for use with fixed-
length records only). It typically does not compress as well as LZW, but takes up
less space in memory because the rows are expanded on demand.

'inplace' Causes the index to be built using the inplace compression format. The payload de-
faults to using lz4 compression.

'inplace:lz4hc' Causes inplace compression on the key fields and lz4hc compression on the payload.
The resulting index can be smaller than using lz4.

'inplace:lz4s' Causes inplace compression on the key fields and lz4s compression on the payload.
This uses the LZ4 stream API to avoid recompressing the data and reduce the index
build times.

'inplace:lz4shc' Causes inplace compression on the key fields and lz4shc compression on the pay-
load. This uses the high compression (HC) version of the LZ4 stream API to avoid
recompressing the data and reduce the index build times. The default compression for
inplace indexes in versions after versions 9.6.90, 9.8.66, and 9.10.12.

'inplace:zstds' Causes inplace compression using the Zstandard (zstd) algorithm, a fast compression
algorithm, providing high compression ratios.

The inplace index compression format (introduced in version 9.2.0) improves compression of keyed fields
and allows them to be searched without decompression. The original index compression implementation
decompresses the rows when they are read from disk.

The lz4s and lz4hc inplace index compression formats (introduced in versions 9.6.90, 9.8.66, and 9.10.12
9.2.0 or later) improves compression and reduces build time. These formats require an engine that supports
it. In other words, if you build an index using the lz4s or lz4shc formats, you must use a platform later
than 9.6.90, 9.8.66, and 9.10.12 to read those indexes.

The same is true for indexes built using the zstds format. If you build an index using the zstds format,
you must use a platform later than 9.10.40 or 9.12.14 to read those indexes.

If you attempt to read an index with the inplace compression format on a system that does not support it,
you will receive an error message.

Because the branch nodes can be searched without decompression more branch nodes fit into memory
which can improve search performance. The lz4 compression used for the payload is significantly faster at
decompressing leaf pages than the previous LZW compression. Whether performance is better with lz4hc
(a high-compression variant of lz4) on the payload fields depends on the access characteristics of the data
and how much of the index is cached in memory.

Compression Levels :

hclevel An integer between 3 and 12 to specify the level of compression. The default is 3.
Higher levels increase the compression, but also increase the compression times.
This may be cost effective depending on the length of time the data is stored, and
the storage costs compared to the compute costs to build the index.

maxcompression The maximum desired compression ratio. This avoids the leaf nodes getting too
large when expanded, but increases the size of some indexes. The default is 20.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

174

ECL Language Reference
Built-in Functions and Actions

maxrecompress Specifies the number of times the entire input dataset should be recompressed to
free up space. Increasing the number decreases the size of the indexes, and will
probably decrease the decompress time slightly (because there are fewer stream
blocks), but will increase the build time. The default is 1.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,STRING20 city,STRING20 lname},FLAT);

SearchTerms := RECORD
 Vehicles.st;
 Vehicles.city;
END;
Payload := RECORD
 Vehicles.lname;
END;
VehicleKey := INDEX(Vehicles,SearchTerms,Payload,'vkey::st.city',
 COMPRESSED('inplace:lz4shc,compressopt(hclevel=9,
 maxcompression=25,
 maxrecompress=4)'));
BUILD(VehicleKey);

See Also: DATASET, BUILDINDEX, JOIN, FETCH, KEYED/WILD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

175

ECL Language Reference
Built-in Functions and Actions

CASE
CASE(expression, caseval => value, [... , caseval => value] [, elsevalue])

expression An expression that results in a single value.

caseval A value to compare against the result of the expression.

=> The "results in" operator--valid only in CASE, MAP and CHOOSESETS.

value The value to return. This may be any expression or action.

elsevalue Optional. The value to return when the result of the expression does not match any of
the caseval values. May be omitted if all return values are actions (the default would
then be no action), or all return values are record sets (the default would then be an
empty record set).

Return: CASE returns a single value, a set of values, a record set, or an action.

The CASE function evaluates the expression and returns the value whose caseval matches the expression
result. If none match, it returns the elsevalue.

There may be as many caseval => value parameters as necessary to specify all the expected values of the
expression (there must be at least one). All return value parameters must be of the same type.

Example:

//simple example
MyExp := 1+2;
MyChoice := CASE(MyExp, 1 => 9, 2 => 8, 3 => 7, 4 => 6, 5);
 // returns a value of 7 for the value of MyExp=3
OUTPUT(MyChoice);

//example using a DATASET
personRecord := RECORD
 STRING UID;
 STRING first_name;
 STRING last_name;
 STRING address;
 STRING city;
 STRING state;
 STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
 {'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
 {'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
 {'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
 {'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116'},
 {'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);

MyRecSet := CASE(MyExp, 1 => Person(state = 'FL'),
 2 => Person(state = 'GA'),
 3 => Person(state = 'MA'),
 4 => Person(state = 'IL'),
 person);
 // returns set of MA Persons for the value of MyExp=3
 // set MyExp to a number > 4 to get all records
OUTPUT(MyRecSet);

See Also: MAP, CHOOSE, IF, REJECTED, WHICH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

176

ECL Language Reference
Built-in Functions and Actions

CATCH
result := CATCH(recset, action [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PAR-
ALLEL [(numthreads)]] [, ALGORITHM(name)]);

result The definition name for the resulting recordset.

recset The recordset expression that, if it fails, causes the action to launch.

action One of the three valid actions below.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True,
specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algo-
rithms for the SORT function's STABLE and UNSTABLE options.

Return: CATCH returns a set of records (which may be empty).

The CATCH function executes the action if the recset expression fails for any reason.

Valid actions are:

SKIP Specifies ignoring the error and continuing, returning an empty dataset.

ONFAIL(transform) Specifies returning a single record from the transform function. The TRANS-
FORM function may use FAILCODE and/or FAILMESSAGE to provide de-
tails of the failure and must result in a RECORD structure the same format
as the recset.

FAIL The FAIL action, which specifies the error message to produce. This is
meant to provide more useful information to the end user about why the
job failed.

Example:

MyRec := RECORD
 STRING50 Value1;
 UNSIGNED Value2;
END;

ds := DATASET([{'C',1},{'C',2},{'C',3},
 {'C',4},{'C',5},{'X',1},{'A',1}],MyRec);

MyRec FailTransform := TRANSFORM
 self.value1 := FAILMESSAGE[1..17];
 self.value2 := FAILCODE
END;

limited1 := LIMIT(ds, 2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

177

ECL Language Reference
Built-in Functions and Actions

limited2 := LIMIT(ds, 3);
limited3 := LIMIT(ds, 4);

recovered1 := CATCH(limited1, SKIP);
recovered2 := CATCH(limited2, ONFAIL(FailTransform));
recovered3 := CATCH(CATCH(limited3, FAIL(1, 'Failed, sorry')), ONFAIL(FailTransform));

OUTPUT(recovered1); //empty recordset
OUTPUT(recovered2); //
OUTPUT(recovered3); //

See Also: TRANSFORM Structure, FAIL, FAILCODE, FAILMESSAGE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

178

ECL Language Reference
Built-in Functions and Actions

CHOOSE
CHOOSE(expression, value,... , value, elsevalue)

expression An arithmetic expression that results in a positive integer and determines which value
parameter to return.

value The values to return. There may be as many value parameters as necessary to specify
all the expected values of the expression. This may be any expression or action.

elsevalue The value to return when the expression returns an out-of-range value. The last para-
meter is always the elsevalue.

Return: CHOOSE returns a single value.

The CHOOSE function evaluates the expression and returns the value parameter whose ordinal position in
the list of parameters corresponds to the result of the expression. If none match, it returns the elsevalue.
All values and the elsevalue must be of the same type.

Example:

MyExp := 1+2;
MyChoice := CHOOSE(MyExp,9,8,7,6,5); // returns 7
MyChoice2 := CHOOSE(MyExp,1,2,3,4,5); // returns 3
MyChoice3 := CHOOSE(MyExp,15,14,13,12,11); // returns 13
OUTPUT(MyChoice);
OUTPUT(MyChoice2);
OUTPUT(MyChoice3);

IntRate:= 6.5;
RateRating := CHOOSE(IntRate,'Great','Good','Pretty Good','Fair','Fair','High','High','High','High','Invalid');
 // RateRating receives 'High' if the IntRate is between 6 and 9
OUTPUT(RateRating);

See Also: CASE, IF, MAP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

179

ECL Language Reference
Built-in Functions and Actions

CHOOSEN
CHOOSEN(recordset, n [, startpos] [, FEW] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

n The number of records to return. If zero (0), no records are returned, and if ALL or
CHOOSEN:ALL, all records are returned. The CHOOSEN:ALL option is a constant that
may be used in any expression.

startpos Optional. The ordinal position in the recordset of the first record to return. If omitted, the
default is one (1).

FEW Optional. Specifies internally converting to a TOPN operation if n is a variable number
(an attribute or passed parameter) and the input recordset comes from a SORT.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: CHOOSEN returns a set of records.

The CHOOSEN function (choose-n) returns the first n number of records, beginning with the record at the
startpos, from the specified recordset.

Example:

AllRecs := CHOOSEN(Person,ALL); // returns all recs from Person
FirstFive := CHOOSEN(Person,5); // returns first 5 recs from Person
NextFive := CHOOSEN(Person,5,6); // returns next 5 recs from Person
LimitRecs := CHOOSEN(Person,IF(MyLimit<>0,MyLimit,CHOOSEN:ALL));

See Also: SAMPLE, CHOOSESETS

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

180

ECL Language Reference
Built-in Functions and Actions

CHOOSESETS
CHOOSESETS(recset, condition => n [, o][, EXCLUSIVE | LAST | ENTH [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]])

recset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

condition The logical expression that defines which records to include in the result set.

=> The "results in" operator--valid only in CHOOSESETS, CASE, and MAP.

n The maximum number of records to return. If zero (0), no records that meet the con-
dition are returned.

o Optional. The maximum number of records to return that meet none of the conditions
specified.

EXCLUSIVE Optional. Specifies the condition parameters are mutually exclusive.

LAST Optional. Specifies choosing the last n records that meet the condition instead of the
first n. This option is implicitly EXCLUSIVE.

ENTH Optional. Specifies choosing a sample of records that meet the condition instead of
the first n. This option is implicitly EXCLUSIVE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: CHOOSESETS returns a set of records.

The CHOOSESETS function returns a set of records from the recset. The result set is limited to n number
of records that meet each condition listed. CHOOSESETS may take as many condition => n parameters as
needed to exactly specify the desired set of records. This is a shorthand way of concatenating the result sets
of multiple CHOOSEN function calls to the same recset with different filter conditions, but CHOOSESETS
executes significantly faster. This technique is also know as a "cutback."

Example:

MyResultSet := CHOOSESETS(Person,
 per_first_name = 'RICHARD' => 100,
 per_first_name = 'GWENDOLYN' => 200, 100)
// returns a set containing 100 Richards, 200 Gwendolyns, 100 others

See Also: CHOOSEN, SAMPLE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

181

ECL Language Reference
Built-in Functions and Actions

CLUSTERSIZE
CLUSTERSIZE

Return: CLUSTERSIZE returns a single INTEGER value.

The CLUSTERSIZE compile time constant returns the number of nodes in the cluster. This is the same
value as returned by the Std.System.ThorLib.Nodes() function..

Example:

OUTPUT(CLUSTERSIZE);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

182

ECL Language Reference
Built-in Functions and Actions

COMBINE
COMBINE(leftrecset, rightrecset [, transform][,LOCAL])

COMBINE(leftrecset, rightrecset, GROUP , transform [,LOCAL] [, UNORDERED | ORDERED(bool)] [,
STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

leftrecset The LEFT record set.

rightrecset The RIGHT record set.

transform The TRANSFORM function call. If omitted, COMBINE returns all fields from both the
leftrecset and rightrecset, with the second of any duplicate named fields removed.

LOCAL The LOCAL option is required when COMBINE is used on Thor (and implicit in hThor/
Roxie).

GROUP Specifies the rightrecset has been GROUPed. If this is not the case, an error occurs.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: COMBINE returns a record set.

The COMBINE function combines leftrecset and rightrecset on a record-by-record basis in the order in
which they appear in each.

COMBINE TRANSFORM Function Requirements
For form 1, the transform function must take at least two parameters: a LEFT record which must be in the
same format as the leftrecset and a RIGHT record which must be in the same format as the rightrecset.
The format of the resulting record set may be different from the inputs.

For form 2, the transform function must take at least three parameters: a LEFT record which must be in the
same format as the leftrecset, a RIGHT record which must be in the same format as the rightrecset, and
a ROWS(RIGHT) whose format must be a DATASET(RECORDOF(rightrecset)) parameter. The format of
the resulting record set may be different from the inputs.

COMBINE Form 1
Form 1 of COMBINE produces its result by passing each record from leftrecset along with the record in
the same ordinal position within rightrecset to the transform to produce a single output record. Grouping (if
any) on the leftrecset is preserved. An error occurs if leftrecset and rightrecset contain a different number
of records.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

183

ECL Language Reference
Built-in Functions and Actions

Example:

inrec := RECORD
 UNSIGNED6 uid;
END;
outrec := RECORD(inrec)
 STRING20 name;
 STRING11 ssn;
 UNSIGNED8 dob;
END;
ds := DATASET([1,2,3,4,5,6], inrec);
i1 := DATASET([{1, 'Kevin' },
 {2, 'Richard'},
 {5, 'Nigel' }],
 {UNSIGNED6 uid, STRING10 name });
i2 := DATASET([{3, '000-12-3462'},
 {5, '000-12-8723'},
 {6, '000-10-1002'}],
 {UNSIGNED6 uid, STRING11 ssn });
i3 := DATASET([{1, 19700117},
 {4, 19831212},
 {6, 20010101}],
 {UNSIGNED6 uid, UNSIGNED8 dob});
j1 := JOIN(ds, i1, LEFT.uid = RIGHT.uid, LEFT OUTER, LOOKUP);
j2 := JOIN(ds, i2, LEFT.uid = RIGHT.uid, LEFT OUTER, LOOKUP);
j3 := JOIN(ds, i3, LEFT.uid = RIGHT.uid, LEFT OUTER, LOOKUP);
combined1 := COMBINE(j1, j2,
 TRANSFORM(outRec,
 SELF := LEFT;
 SELF := RIGHT;
 SELF := []),
 LOCAL);
combined2 := COMBINE(combined1, j3,
 TRANSFORM(outRec,
 SELF.dob := RIGHT.dob;
 SELF := LEFT),
 LOCAL);
OUTPUT(combined1);
OUTPUT(combined2);

COMBINE Form 2
Form 2 of COMBINE produces its result by passing each record from leftrecset, the group in the same
ordinal position within rightrecset (along with the first record in the group) to the transform to produce a
single output record. Grouping (if any) on the leftrecset is preserved. An error occurs if the number of records
in the leftrecset differs from the number of groups in the rightrecset.

Example:

inrec := {UNSIGNED6 uid};
outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;
END;
nameRec := RECORD
 STRING20 name;
END;

resultRec := RECORD(inrec)
 DATASET(nameRec) names;
END;
ds := DATASET([1,2,3,4,5,6], inrec);
dsg := GROUP(ds, ROW);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

184

ECL Language Reference
Built-in Functions and Actions

i1 := DATASET([{1, 'Kevin' ,10},
 {2, 'Richard', 5},
 {5, 'Nigel' , 2},
 {0, '' , 0}], outrec);
i2 := DATASET([{1, 'Kevin Hall', 12},
 {2, 'Richard Chapman', 15},
 {3, 'Jake Smith', 20},
 {5, 'Nigel Hicks', 100},
 {0, '' , 0}], outrec);
i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Richard', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},
 {0, '', 0}], outrec);
j1 := JOIN(dsg,i1,
 LEFT.uid = RIGHT.uid,
 TRANSFORM(outrec,
 SELF := LEFT;
 SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg,i2,
 LEFT.uid = RIGHT.uid,
 TRANSFORM(outrec,
 SELF := LEFT;
 SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
j3 := JOIN(dsg, i3,
 LEFT.uid = RIGHT.uid,
 TRANSFORM(outrec,
 SELF := LEFT;
 SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
combined := REGROUP(j1, j2, j3);
resultRec t(inrec l,DATASET(RECORDOF(combined)) r) := TRANSFORM
 SELF.names := PROJECT(r, TRANSFORM(nameRec, SELF := LEFT));
 SELF := l;
END;
res1 := COMBINE(dsg,combined,GROUP,t(LEFT, ROWS(RIGHT)(score != 0)),LOCAL);
OUTPUT(res1);

//A variation using rows in a child query.
resultRec t2(inrec l, DATASET(RECORDOF(combined)) r) := TRANSFORM
 SELF.names := PROJECT(SORT(r, -score),
 TRANSFORM(nameRec,
 SELF := LEFT));
 SELF := l;
END;
res2 := COMBINE(dsg,combined,GROUP,t2(LEFT,ROWS(RIGHT)(score != 0)),LOCAL);
OUTPUT(res2);

See Also: GROUP, REGROUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

185

ECL Language Reference
Built-in Functions and Actions

CORRELATION
CORRELATION(recset, valuex, valuey [, expresssion] [, KEYED] [, UNORDERED | ORDERED(bool)]
[, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the GROUP keyword to indicate operating on the elements in each group,
when used in a RECORD structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid
only when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: CORRELATION returns a single REAL value.

The CORRELATION function returns the Pearson's Product Moment Correlation Coefficient between val-
uex and valuey.

Example:

pointRec := { REAL x, REAL y };
analyze(ds) := MACRO
#uniquename(stats)
%stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
OUTPUT(%stats%);
// Following should be zero
OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

186

ECL Language Reference
Built-in Functions and Actions

 rc - (varxy/SQRT(varx*vary)) });
OUTPUT(%stats%, { 'bestFit: y=' +
 (STRING)((sy-sx*varxy/varx)/c) +
 ' + ' +
 (STRING)(varxy/varx)+'x' });
ENDMACRO;
ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);
ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);
analyze(ds1);
analyze(ds2);
analyze(ds3);

See Also: VARIANCE, COVARIANCE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

187

ECL Language Reference
Built-in Functions and Actions

COS
COS(angle)

angle The REAL radian value for which to find the cosine.

Return: COS returns a single REAL value.

The COS function returns the cosine of the angle.

Example:

Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
Cosine45 := COS(Angle45); //get cosine of the 45 degree angle
OUTPUT(Cosine45);

See Also: ACOS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

188

ECL Language Reference
Built-in Functions and Actions

COSH
COSH(angle)

angle The REAL radian value for which to find the hyperbolic cosine.

Return: COSH returns a single REAL value.

The COSH function returns the hyperbolic cosine of the angle.

Example:

Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
HyperbolicCosine45 := COSH(Angle45);
 //get hyperbolic cosine of the 45 degree angle
OUTPUT(HyperbolicCosine45);

See Also: ACOS, SIN, TAN, ASIN, ATAN, COS, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

189

ECL Language Reference
Built-in Functions and Actions

COUNT
COUNT(recordset [, expression] [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

COUNT(valuelist)

recordset The set of records to process. This may be the name of a DATASET or a record set
derived from some filter condition, or any expression that results in a derived record set,
or a the name of a DICTIONARY declaration. This also may be the GROUP keyword to
indicate counting the number of elements in a group, when used in a RECORD structure
to generate crosstab statistics.

expression Optional. A logical expression indicating which records to include in the count. Valid only
when the recordset parameter is the keyword GROUP to indicate counting the number
of elements in a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

valuelist A comma-delimited list of expressions to count. This may also be a SET of values.

Return: COUNT returns a single value.

The COUNT function returns the number of records in the specified recordset or valuelist.

Example:

MyCount := COUNT(Trades(Trades.trd_rate IN ['3', '4', '5']));
 // count the number of records in the Trades record
 // set whose trd_rate field contains 3, 4, or 5
R1 := RECORD
 person.per_st;
 person.per_sex;
 Number := COUNT(GROUP);
 //total in each state/sex category
 Hanks := COUNT(GROUP,person.per_first_name = 'HANK');
 //total of "Hanks" in each state/sex category
 NonHanks := COUNT(GROUP,person.per_first_name <> 'HANK');
 //total of "Non-Hanks" in each state/sex category
END;
T1 := TABLE(person, R1, per_st, per_sex);
Cnt1 := COUNT(4,8,16,2,1); //returns 5
SetVals := [4,8,16,2,1];

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

190

ECL Language Reference
Built-in Functions and Actions

Cnt2 := COUNT(SetVals); //returns 5

See Also: SUM, AVE, MIN, MAX, GROUP, TABLE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

191

ECL Language Reference
Built-in Functions and Actions

COVARIANCE
COVARIANCE(recset, valuex, valuey [, expresssion] [, KEYED] [, UNORDERED | ORDERED(bool)]
[, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the GROUP keyword to indicate operating on the elements in each group,
when used in a RECORD structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid
only when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: COVARIANCE returns a single REAL value.

The COVARIANCE function returns the extent to which valuex and valuey co-vary.

Example:

pointRec := { REAL x, REAL y };
analyze(ds) := MACRO
#uniquename(stats)
%stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
OUTPUT(%stats%);

// Following should be zero
OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

192

ECL Language Reference
Built-in Functions and Actions

 rc - (varxy/SQRT(varx*vary)) });

OUTPUT(%stats%, { 'bestFit: y=' +
 (STRING)((sy-sx*varxy/varx)/c) +
 ' + ' +
 (STRING)(varxy/varx)+'x' });
ENDMACRO;

ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);

ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);

ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);

analyze(ds1);
analyze(ds2);
analyze(ds3);

See Also: VARIANCE, CORRELATION

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

193

ECL Language Reference
Built-in Functions and Actions

CRON
CRON(time)

time A string expression containing a unix-standard cron time.

Return: CRON defines a single timer event.

The CRON function defines a timer event for use within the WHEN workflow service or WAIT function. This
is synonymous with EVENT('CRON', time).

The time parameter is unix-standard cron time, expressed in UTC (aka Greenwich Mean Time) as a string
containing the following, space-delimited components:

minute hour dom month dow

minute An integer value for the minute of the hour. Valid values are from 0 to 59.

hour An integer value for the hour. Valid values are from 0 to 23 (using the 24 hour clock).

dom An integer value for the day of the month. Valid values are from 1 to 31.

month An integer value for the month. Valid values are from 1 to 12.

dow An integer value for the day of the week. Valid values are from 0 to 6 (where 0 represents
Sunday).

Any time component that you do not want to pass is replaced by an asterisk (*). You may define ranges of
times using a dash (-), lists using a comma (,), and 'once every n' using a slash (/). For example, 6-18/3
in the hour field will fire the timer every three hours between 6am and 6pm, and 18-21/3,0-6/3 will fire the
timer every three hours between 6pm and 6am.

Example:

EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
 EXPORT EveryThreeHours := CRON('0 0-23/3 * * *');
END;

BUILD(teenagers) : WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));
BUILD(NewStuff) : WHEN(events.EveryThreeHours);

See Also: EVENT, WHEN, WAIT, NOTIFY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

194

ECL Language Reference
Built-in Functions and Actions

DEDUP
DEDUP(recordset [, condition [[MANY], ALL[, HASH]] [,BEST (sort-list)[[, KEEP n] [, keeper]] [, LOCAL]
[, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)])

recordset The set of records to process, typically sorted in the same order that the expression will
test. This may be the name of a dataset or derived record set, or any expression that
results in a derived record set.

condition Optional. A comma-delimited list of expressions or key fields in the recordset that defines
"duplicate" records. The keywords LEFT and RIGHT may be used as dataset qualifiers
for fields in the recordset. If the condition is omitted, every recordset field becomes the
match condition. You may use the keyword RECORD (or WHOLE RECORD) to indicate
all fields in that structure, and/or you may use the keyword EXCEPT to list non-dedup
fields in the structure.

MANY Optional. Specifies or perform a local sort/dedup before finding duplicates globally. This
is most useful when many duplicates are expected.

ALL Optional. Matches the condition against all records, not just adjacent records. This option
may change the output order of the resulting records.

HASH Optional. Specifies the ALL operation is performed using hash tables.

BEST Optional. Provides additional control over which records are retained from a set of "du-
plicate" records. The first in the <sort-list> order of records are retained. BEST cannot
be used with a KEEP parameter greater than 1.

sort-list A comma delimited list of fields defining the duplicate records to keep.. The fields may
be prefixed with a minus sign to require a reverse sort on that field.

KEEP Optional. Specifies keeping n number of duplicate records. If omitted, the default behav-
ior is to KEEP 1. Not valid with the ALL option present.

n The number of duplicate records to keep. If keeper is set to RIGHT, the only valid number
of duplicate records to keep is 1.

keeper Optional. The keywords LEFT or RIGHT. LEFT (the default, if omitted) keeps the first
record encountered and RIGHT keeps the last.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

195

ECL Language Reference
Built-in Functions and Actions

Return: DEDUP returns a set of records.

The DEDUP function evaluates the recordset for duplicate records, as defined by the condition parameter,
and returns a unique return set. This is similar to the DISTINCT statement in SQL. The recordset should
be sorted, unless ALL is specified.

If a condition parameter is a single value (field), DEDUP does a simple field-level de-dupe equivalent to
LEFT.field=RIGHT.field. The condition is evaluated for each pair of adjacent records in the record set. If the
condition returns TRUE, the keeper record is kept and the other removed.

The ALL option means that every record pair is evaluated rather than only those pairs adjacent to each
other, irrespective of sort order. The evaluation is such that, for records 1, 2, 3, 4, the record pairs that are
compared to each other are:

(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)

This means two compares happen for each pair, allowing the condition to be non-commutative.

KEEP n effectively means leaving n records of each duplicate type. This is useful for sampling. The LEFT
keeper value (implicit if neither LEFT nor RIGHT are specified) means that if the left and right records meet
the de-dupe criteria (that is, they "match"), the left record is kept. If the RIGHT keeper appears instead, the
right is kept. In both cases, the next comparison involves the de-dupe survivor; in this way, many duplicate
records can collapse into one.

The BEST option provides additional control over which records are retained from a set of "duplicate"
records. The first in the sort-list order of records are retained. The sort-list is comma delimited list of fields.
The fields may be prefixed with a minus sign to require a reverse sort on that field.

DEDUP(recordset, field1, BEST(field2)) means that from set of duplicate records, the first record from the
set duplicates sorted by field2 is retained. DEDUP(recordset, field1, BEST(-field2)) produces the last record
sorted by field2 from the set of duplicates.

The BEST option cannot be used with a KEEP parameter greater than 1.

Example:

SomeFile := DATASET([{'001','KC','G'},
 {'002','KC','Z'},
 {'003','KC','Z'},
 {'004','KC','C'},
 {'005','KA','X'},
 {'006','KB','A'},
 {'007','KB','G'},
 {'008','KA','B'}],{STRING3 Id, String2 Value1, String1 Value2});

SomeFile1 := SORT(SomeFile, Value1);

DEDUP(SomeFile1, Value1, BEST(Value2));
// Output:
// id value1 value2
// 008 KA B
// 006 KB A
// 004 KC C

DEDUP(SomeFile1, Value1, BEST(-Value2));
// Output:
// id value1 value2
// 005 KA X
// 007 KB G
// 002 KC Z

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

196

ECL Language Reference
Built-in Functions and Actions

DEDUP(SomeFile1, Value1, HASH, BEST(Value2));
// Output:
// id value1 value2
// 008 KA B
// 006 KB A
// 004 KC C

Complex Record Set Conditions
The DEDUP function with the ALL option is useful in determining complex recordset conditions between
records in the same recordset. Although DEDUP is traditionally used to eliminate duplicate records next to
each other in the recordset, the conditional expression combined with the ALL option extends this capability.
The ALL option causes each record to be compared according to the conditional expression to every other
record in the recordset. This capability is most effective with small recordsets; larger recordsets should also
use the HASH option.

Example:

LastTbl := TABLE(Person,{per_last_name});
Lasts := SORT(LastTbl,per_last_name);
MySet := DEDUP(Lasts,per_last_name);
 // unique last names -- this is exactly equivalent to:
 //MySet := DEDUP(Lasts,LEFT.per_last_name=RIGHT.per_last_name);
 // also exactly equivalent to:
 //MySet := DEDUP(Lasts);
NamesTbl1 := TABLE(Person,{per_last_name,per_first_name});
Names1 := SORT(NamesTbl1,per_last_name,per_first_name);
MyNames1 := DEDUP(Names1,RECORD);
 //dedup by all fields -- this is exactly equivalent to:
 //MyNames1 := DEDUP(Names,per_last_name,per_first_name);
 // also exactly equivalent to:
 //MyNames1 := DEDUP(Names1);
NamesTbl2 := TABLE(Person,{per_last_name,per_first_name, per_sex});
Names2 := SORT(NamesTbl,per_last_name,per_first_name);
MyNames2 := DEDUP(Names,RECORD, EXCEPT per_sex);
 //dedup by all fields except per_sex
 // this is exactly equivalent to:
 //MyNames2 := DEDUP(Names, EXCEPT per_sex);

/* In the following example, we want to determine how many 'AN' or 'AU' type inquiries
have occurred within 3 days of a 'BB' type inquiry.
The COUNT of inquiries in the deduped recordset is subtracted from the COUNT
of the inquiries in the original recordset to provide the result.*/
INTEGER abs(INTEGER i) := IF (i < 0, -i, i);
WithinDays(ldrpt,lday,rdrpt,rday,days) :=
 abs(DaysAgo(ldrpt,lday)-DaysAgo(rdrpt,rday)) <= days;
DedupedInqs := DEDUP(inquiry, LEFT.inq_ind_code='BB' AND
 RIGHT.inq_ind_code IN ['AN','AU'] AND
 WithinDays(LEFT.inq_drpt,
 LEFT.inq_drpt_day,
 RIGHT.inq_drpt,
 RIGHT.inq_drpt_day,3),
 ALL);
InqCount := COUNT(Inquiry) - COUNT(DedupedInqs);
OUTPUT(person(InqCount >0),{InqCount});

See Also: SORT, ROLLUP, TABLE, FUNCTION Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

197

ECL Language Reference
Built-in Functions and Actions

DEFINE
DEFINE(pattern, symbol)

pattern The name of a RULE parsing pattern.

symbol A string constant specifying the name to use in the USE option on a
PARSE function or the USE function in a RULE parsing pattern.

Return: DEFINE creates a RULE pattern.

The DEFINE function defines a symbol for the specified pattern that may be forward referenced in previously
defined parsing pattern attributes. This is the only type of forward reference allowed in ECL.

Example:

RULE a := USE('symbol');
 //uses the 'symbol'pattern defined later - b
RULE b := 'pattern';
 //defines a rule pattern
RULE s := DEFINE(b,'symbol');
 //associate the "b" rule with the
 //'symbol' for forward reference by rule "a"

See Also: PARSE, PARSE Pattern Value Types

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

198

ECL Language Reference
Built-in Functions and Actions

DENORMALIZE
DENORMALIZE(parentrecset, childrecset, condition, transform [,LOCAL] [,NOSORT] [, UNORDERED |
ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

DENORMALIZE(parentrecset, childrecset, condition, GROUP, transform [,LOCAL] [,NOSORT] [, UN-
ORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGO-
RITHM(name)])

parentrecset The set of parent records to process, already in the format that will contain the denor-
malized parent and child records.

childrecset The set of child records to process.

condition An expression that specifies how to match records between the parentrecset and chil-
drecset.

transform The TRANSFORM function to call.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

NOSORT Optional. Specifies the operation is performed without sorting the parentrecset or chil-
drecset --both must already be sorted so matching records in both are in order. This
allows programmer control of the order of the child records.

GROUP Specifies grouping the childrecset records based on the join condition so all the related
child records are passed as a dataset parameter to the transform.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: DENORMALIZE returns a record set.

The DENORMALIZE function is used to form a combined record out of a parent and any number of children.
It acts very similar to a JOIN except that where JOIN with one parent and three children would call the
transform three times and produce three outputs, DENORMALIZE calls the transform three times where
the input to the first transform is the parent and one child, the input to the second transform is the output
of the first transform and another child, and the input to the third transform is the output from the second
transform and the remaining child. Also like JOIN, the order in which the childrecset records are sent to
the transform is undefined.

Because DENORMALIZE is basically a specialized form of JOIN, the various join types (LEFT OUTER,
RIGHT OUTER, FULL OUTER, LEFT ONLY, RIGHT ONLY, FULL ONLY) are also available for use on
DENORMALIZE and act just as they do with JOIN.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

199

ECL Language Reference
Built-in Functions and Actions

All JOIN options are available for DENORMALIZE. See Join Options for details.

DENORMALIZE TRANSFORM Function Requirements
For form one, the transform function must take at least two parameters: a LEFT record of the same format
as the combined parentrecset and childrecset (the resulting de-normalized record structure), and a RIGHT
record of the same format as the childrecset. An optional third parameter may be specified: an integer
COUNTER specifying the number of times the transform has been called for the current set of parent/child
pairs (defined by the condition values). The result of the transform function must be a record set of the same
format as the LEFT record.

For form two, the transform function must take at least two parameters: a LEFT record of the same for-
mat as the combined parentrecset and childrecset (the resulting de-normalized record structure), and
ROWS(RIGHT) dataset of the same format as the childrecset. The result of the transform function must be
a record set of the same format as the LEFT record.

Example:

Form 1 example:

NormRec := RECORD
 STRING20 thename;
 STRING20 addr;
END;
NamesRec := RECORD
 UNSIGNED1 numRows;
 STRING20 thename;
 STRING20 addr1 := '';
 STRING20 addr2 := '';
 STRING20 addr3 := '';
 STRING20 addr4 := '';
END;
NamesTable := DATASET([{0,'Kevin'},{0,'Liz'},{0,'Mr Nobody'},
 {0,'Anywhere'}], NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, NormRec R, INTEGER C) := TRANSFORM
 SELF.NumRows := C;
 SELF.addr1 := IF (C=1, R.addr, L.addr1);
 SELF.addr2 := IF (C=2, R.addr, L.addr2);
 SELF.addr3 := IF (C=3, R.addr, L.addr3);
 SELF.addr4 := IF (C=4, R.addr, L.addr4);
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 DeNormThem(LEFT,RIGHT,COUNTER));
OUTPUT(DeNormedRecs);

Form 2 example:

NormRec := RECORD
 STRING20 thename;
 STRING20 addr;
END;
NamesRec := RECORD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

200

ECL Language Reference
Built-in Functions and Actions

 UNSIGNED1 numRows;
 STRING20 thename;
 DATASET(NormRec) addresses;
END;
NamesTable := DATASET([{0,'Kevin',[]},{0,'Liz',[]},
 {0,'Mr Nobody',[]},{0,'Anywhere',[]}],
 NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, DATASET(NormRec) R) := TRANSFORM
 SELF.NumRows := COUNT(R);
 SELF.addresses := R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 GROUP,
 DeNormThem(LEFT,ROWS(RIGHT)));
OUTPUT(DeNormedRecs);

NOSORT example:

MyRec := RECORD
 STRING1 Value1;
 STRING1 Value2;
END;
ParentFile := DATASET([{'A','C'},{'B','B'},{'C','A'}],MyRec);
ChildFile := DATASET([{'A','Z'},{'A','T'},{'B','S'},{'B','Y'},
 {'C','X'},{'C','W'}],MyRec);
MyOutRec := RECORD
 ParentFile.Value1;
 ParentFile.Value2;
 STRING1 CVal2_1 := '';
 STRING1 CVal2_2 := '';
END;
P_Recs := TABLE(ParentFile, MyOutRec);
MyOutRec DeNormThem(MyOutRec L, MyRec R, INTEGER C) := TRANSFORM
 SELF.CVal2_1 := IF(C = 1, R.Value2, L.CVal2_1);
 SELF.CVal2_2 := IF(C = 2, R.Value2, L.CVal2_2);
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(P_Recs, ChildFile,
 LEFT.Value1 = RIGHT.Value1,
 DeNormThem(LEFT,RIGHT,COUNTER),NOSORT);
OUTPUT(DeNormedRecs);
/* DeNormedRecs result set is:
 Rec# Value1 PVal2 CVal2_1 CVal2_2
 1 A C Z T
 2 B B S Y
 3 C A X W
 */

See Also: JOIN, TRANSFORM Structure, RECORD Structure, NORMALIZE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

201

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTE
DISTRIBUTE(recordset [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

DISTRIBUTE(recordset, expression [, MERGE(sorts)] [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

DISTRIBUTE(recordset, index [, joincondition] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

DISTRIBUTE(recordset, SKEW(maxskew [, skewlimit]) [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to distribute.

expression An integer expression that specifies how to distribute the recordset, usually using one
the HASH functions for efficiency.

MERGE Specifies the data is redistributed maintaining the local sort order on each node.

sorts The sort expressions by which the data has been locally sorted.

index The name of an INDEX attribute definition, which provides the appropriate distribution.

joincondition Optional. A logical expression that specifies how to link the records in the recordset and
the index. The keywords LEFT and RIGHT may be used as dataset qualifiers for fields
in the recordset and index.

SKEW Specifies the allowable data skew values.

maxskew A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage of
skew to allow before the job fails (the default skew is 1.0 / <number of worker nodes
on cluster>).

skewlimit Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maxi-
mum percentage of skew to allow (the default skew is 1.0 / <number of worker nodes
on cluster>).

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: DISTRIBUTE returns a set of records.

The DISTRIBUTE function re-distributes records from the recordset across all the nodes of the cluster.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

202

ECL Language Reference
Built-in Functions and Actions

"Random" DISTRIBUTE
DISTRIBUTE(recordset)

This form redistributes the recordset "randomly" so there is no data skew across nodes, but without the
disadvantages the RANDOM() function could introduce. This is functionally equivalent to distributing by a
hash of the entire record.

Expression DISTRIBUTE
DISTRIBUTE(recordset, expression)

This form redistributes the recordset based on the specified expression, typically one of the HASH functions.
Only the bottom 32-bits of the expression value are used, so either HASH or HASH32 are the optimal
choices. Records for which the expression evaluates the same will end up on the same node. DISTRIBUTE
implicitly performs a modulus operation if an expression value is not in the range of the number of nodes
available.

If the MERGE option is specified, the recordset must have been locally sorted by the sorts expressions.
This avoids resorting.

Index-based DISTRIBUTE
DISTRIBUTE(recordset, index [, joincondition])

This form redistributes the recordset based on the existing distribution of the specified index, where the
linkage between the two is determined by the joincondition. Records for which the joincondition is true will
end up on the same node.

Skew-based DISTRIBUTE
DISTRIBUTE(recordset, SKEW(maxskew [, skewlimit]))

This form redistributes the recordset, but only if necessary. The purpose of this form is to replace the use of
DISTRIBUTE(recordset,RANDOM()) to simply obtain a relatively even distribution of data across the nodes.
This form will always try to minimize the amount of data redistributed between the nodes.

The skew of a dataset is calculated as:

MAX(ABS(AvgPartSize-PartSize[node])/AvgPartSize)

If the recordset is skewed less than maxskew then the DISTRIBUTE is a no-op. If skewlimit is specified and
the skew on any node exceeds this, the job fails with an error message (specifying the first node number
exceeding the limit), otherwise the data is redistributed to ensure that the data is distributed with less skew
than maxskew.

Example:

MySet1 := DISTRIBUTE(Person); //"random" distribution - no skew
MySet2 := DISTRIBUTE(Person,HASH32(Person.per_ssn));
 //all people with the same SSN end up on the same node
 //INDEX example:
mainRecord := RECORD
 INTEGER8 sequence;
 STRING20 forename;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

203

ECL Language Reference
Built-in Functions and Actions

 STRING20 surname;
 UNSIGNED8 filepos{VIRTUAL(fileposition)};
END;
mainTable := DATASET('~keyed.d00',mainRecord,THOR);
nameKey := INDEX(mainTable, {surname,forename,filepos}, 'name.idx');
incTable := DATASET('~inc.d00',mainRecord,THOR);
x := DISTRIBUTE(incTable, nameKey,
 LEFT.surname = RIGHT.surname AND
 LEFT.forename = RIGHT.forename);
OUTPUT(x);

//SKEW example:
Jds := JOIN(somedata,otherdata,LEFT.sysid=RIGHT.sysid);
Jds_dist1 := DISTRIBUTE(Jds,SKEW(0.1));
 //ensures skew is less than 10%
Jds_dist2 := DISTRIBUTE(Jds,SKEW(0.1,0.5));
 //ensures skew is less than 10%
 //and fails if skew exceeds 50% on any node

See Also: HASH32, DISTRIBUTED, INDEX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

204

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTED
DISTRIBUTED(recordset [, expression])

recordset The set of distributed records.

expression Optional. An expression that specifies how the recordset is distributed.

Return: DISTRIBUTED returns a set of records.

The DISTRIBUTED function is a compiler directive indicating that the records from the recordset are already
distributed across the nodes of the Data Refinery based on the specified expression. Records for which the
expression evaluates the same are on the same node.

If the expression is omitted, the function just suppresses a warning that is sometimes generated that the
recordset hasn't been distributed

Example:

MySet := DISTRIBUTED(Person,HASH32(Person.per_ssn));
 //all people with the same SSN are already on the same node

See Also: HASH32, DISTRIBUTE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

205

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTION
DISTRIBUTION(recordset [, fields] [, NAMED(name)] [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records on which to run statistics.

fields Optional. A comma-delimited list of fields in the recordset to which to limit the action.
If omitted, all fields are included.

NAMED Optional. Specifies the result name that appears in the workunit.

name A string constant containing the result label. This must be a valid label (See Definition
Name Rules)

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The DISTRIBUTION action produces a crosstab report in XML format indicating how many unique records
there are in the recordset for each value in each field in the recordset.

When there is an excessively large number of distinct values, it returns an estimate in this form:

<XML>
 <Field name="seqnum" estimate="4000000"/>
</XML>

The DECIMAL data type is not supported by this action. You can use a REAL data type instead.

Example:

SomeFile := DATASET([{'C','G'},{'C','C'},{'A','X'},{'B','G'}],
 {STRING1 Value1,STRING1 Value2});
DISTRIBUTION(SomeFile);
/* The result comes back looking like this:
<XML>
<Field name="Value1" distinct="3">
 <Value count="1">A</Value>
 <Value count="1">B</Value>
 <Value count="2">C</Value>
</Field>
<Field name="Value2" distinct="3">
 <Value count="1">C</Value>
 <Value count="2">G</Value>
 <Value count="1">X</Value>
</Field>
</XML>

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

206

ECL Language Reference
Built-in Functions and Actions

*/

//**
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age;
END;

namesTable := DATASET([
 {'Halligan','Kevin',31},
 {'Halligan','Liz',30},
 {'Salter','Abi',10},
 {'X','Z',5}], namesRecord);

doFirst := DISTRIBUTION(namesTable, surname, forename, NAMED('Stats'));
/* The result comes back looking like this:
<XML>
<Field name="surname" distinct="3">
 <Value count="2">Halligan</Value>
 <Value count="1">X</Value>
 <Value count="1">Salter</Value>
</Field>
<Field name="forename" distinct="4">
 <Value count="1">Abi</Value>
 <Value count="1">Kevin</Value>
 <Value count="1">Liz</Value>
 <Value count="1">Z</Value>
</Field>
</XML>
*/

//Post-processing the result with PARSE:
x := DATASET(ROW(TRANSFORM({STRING line},
 SELF.line := WORKUNIT('Stats', STRING))));
res := RECORD
 STRING Fieldname := XMLTEXT('@name');
 STRING Cnt := XMLTEXT('@distinct');
END;

DoNext := PARSE(x, line, res, XML('XML/Field'));
SEQUENTIAL(DoFirst,OUTPUT(DoNext));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

207

ECL Language Reference
Built-in Functions and Actions

EBCDIC
EBCDIC(recordset[, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(
numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: EBCDIC returns a set of records

..

The EBCDIC function returns the recordset with all STRING fields translated from ASCII to EBCDIC.

Example:

EBCDICRecs := EBCDIC(SomeASCIIInput);

See Also: ASCII

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

208

ECL Language Reference
Built-in Functions and Actions

ENTH
ENTH(recordset, numerator [, denominator [, which]] [, LOCAL] [, UNORDERED | ORDERED(bool)] [,
STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to sample. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

numerator The number of records to return. The chosen records are evenly spaced from throughout
the recordset.

denominator Optional. The size of each set from which to return numerator number of records. If
omitted, the denominator value is the total number of records in the recordset.

which Optional. An integer specifying the ordinal number of the sample set to return. This is
used to obtain multiple non-overlapping samples from the same recordset. If the numer-
ator is not 1, then some records may overlap.

LOCAL Optional. Specifies that the sample is extracted on each supercomputer node without
regard to the number of records on other nodes, significantly improving performance if
exact results are not required.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: ENTH returns a set of records.

The ENTH function returns a sample set of records from the nominated recordset. ENTH returns numerator
number of records out of each denominator set of records in the recordset. Unless LOCAL is specified,
records are picked at exact intervals across all nodes of the supercomputer.

Example:

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 {STRING1 Letter});
Set1 := ENTH(SomeFile,2,10,1); // returns E, J, O, T, Y

// other examples
// MySample1 := ENTH(Person,1,10,1); // 10% (1 out of every 10)
// MySample2 := ENTH(Person,15,100,1); // 15% (15 out of every 100)
// MySample3 := ENTH(Person,3,4,1); // 75% (3 out of every 4)

See Also: CHOOSEN, SAMPLE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

209

ECL Language Reference
Built-in Functions and Actions

ERROR
ERROR [(errormessage | errorcode)] ;

ERROR (errorcode , errormessage) ;

ERROR(datatype [, [errorcode] [, errormessage]]) ;

errormessage Optional. A string constant containing the message to display.

errorcode Optional. An integer constant containing the error number to display.

datatype The value type or name of a RECORD structure. This may use the TYPEOF function.

The ERROR function immediately halts processing on the workunit and displays the errorcode and/or er-
rormessage. The third form is available for use in contexts where a value type or dataset is required. This
function does the same thing as the FAIL action, but may be used in an expression context, such as within
a TRANSFORM function.

Example:

outrec Xform(inrec L, inrec R) := TRANSFORM
 SELF.key := IF(L.key <= R.key, R.key,ERROR('Recs not in order'));
END;

See Also: FAILURE, FAIL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

210

ECL Language Reference
Built-in Functions and Actions

EVALUATE
EVALUATE action

[attrname :=] EVALUATE(expression) ;

[attrname :=] EVALUATE(module [, defname]) ;

attrname Optional. The action name, which turns the action into a definition, therefore not execut-
ed until the attrname is used as an action.

expression The function to call in an action context.

module The module to evaluate.

defname Optional. The name of a specific definition within the module to evaluate. If omitted, all
definitions in the module are evaluated.

The first form of the EVALUATE action names an expression (typically a function call) to execute in an
action context. This is mainly useful for calling functions that have side-effects, where you don't care about
the return value.

The second form of the EVALUATE action recursively expands the exported definitions of the module and
evaluates them. If a defname is specified, then only that definition is evaluated.

Example:

Form 1 example:

myService := SERVICE
 UNSIGNED4 doSomething(STRING text);
END;

ds := DATASET('MyFile', {STRING20 text} , THOR);

APPLY(ds, EVALUATE(doSomething(ds.text)));
 //calls the doSomething function once for each record in the ds
 // dataset, ignoring the returned values from the function

Form 2 example:

M := MODULE
 EXPORT a := OUTPUT(10);
 EXPORT b := OUTPUT('Hello');
END;

M2 := MODULE
 EXPORT mx := M;
 EXPORT d := OUTPUT('Richard');
END;

EVALUATE(M2);
//produces three results:
// Result_1: 10
// Result_2: Hello
// Result_3: Richard

See Also: APPLY, SERVICE Structure,

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

211

ECL Language Reference
Built-in Functions and Actions

EVALUATE function
EVALUATE(onerecord, value)

onerecord A record set consisting of a single record.

value The value to return. This may be any expression yielding a value.

Return: EVALUATE returns a single value.

The EVALUATE function returns the value evaluated in the context of the onerecord set (which must be a
single record, only). This function typically uses indexing to select a single record for the onerecord record-
set. The usage is to return a value from a specific child record when operating at the parent record's scope
level. The advantage that EVALUATE has over using recordset indexing into a single field is that the value
returned can be any expression and not just a single field from the child dataset.

Accessing Field-level Data in a Specific Record
To access field level data in a specific record, the recordset indexing capability must be used to select a
single record. The SORT function and recordset filters are useful in selecting and ordering the recordset
so that the appropriate record can be selected.

Example:

TrdRec := RECORD
 UNSIGNED2 Trd_ID;
 INTEGER4 Trd_bal;
 INTEGER4 Trd_hc;
END;
PersonRec := RECORD
 STRING20 FirstName;
 STRING20 LastName;
 DATASET(TrdRec) Trd;
END;
Person := DATASET([{'Fred','Jones',[{1,2,3},{2,4,5}]},
 {'Sue','Smith',[{10,-2,60},{12,14,50}]},
 {'Joe','Johnson',[{11,200,3000},{22,140,350},{25,100,850}]},
 {'Susan','Stone',[{102,2,30},{125,14,50},{225,14000,50000}]}],PersonRec);
Trades := Person.Trd;
ValidMoney(n) := n > 0;
ValidBalTrades := trades(ValidMoney(trades.trd_bal));
HighestBals := SORT(ValidBalTrades,-trades.trd_bal);
Highest_HC := EVALUATE(HighestBals[1],trades.trd_hc);
 //return trd_hc field of the trade with the highest balance
 // could also be coded as (using indexing):
 // Highest_HC := HighestBals[1].trades.trd_hc;

OUTPUT(Person,{lastname,firstname,Highest_HC});
 //output that Highest_HC for each person
 //This output operates at the scope of the Person record
 // EVALUATE is needed to get the value from a Trades record
 // because Trades is a Child of Person

See Also: SORT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

212

ECL Language Reference
Built-in Functions and Actions

EVENT
EVENT(event , subtype)

event A case-insensitive string constant naming the event to trap.

subtype A case-insensitive string constant naming the specific type of event to trap. This may
contain * and ? to wildcard-match the event's sub-type.

Return: EVENT returns a single event.

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the
WAIT and NOTIFY actions.

Example:

IMPORT STD;
MyEventName := 'MyFileEvent';
MyFileName := 'test::myfile';

IF (STD.File.FileExists(MyFileName),
 STD.File.DeleteLogicalFile(MyFileName));
 //deletes the file if it already exists

STD.File.MonitorLogicalFileName(MyEventName,MyFileName);
 //sets up monitoring and the event name
 //to fire when the file is found

OUTPUT('File Created') : WHEN(EVENT(MyEventName,'*'),COUNT(1));
 //this OUTPUT occurs only after the event has fired

afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
OUTPUT(afile,,MyFileName);
 //this creates a file that the DFU file monitor will find
 //when it periodically polls

//**********************************
EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
END;
BUILD(teenagers): WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));

See Also: EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

213

ECL Language Reference
Built-in Functions and Actions

EVENTNAME
EVENTNAME

Return: EVENTNAME returns a single string value.

EVENTNAME returns the name of the trigger event.

Example:

doMyService := FUNCTION
 O := OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 N := NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN WHEN(EVENTEXTRA('returnTo'),ORDERED(O,N));
END;
OUTPUT(doMyService) : WHEN('MyService');

// and a call (in a separate workunit):
NOTIFY('MyService',
 '<Event><returnTo>'+ WORKUNIT + '</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

214

ECL Language Reference
Built-in Functions and Actions

EVENTEXTRA
EVENTEXTRA(tag)

Return: EVENTEXTRA returns a single string value.

The EVENTEXTRA function returns the contents of the tag from the XML text in the EVENT function's
second parameter.

Example:

doMyService := FUNCTION
 O := OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 N := NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN WHEN(EVENTEXTRA('returnTo'),ORDERED(O,N));
END;
OUTPUT(doMyService) : WHEN('MyService');

// and a call (in a separate workunit):
NOTIFY('MyService',
 '<Event><returnTo>'+ WORKUNIT + '</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTNAME, CRON, WHEN, WAIT, NOTIFY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

215

ECL Language Reference
Built-in Functions and Actions

EXISTS
EXISTS(recordset [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PAR-
ALLEL [(numthreads)]] [, ALGORITHM(name)])

EXISTS(valuelist)

recordset The set of records to process. This may be the name of an index, a dataset, or a record
set derived from some filter condition, or any expression that results in a derived record
set.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

valuelist A comma-delimited list of expressions. This may also be a SET of values.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: EXISTS returns a single BOOLEAN value.

The EXISTS function returns true if the number of records in the specified recordset is > 0, or the valuelist
is populated. This is most commonly used to detect whether a filter has filtered out all the records.

When checking for an empty recordset, use the EXISTS(recordset) function instead of the expression:
COUNT(recordset) > 0. Using EXISTS results in more efficient processing and better performance under
those circumstances.

Example:

TrdRec := RECORD
 UNSIGNED2 Trd_ID;
 INTEGER4 Trd_bal;
 INTEGER4 Trd_hc;
END;

PersonRec := RECORD
 STRING20 FirstName;
 STRING20 LastName;
 DATASET(TrdRec) Trd;
END;

Person := DATASET([{'Noah','Brody',[]},
 {'Fred','Jones',[{1,2,3},{2,4,5}]},
 {'Sue','Smith',[{10,-2,60},{12,14,50}]},
 {'Joe','Johnson',[{11,200,3000},{22,140,350},{25,100,850}]},
 {'Susan','Stone',[{102,2,30},{125,14,50},{225,14000,50000}]}],PersonRec);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

216

ECL Language Reference
Built-in Functions and Actions

Trades := Person.Trd;

MyBoolean := EXISTS(Trades(Trd_ID = 15));
OUTPUT(MyBoolean); //returns FALSE

TradesExistPersons := Person(EXISTS(Trades));
OUTPUT(TradesExistPersons); //returns 4 records

NoTradesPerson := Person(NOT EXISTS(Trades));
OUTPUT(NoTradesPerson); //returns 1 record

SetExists1 := EXISTS(4,8,16,2,1);
OUTPUT(SetExists1); //returns TRUE

SetVals := [4,8,16,2,1];
SetExists2 := EXISTS(SetVals);
OUTPUT(SetExists2); //returns TRUE

EmptySet := [];
SetExists3 := EXISTS(EmptySet);
OUTPUT(SetExists3); //returns FALSE

See Also: DEDUP, Record Filters

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

217

ECL Language Reference
Built-in Functions and Actions

EXP
EXP(n)

n The real number to evaluate.

Return: EXP returns a single real value.

The EXP function returns the natural exponential value of the parameter (en). This is the opposite of the
LN function.

Example:

MyPI := EXP(3.14159);
Interim := ROUND(1000 * (EXP(MyPI)/(1 + EXP(MyPI))));
OUTPUT(Interim);

See Also: LN, SQRT, POWER

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

218

ECL Language Reference
Built-in Functions and Actions

FAIL
[attrname :=] FAIL [(errormessage | errorcode)] ;

[attrname :=] FAIL(errorcode , errormessage) ;

[attrname :=] FAIL(datatype [, [errorcode] [, errormessage]]) ;

attrname Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attrname is used as an action.

errormessage Optional. A string constant containing the message to display.

errorcode Optional. An integer constant containing the error number to display.

datatype The value type, name of a RECORD structure, DATASET, or DICTIONARY to emulate.

The FAIL action immediately halts processing on the workunit and displays the errorcode and/or errormes-
sage. The third form is available for use in contexts where a value type or dataset is required. FAIL may
not be used in an expression context (such as within a TRANSFORM)--use the ERROR function for those
situations.

Example:

MyRec := RECORD
 STRING50 Value1;
 UNSIGNED Value2;
END;

ds := DATASET([{'C',1},{'C',2},{'C',3},
 {'C',4},{'C',5},{'X',1},{'A',1}],MyRec);

MyRec FailTransform := TRANSFORM
 self.value1 := FAILMESSAGE[1..17];
 self.value2 := FAILCODE
END;

limited1 := LIMIT(ds, 2);
limited2 := LIMIT(ds, 3);
limited3 := LIMIT(ds, 4);

recovered1 := CATCH(limited1, SKIP);
recovered2 := CATCH(limited2, ONFAIL(FailTransform));
recovered3 := CATCH(CATCH(limited3, FAIL(1, 'Failed, sorry')), ONFAIL(FailTransform));

OUTPUT(recovered1); //empty recordset
OUTPUT(recovered2); //
OUTPUT(recovered3); //

See Also: FAILURE, ERROR

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

219

ECL Language Reference
Built-in Functions and Actions

FAILCODE
FAILCODE

The FAILCODE function returns the last failure code, for use in the FAILURE workflow service or in the
TRANSFORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

MyRec := RECORD
 STRING50 Value1;
 UNSIGNED Value2;
END;

ds := DATASET([{'C',1},{'C',2},{'C',3},
 {'C',4},{'C',5},{'X',1},{'A',1}],MyRec);

MyRec FailTransform := TRANSFORM
 self.value1 := FAILMESSAGE[1..17];
 self.value2 := FAILCODE
END;

limited1 := LIMIT(ds, 2);
limited2 := LIMIT(ds, 3);
limited3 := LIMIT(ds, 4);

recovered1 := CATCH(limited1, SKIP);
recovered2 := CATCH(limited2, ONFAIL(FailTransform));
recovered3 := CATCH(CATCH(limited3, FAIL(1, 'Failed, sorry')), ONFAIL(FailTransform));

OUTPUT(recovered1); //empty recordset
OUTPUT(recovered2); //
OUTPUT(recovered3); //

See Also: FAILURE, FAILMESSAGE, SOAPCALL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

220

ECL Language Reference
Built-in Functions and Actions

FAILMESSAGE
FAILMESSAGE [(tag)]

tag A string constant defining the name of XML tag containing the text to return, typically extra
information returned by SOAPCALL. If omitted, the default is 'text.'

The FAILMESSAGE function returns the last failure message for use in the FAILURE workflow service or
the TRANSFORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

MyRec := RECORD
 STRING50 Value1;
 UNSIGNED Value2;
END;

ds := DATASET([{'C',1},{'C',2},{'C',3},
 {'C',4},{'C',5},{'X',1},{'A',1}],MyRec);

MyRec FailTransform := TRANSFORM
 self.value1 := FAILMESSAGE[1..17];
 self.value2 := FAILCODE
END;

limited1 := LIMIT(ds, 2);
limited2 := LIMIT(ds, 3);
limited3 := LIMIT(ds, 4);

recovered1 := CATCH(limited1, SKIP);
recovered2 := CATCH(limited2, ONFAIL(FailTransform));
recovered3 := CATCH(CATCH(limited3, FAIL(1, 'Failed, sorry')), ONFAIL(FailTransform));

OUTPUT(recovered1); //empty recordset
OUTPUT(recovered2); //
OUTPUT(recovered3); //

See Also: RECOVERY, FAILCODE, SOAPCALL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

221

ECL Language Reference
Built-in Functions and Actions

FETCH
FETCH(basedataset, index, position [, transform] [, LOCAL] [, UNORDERED | ORDERED(bool)] [,
STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

basedataset The base DATASET attribute to process. Filtering is not allowed.

index The INDEX attribute that provides keyed access into the basedataset. This will typically
have a filter expression.

position An expression that provides the means of locating the correct record in the basedataset
(usually the field within the index containing the fileposition value).

transform The TRANSFORM function to call for each record fetched from the basedataset. If omit-
ted, FETCH returns a set containing all fields from both the basedataset and index, with
the second of any duplicate named fields removed.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: FETCH returns a record set.

The FETCH function processes through all records in the index in the order specified by the index, fetching
each related record from the basedataset and performing the transform function.

The index will typically have a filter expression to specify the exact set of records to return from the base-
dataset. If the filter expression defines a single record in the basedataset, FETCH will return just that one
record. See KEYED/WILD for a discussion of INDEX filtering.

FETCH TRANSFORM Function Requirements
The transform function must take up to two parameters: a LEFT record that must be of the same format
as the basedataset, and an optional RIGHT record that that must be of the same format as the index. The
optional second parameter is useful in those instances where the index contains information not present
in the recordset.

Example:

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

222

ECL Language Reference
Built-in Functions and Actions

 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

PtblOut := OUTPUT(TABLE(Person,PtblRec),,'RTTEMP::TestFetch');
Ptbl := DATASET('RTTEMP::TestFetch',
 {PtblRec,UNSIGNED8 __fpos {VIRTUAL(fileposition)}},
 FLAT);

Bld := BUILD(Ptbl,
 {state,city,lname,fname,__fpos},
 'RTTEMPkey::TestFetch');

AlphaInStateCity := INDEX(Ptbl,
 {state,city,lname,fname,__fpos},
 'RTTEMPkey::TestFetch');

TYPEOF(Ptbl) copy(Ptbl l) := TRANSFORM
 SELF := l;
END;

AlphaPeople := FETCH(Ptbl,
 AlphaInStateCity(state='FL',
 city ='BOCA RATON',
 Lname='WIK',
 Fname='PICHA'),
 RIGHT.__fpos,
 copy(LEFT));

OutFile := OUTPUT(CHOOSEN(AlphaPeople,10));
SEQUENTIAL(PtblOut,Bld,OutFile)

//NOTE the use of a filter on the index file. This is an important
// use of standard filtering technique in conjunction with indexing
// to achieve optimal "random" access into the base record set

See Also: TRANSFORM Structure, RECORD Structure, BUILDINDEX, INDEX, KEYED/WILD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

223

ECL Language Reference
Built-in Functions and Actions

FROMJSON
FROMJSON(record, jsonstring ,[ONFAIL(transform)])

record The RECORD structure to produce. Each field should specify the XPATH to the data in
the jsonstring that it should hold. If omitted, the lower-cased field names are used.

jsonstring A string containing the JSON to convert.

ONFAIL Optional. Specifies a transform to handle errors in the JSON.

transform A TRANSFORM structure matching the record structure of the first parameter.

Return: FROMJSON returns a single row (record).

The FROMJSON function returns a single row (record) in the record format from the specified jsonstring.
This may be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
x := '{"FName": "George" , "LName": "Jetson", "EmpID": 42}';
rec := FROMJSON(namesRec,x);
OUTPUT(rec);

Example with Error handling and bad JSON:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING20 Firstname{xpath('FName')};
 STRING20 Lastname{xpath('LName')};
END;
x := '{"FName": "malformedJSON""George" , "LName": "Jetson", "EmpID": 42}';

namesRec createFailure() :=
 TRANSFORM
 SELF.FirstName := FAILMESSAGE;
 SELF := [];
 END;
rec := FROMJSON(namesRec,x,ONFAIL(createFailure()));
OUTPUT(rec);

See Also: ROW, TOJSON

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

224

ECL Language Reference
Built-in Functions and Actions

FROMUNICODE
FROMUNICODE(string, encoding)

string The UNICODE string to translate.

encoding The encoding codepage (supported by IBM's ICU) to use for the trans-
lation.

Return: FROMUNICODE returns a single DATA value.

The FROMUNICODE function returns the string translated from the specified encoding to a DATA value.

Example:

DATA5 x := FROMUNICODE(u'ABCDE','UTF-8'); //results in 4142434445
OUTPUT(x);

See Also: TOUNICODE, UNICODEORDER

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

225

ECL Language Reference
Built-in Functions and Actions

FROMXML
FROMXML(record, xmlstring ,[ONFAIL(transform)])

record The RECORD structure to produce. Each field must specify the XPATH to the data in
the xmlstring that it should hold.

xmlstring A string containing the XML to convert.

ONFAIL Optional. Specifies a transform to handle errors in the XML.

transform A TRANSFORM structure matching the record structure of the first parameter.

Return: FROMXML returns a single row (record).

The FROMXML function returns a single row (record) in the record format from the specified xmlstring. This
may be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
x := '<Row><FName>George</FName><LName>Jetson</LName><EmpID>42</EmpID></Row>';
rec := FROMXML(namesRec,x);
OUTPUT(rec);

Example with Error handling and bad XML:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING20 Firstname{xpath('FName')};
 STRING20 Lastname{xpath('LName')};
END;
x := '<Row><FName>George</FName><LName><unmatchedtag>Jetson</LName><EmpID>42</EmpID></Row>';

namesRec createFailure() :=
 TRANSFORM
 SELF.FirstName := FAILMESSAGE;
 SELF := [];
 END;
rec := FROMXML(namesRec,x,ONFAIL(createFailure()));
OUTPUT(rec);

See Also: ROW, TOXML

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

226

ECL Language Reference
Built-in Functions and Actions

GETENV
GETENV(name [, default])

name A string constant containing the name of the environment variable.

default Optional. A string constant containing the default value to use if the environment variable
does not exist.

Return: GETENV returns a STRING value.

The GETENV function returns the value of the named environment variable. If the environment variable
does not exist or contains no value, the default value is returned.

Example:

g1 := GETENV('namesTable');
g2 := GETENV('myPort','25');

OUTPUT(GETENV('HPCC_DEPLOYMENT', 'unknown'));
OUTPUT(g1);
OUTPUT(g2);

See Also: Environment Variables

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

227

ECL Language Reference
Built-in Functions and Actions

GETSECRET
GETSECRET(secretname, valuename)

secretname A string constant containing the name of the secret.

valuename A string constant containing the name of the key within the secretname for which you
want the value.

Return: GETSECRET returns a STRING value.

The GETSECRET function retrieves a Kubernetes or Vault secret.

ECL code can only access secrets under the eclUser category. Other categories are intended for system
use or use only by internal ECL functions.

A secret is a collection of key value pairs. The first argument is the name of the secret and that secret can
contain multiple key value pairs. The second argument is the actual key within that secret for which you
want to retrieve the value.

Example:

// This example assumes a secret named k8s-example has been created on your K8s deployment
// and it contains a key named crypt.key

IMPORT STD;

STRING pubKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
 'MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCWnKkGM0l3Y6pKhxMq87hAGBL6' + '\n' +
 'FfEo2HC6XCSQuaAMLkdf7Yjn3FpvFIEO6A1ZYJy70cT8+HOFta+sSUyMn2fDc5cv' + '\n' +
 'VdX8v7XCycYXEBeZ4KsTCHHPCUoO/nxNbxhNz09T8dx/JsIH50LHipR6FTLTSCXR' + '\n' +
 'N9KVLaPXs5DdQx6PjQIDAQAB' + '\n' +
 '-----END PUBLIC KEY-----' + '\n';

//--------------
//K8S Example
//--------------

DATA k8sData := x'5C62E1843162330ED7BDAB7F37E50F892A669B54B8A466ED421F14954AA'+
 '0505BA9EADAC4DA1D1FB1FD53EBDCF729D1049F893B3EE53ECCE48813A5'+
 '46CF58EBBB26EF5B9247002F7A8D1F90C3C372544501A126CEFC4B385BF'+
 '540931FC0224D4736E4E1E4CF0C67D035063900887C240C8C4F365F0186'+
 'D0515E98B23C75E482A';

VARSTRING k8sKey := (VARSTRING) GETSECRET('k8s-example', 'crypt.key');
k8sEncModule := Std.Crypto.PKEncryptionFromBuffer('RSA', pubKey, k8sKey);
OUTPUT((STRING)k8sEncModule.Decrypt(k8sData), NAMED('k8s_message'));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

228

ECL Language Reference
Built-in Functions and Actions

GLOBAL
GLOBAL(expression [, FEW | MANY])

expression The expression to evaluate at a global scope.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This
allows optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many records.

Return: GLOBAL may return scalar values or record sets.

The GLOBAL function evaluates the expression at a global scope, similar to what the GLOBAL workflow
service does but without the need to define a separate attribute.

Example:

IMPORT doxie;
besr := doxie.best_records;
ssnr := doxie.ssn_records;

//**** Individual record defs
recbesr := RECORDOF(besr);
recssnr := RECORDOF(ssnr);

//**** Monster record def
rec := RECORD, MAXLENGTH(doxie.maxlength_report)
 DATASET(recbesr) best_information_children;
 DATASET(recssnr) ssn_children;
END;
nada := DATASET([0], {INTEGER1 a});
rec tra(nada l) := TRANSFORM
 SELF.best_information_children := GLOBAL(besr);
 SELF.ssn_children := GLOBAL(ssnr);
END;
EXPORT central_records := PROJECT(nada, tra(left));

See Also: GLOBAL Workflow Service

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

229

ECL Language Reference
Built-in Functions and Actions

GRAPH
GRAPH(recordset , iterations , processor [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE]
[, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The initial set of records to process.

iterations The number of times to call the processor function.

processor The function attribute to process the input. This function may use the following as argu-
ments:

ROWSET(LEFT) Specifies the set of input datasets, which may be indexed
 to specify the result set from any specific iteration --
 ROWSET(LEFT)[0] indicates the initial input recordset while
 ROWSET(LEFT)[1] indicates the result set from the first
 iteration. This may also be used as the first parameter
 to the RANGE function to specify a set of datasets
 (allowing the graph to efficiently process N-ary merge/join
 arguments).

COUNTER Specifies an INTEGER parameter for the graph iteration number.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: GRAPH returns the record set result of the last of the iterations.

The GRAPH function is similar to the LOOP function, but it executes as though all the iterations of the
processor call were expanded out, removing any branches that can't be executed, and then joined together.
The resulting graph is as efficient as if the graph had been expanded out by hand.

This function is named GRAPH because it creates an execution graph at runtime (typically used in ROXIE
queries) from a collection of compile-time components. The ROWSET(LEFT) keyword indicates that each
iteration adds its result to the SET OF DATASETs passed to the next iteration. That means the result of
each iteration must be a dataset in the same format as the initial input recordset parameter. Typical use
of the GRAPH() function would be in queries for which each subsequent iteration requires access to any/
all previous iterations' results.

Example:

//This simple example demonstrates text searching
// for a variable number of search terms.
//For simplicity's sake this example uses sets,
// whereas in a production query you would most likely

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

230

ECL Language Reference
Built-in Functions and Actions

// use inverted indexes into your huge datasets.

IMPORT Std;
//layout of the dataset containing text to search:
Rec := {UNSIGNED1 RecID, STRING line};
//The text search function:
SearchText(STRING SearchFor, DATASET(Rec) SearchIn) := FUNCTION
 //uppercase and clean the data:
 Ltrs := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
 Upper(STRING s) := Std.Str.toUpperCase(s);
 LosePunc(STRING s) := STD.Str.SubstituteExcluded(Upper(s),Ltrs,' ');

 //create a set of words:
 SetWords(STRING s) := Std.Str.SplitWords(s,' ');

 //the set of words to search for:
 SearchWords := SetWords(LosePunc(SearchFor));

 //split the text lines to search into sets of words:
 LineWords :=
 PROJECT(SearchIn,
 TRANSFORM({UNSIGNED1 RecID,SET OF STRING wordset},
 SELF.wordset := SetWords(LosePunc(LEFT.line)),
 SELF := LEFT));

 //the graph processor function:
 GraphWork(SET OF DATASET(RECORDOF(LineWords)) ds, UNSIGNED4 C) := FUNCTION
 //find all matches for the current iteration's word:
 NewMatches := LineWords(SearchWords[C] IN wordset);
 //return only those lines that were also in
 // the previous iteration's result:
 RETURN JOIN(ds[C-1],NewMatches,LEFT.RecID = RIGHT.RecID);
 END;
 GraphRes := GRAPH(LineWords,
 COUNT(SearchWords),
 GraphWork(ROWSET(LEFT),COUNTER));

 //Return original records where all search terms were found:

 RETURN SearchIn(RecID IN SET(GraphRes,RecID));
END;

ds1 := DATASET([{1,'It is a truth universally acknowledged, that a single man' +
 ' in possession of a good fortune, must be in want of a wife.'},
 {2,'"My dear Mr. Bennet," said his lady to him one day,' +
 ' "have you heard that Netherfield Park is let at last?"'},
 {3,'Mr. Bennet replied that he had not.'},
 {4,'"But it is," returned she; "for Mrs. Long has just been here,' +
 ' and she told me all about it."'},
 {5,'Mr. Bennet made no answer.'},
 {6,'"Do you not want to know who has taken it?" cried his' +
 ' wife impatiently.'},
 {7,'"You want to tell me, and I have no objection to hearing it."'}],Rec);

SearchText('Mr. Bennet',ds1); //returns 2, 3, 5
SearchText('Mr. Bennet said',ds1); //returns 2

See Also: LOOP, RANGE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

231

ECL Language Reference
Built-in Functions and Actions

GROUP
GROUP(recordset [, breakcriteria [, ALL]] [, LOCAL] [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to fragment.

breakcriteria Optional. A comma-delimited list of expressions or key fields in the recordset that spec-
ifies how to fragment the recordset. You may use the keyword RECORD to indicate all
fields in the recordset, and/or you may use the keyword EXCEPT to list non-group fields
in the structure. You may also use the keyword ROW to indicate each record in the
recordset is a separate group. If omitted, the recordset is ungrouped from any previous
grouping.

ALL Optional. Indicates the breakcriteria is applied without regard to any previous order. If
omitted, GROUP assumes the recordset is already sorted in breakcriteria order.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: GROUP returns a record set.

The GROUP function fragments a recordset into a set of sets. This allows aggregations and other operations
(such as ITERATE, DEDUP, ROLLUP, SORT and others) to occur within defined subsets of the data--the
operation executes on each subset, individually. This means that the boundary condition code written in the
TRANSFORM function for those functions that use them will be different than it would be for a recordset
that has simply been SORTed.

The recordset must be sorted by the same elements as the breakcriteria if the ALL option is not specified.

The recordset gets 'ungrouped' by use in a TABLE function, by the JOIN function in some circumstances
(see JOIN), by UNGROUP, or by another GROUP function with the second parameter omitted.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

232

ECL Language Reference
Built-in Functions and Actions

STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);

SortedSet := SORT(Person,last_name); //sort by last name
GroupedSet := GROUP(SortedSet,last_name); //then group them
OUTPUT(GroupedSet);

SecondSort := SORT(GroupedSet,first_name);
 //sorts by first name within each last name group
 // this is a "sort within group"
OUTPUT(SecondSort);

UnGroupedSet := GROUP(GroupedSet); //ungroup the dataset
OUTPUT(UnGroupedSet);

See Also: REGROUP, COMBINE, UNGROUP, EXCEPT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

233

ECL Language Reference
Built-in Functions and Actions

HASH
HASH(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH returns a single value.

The HASH function returns a 32-bit hash value derived from all the values in the expressionlist. Trailing
spaces are trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA pre-
vents this).

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

OUTPUT(Person,{SSN,HASH(SSN)});
 //output SSN and its hash value

See Also: DISTRIBUTE, HASH32, HASH64, HASHCRC, HASHMD5

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

234

ECL Language Reference
Built-in Functions and Actions

HASH32
HASH32(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH32 returns a single value.

The HASH32 function returns a 32-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the
expressionlist. This uses a hashing algorithm that is faster and less likely than HASH to return the same
values from different data. Trailing spaces are trimmed from string (or UNICODE) fields before the value
is calculated (casting to DATA prevents this).

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

OUTPUT(Person,{SSN,HASH32(SSN)});
 //output SSN and its 32-bit hash value

See Also: DISTRIBUTE, HASH, HASH64, HASHCRC, HASHMD5

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

235

ECL Language Reference
Built-in Functions and Actions

HASH64
HASH64(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH64 returns a single value.

The HASH64 function returns a 64-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the
expressionlist. Trailing spaces are trimmed from string (or UNICODE) fields before the value is calculated
(casting to DATA prevents this).

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

OUTPUT(Person,{SSN,HASH64(SSN)});
 //output SSN and its 64-bit hash value

See Also: DISTRIBUTE, HASH, HASH32, HASHCRC, HASHMD5

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

236

ECL Language Reference
Built-in Functions and Actions

HASHCRC
HASHCRC(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASHCRC returns a single value.

The HASHCRC function returns a CRC (cyclical redundancy check) value derived from all the values in
the expressionlist.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

OUTPUT(Person,{SSN,HASHCRC(SSN)});
 //output SSN and its CRC hash value

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHMD5

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

237

ECL Language Reference
Built-in Functions and Actions

HASHMD5
HASHMD5(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASHMD5 returns a single DATA16 value.

The HASHMD5 function returns a 128-bit hash value derived from all the values in the expressionlist, based
on the MD5 algorithm developed by Professor Ronald L. Rivest of MIT. Unlike other hashing functions,
trailing spaces are NOT trimmed before the value is calculated.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

OUTPUT(Person,{SSN,HASHMD5(SSN)});
 //output SSN and its MD5 hash value

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHCRC

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

238

ECL Language Reference
Built-in Functions and Actions

HAVING
HAVING(groupdataset, expression [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

groupdataset The name of a GROUPed record set.

expression The logical expression by which to filter the groups.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When
True, specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported
algorithms for the SORT function's STABLE and UNSTABLE options.

Return: HAVING returns a GROUPed record set.

The HAVING function returns a GROUPed record set containing just those groups for which the expression
is true. This is similar to the HAVING clause in SQL.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
STRING SSN
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022','000-423-6567'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604','000-123-4567'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101','000-123-3383'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108','000-123-4464'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116','000-123-5556'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131','000-123-7890'}], personRecord);

MyGroups := GROUP(SORT(Person,state),state);
 //group by state
Filtered := HAVING(MyGroups,COUNT(ROWS(LEFT)) > 1);
 //filter out the small groups
OUTPUT(Filtered);

See Also: GROUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

239

ECL Language Reference
Built-in Functions and Actions

HTTPCALL
result := HTTPCALL(url, httpmethod, responsemimetype, outstructure [, options]);

result The definition name for the resulting recordset.

url A string containing the URL that hosts the service to invoke. This may contain
parameters to the service.

httpmethod A string containing the HTTP Method to invoke. Valid methods are: "GET"

responsemimetype A string containing the Response MIME type to use. Valid types are: "text/xml"

outstructure A RECORD structure containing the output field definitions. For an XML-based
responsemimetype these should use XPATH to specify the exact data path.

options A comma-delimited list of optional specifications from the list below.

HTTPCALL is a function that calls a REST service.

Valid options are:

RETRY(count) Specifies re-attempting the call count number of times if non-fatal errors
occur. If omitted, the default is three (3).

TIMEOUT(period) Specifies the amount of time to attempt the read before failing. The period is
a real number where the integer portion specifies seconds. Setting to zero
(0) indicates waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT(period) Specifies the total amount of time allowed for the HTTPCALL. The period is
a real number where the integer portion specifies seconds. If omitted, the
default is zero (0) indicating no limit.

XPATH(xpath) Specifies the path used to access rows in the output. If omitted, the default
is: 'serviceResponse/Results/Result/Dataset/Row'.

ONFAIL(transform) Specifies either the transform function to call if the service fails for a partic-
ular record, or the keyword SKIP. The TRANSFORM function must produce
a resultype the same as the outstructure and may use FAILCODE and/or
FAILMESSAGE to provide details of the failure.

TRIM Specifies all trailing spaces are removed from strings before output.

HTTPHEADER Specifies header information to be passed to the service. HTTPCALL sup-
ports multiple instances of the HTTPHEADER option if you need to specify
multiple key/value header strings.

Example:

worldBankSource := RECORD
 STRING name {XPATH('name')}
END;

OutRec1 := RECORD
 DATASET(worldBankSource) Fred{XPATH('/source')};
END;

raw := HTTPCALL('http://api.worldbank.org/sources', 'GET', 'text/xml', OutRec1,);

OUTPUT(raw);

////Using HTTPHEADER to pass Authorization info

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

240

ECL Language Reference
Built-in Functions and Actions

raw2 := HTTPCALL('http://api.worldbank.org/sources', 'GET', 'text/xml',
 OutRec1, HTTPHEADER('Authorization','Basic dXNlcm5hbWU6cGFzc3dvcmQ='),
 HTTPHEADER('MyLiteral','FOO'));

OUTPUT(raw2);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

241

ECL Language Reference
Built-in Functions and Actions

IF
IF(expression, trueresult [, falseresult])

expression A conditional expression.

trueresult The result to return when the expression is true. This may be any expression or action.

falseresult The result to return when the expression is false. This may be any expression or action.
This may be omitted only if the result is an action.

Return: IF returns a single value, set, recordset, or action.

The IF function evaluates the expression (which must be a conditional expression with a Boolean result) and
returns either the trueresult or falseresult based on the evaluation of the expression. Both the trueresult and
falseresult must be the same type (i.e. both strings, or both recordsets, or ...). If the trueresult and falseresult
are strings, then the size of the returned string will be the size of the resultant value. If subsequent code
relies on the size of the two being the same, then a type cast to the required size may be required (typically
to cast an empty string to the proper size so subsequent string indexing will not fail).

Example:

MyDate := IF(ValidDate(Trades.trd_dopn),Trades.trd_dopn,0);
 // in this example, 0 is the false value and
 // Trades.trd_dopn is the True value returned

MyTrades := IF(person.per_sex = 'Male',
 Trades(trd_bal<100),
 Trades(trd_bal>1000));
 // return low balance trades for men and high balance
 // trades for women

MyAddress := IF(person.gender = 'M',
 cleanAddress182(person.address),
 (STRING182)'');
 //cleanAddress182 returns a 182-byte string
 // so casting the empty string false result to a
 // STRING182 ensures a proper-length string return

See Also: IFF, MAP, EVALUATE, CASE, CHOOSE, SET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

242

ECL Language Reference
Built-in Functions and Actions

IFF
IFF(expression, trueresult [, falseresult])

expression A conditional expression.

trueresult The result to return when the expression is true. This may be any expression or action.

falseresult The result to return when the expression is false. This may be any expression or action.
This may be omitted only if the result is an action.

Return: IF returns a single value, set, recordset, or action.

The IFF function performs the same functionality as IF, but ensures that an expression containing complex
boolean logic is evaluated exactly as it appears.

The main difference between IF and IFF is with conditional scalar expressions. Generally the arguments to
dataset IF() operators are always evaluated lazily, but there are situations, if the expression type is a row
or a scalar, where they might not be.

For example:

foo := IF (age < 18, '', expensiveFunction());

Then there is no guarantee that expensiveFunction will not be executed. If you use IFF() the code generator
internally converts it to a dataset expression, ensuring it is evaluated lazily.

See Also: IF, MAP, EVALUATE, CASE, CHOOSE, SET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

243

ECL Language Reference
Built-in Functions and Actions

IMPORT
resulttype funcname (parameterlist) := IMPORT(language, function [:TIME [(label)]]);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist A comma separated list of the parameters to pass to the function.

language Specifies the name of the external programming language whose code you wish
to embed in your ECL. A language support module for that language must have
been installed in your plugins directory. Modules are provided for languages such
as Java and Python. You can write your own pluggable language support module
for any language not already supported by using the supplied ones as examples
or starting points.

function A string constant containing the name of the function to include.

TIME Tracks timing of an external function call or embedded source code and reports
them back as metrics to the user.

label Optional. A string constant containing the name to associate with the timer. If
omitted, the default is used.

The IMPORT declaration allows you to call existing code written in the external language. Java code must
be placed in a .java file and compiled using the javac compiler in the usual way. All Java classes used
must be thread safe.

WARNING: This feature could create memory corruption and/or security issues, so great care and
forethought are advised--consult with Technical Support before using.

Example:

IMPORT JAVA;
INTEGER jadd(INTEGER a, INTEGER b) := IMPORT(java, 'JavaCat.add:(II)I': TIME('MyTime'));
jadd (22,23);

See Also: IMPORT, EMBED Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

244

ECL Language Reference
Built-in Functions and Actions

INTFORMAT
INTFORMAT(expression, width, mode)

expression The expression that specifies the integer value to format.

width The size of string in which to right-justify the value. If the expression width is greater than
this width, the result is filled with asterisks (*).

mode The format type: 0 = leading blank fill, 1 = leading zero fill.

Return: INTFORMAT returns a single value.

The INTFORMAT function returns the value of the expression formatted as a right-justified string of width
characters.

Example:

val := 123456789;
OUTPUT(INTFORMAT(val,20,1));
 //formats as '00000000000123456789'
OUTPUT(INTFORMAT(val,20,0));
 //formats as ' 123456789'
OUTPUT(INTFORMAT(val,2,0));
 //formats as '**'

See Also: REALFORMAT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

245

ECL Language Reference
Built-in Functions and Actions

ISVALID
ISVALID(field)

field The name of a DECIMAL, REAL, or alien data TYPE field.

Return: ISVALID returns a single Boolean value.

The ISVALID function validates that the field contains a legal value. If the contents are not valid for the
declared value type of the field (such as hexadecimal values greater than 9 in a DECIMAL), ISVALID returns
FALSE, otherwise it returns TRUE.

Example:

MyVal := IF(ISVALID(Infile.DecimalField),Infile.DecimalField,0);
//ISVALID returns TRUE if the value is legal

See Also: TYPE Structure, DECIMAL, REAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

246

ECL Language Reference
Built-in Functions and Actions

ITERATE
ITERATE(recordset, transform [, LOCAL] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE]
[, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process.

transform The TRANSFORM function to call for each record in the recordset.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, without
requiring interaction with all other nodes to acquire data; the operation maintains the distribution of any
previous DISTRIBUTE.

Return: ITERATE returns a record set.

The ITERATE function processes through all records in the recordset one pair of records at a time, perform-
ing the transform function on each pair in turn. The first record in the recordset is passed to the transform
as the first right record, paired with a left record whose fields are all blank or zero. Each resulting record
from the transform becomes the left record for the next pair.

TRANSFORM Function Requirements - ITERATE
The transform function must take at least two parameters: LEFT and RIGHT records that must both be
of the same format as the resulting recordset. An optional third parameter may be specified: an integer
COUNTER specifying the number of times the transform has been called for the recordset or the current
group in the recordset (see the GROUP function).

Example:

ResType := RECORD
 INTEGER1 Val;
 INTEGER1 Rtot;
END;

Records := DATASET([{1,0},{2,0},{3,0},{4,0}],ResType);

/* these are the recs going in:
Val RTotal

 1 0
 2 0

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

247

ECL Language Reference
Built-in Functions and Actions

 3 0
 4 0 */

ResType T(ResType L, ResType R) := TRANSFORM
 SELF.Rtot := L.Rtot + R.Val;
 SELF := R;
END;

MySet1 := ITERATE(Records,T(LEFT,RIGHT));
OUTPUT(MySet1);

/* these are the recs coming out:
Val RTotal

 1 1
 2 3
 3 6
 4 10 */

See Also: TRANSFORM Structure, RECORD Structure, ROLLUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

248

ECL Language Reference
Built-in Functions and Actions

JOIN
JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])

leftrecset The left set of records to process.

rightrecset The right set of records to process. This may be an INDEX.

joincondition An expression specifying how to match records in the leftrecset and rightrecset or setof-
datasets (see Matching Logic discussions below). In the expression, the keyword LEFT
is the dataset qualifier for fields in the leftrecset and the keyword RIGHT is the dataset
qualifier for fields in the rightrecset.

transform Optional. The TRANSFORM function to call for each pair of records to process. If omit-
ted, JOIN returns all fields from both the leftrecset and rightrecset, with the second of
any duplicate named fields removed.

jointype Optional. An inner join if omitted, else one of the listed types in the JOIN Types section
below.

joinflags Optional. Any option (see the JOIN Options section below) to specify exactly how the
JOIN operation executes.

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must
have the same format.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort
order of the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input
sort order. These fields must all be used in the joincondition as they define the order
in which the fields are STEPPED.

Return: JOIN returns a record set.

The JOIN function produces a result set based on the intersection of two or more datasets or indexes (as
determined by the joincondition).

JOIN Two Datasets

JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

The first form of JOIN processes through all pairs of records in the leftrecset and rightrecset and
evaluates the condition to find matching records. If the condition and jointype specify the pair of records
qualifies to be processed, the transform function executes, generating the result.

JOIN dynamically sorts/distributes the leftrecset and rightrecset as needed to perform its operation based
on the condition specified, therefore the output record set is not guaranteed to be in the same order as
the input record sets. If JOIN does do a dynamic sort of its input record sets, that new sort order cannot
be relied upon to exist past the execution of the JOIN. This principle also applies to any GROUPing--the
records are automatically "un-grouped" as needed except under the following circumstances:

* For LOOKUP and ALL joins, the GROUPing and sort order of the leftrecset are preserved.

* For KEYED joins the GROUPing (but not the sort order) of the leftrecset is preserved.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

249

ECL Language Reference
Built-in Functions and Actions

Matching Logic - JOIN
The record matching joincondition is processed internally as two parts:

"equality" (hard
match)

All the simple "LEFT.field = RIGHT.field" logic that defines matching records. For JOINs
that use keys, all these must be fields in the key to qualify for inclusion in this part. If there
is no "equality" part to the joincondition logic, then you get a "JOIN too complex" error.

"non-
equality" (soft
match)

All other matching criteria in the joincondition logic, such as "LEFT.field > RIGHT.field"
expressions or any OR logic that may be involved with the final determination of which
leftrecset and rightrecset records actually match.

This internal logic split allows the JOIN code to be optimized for maximum efficiency--first the "equality" logic
is evaluated to provide an interim result that is then evaluated against any "non-equality" in the matching
joincondition.

Options
The following joinflags options may be specified to determine exactly how the JOIN executes.

[, PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP [FEW]] | GROUPED | ALL | NOSORT [(
which)] | KEYED [(index) [, UNORDERED]] | LOCAL | HASH]]
[, KEEP(n)] [, ATMOST([condition,] n)] [, LIMIT(value [, SKIP | transform | FAIL])] [, SKEW(limit
[, target]) [, THRESHOLD(size)]] [, SMART] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]

PARTITION LEFT |
RIGHT

Specifies which recordset provides the partition points that determine how the records
are sorted and distributed amongst the supercomputer nodes. PARTITION RIGHT
specifies the rightrecset while PARTITION LEFT specifies the leftrecset. If omitted,
PARTITION LEFT is the default.

[MANY] LOOKUP Specifies the rightrecset is a relatively small file of lookup records. If the LOCAL op-
tion is not present a hash table of the entire rightrecset is fully copied to every node,
but if the LOCAL option is present the hash table is created locally on each node.
If MANY is not present, the rightrecset records bear a Many to 0/1 relationship with
the records in the leftrecset (for each record in the leftrecset there is at most 1 record
in the rightrecset, enforced by an implicit dedup if there are duplicate records in the
lookup table based on the key fields used in the joincondition). If MANY is present, the
rightrecset records bear a Many to 0/Many relationship with the records in the leftrec-
set. This option allows the optimizer to avoid unnecessary sorting of the leftrecset.
Valid only for inner, LEFT OUTER, or LEFT ONLY jointypes. The ATMOST, LIMIT,
and KEEP options are supported in conjunction with MANY LOOKUP.

SMART Specifies to use an in-memory lookup when possible, but use a distributed join if the
right dataset is large.

FEW Specifies the LOOKUP rightrecset has few records, so little memory is used, allowing
multiple lookup joins to be included in the same Thor subgraph.

GROUPED Specifies the same action as MANY LOOKUP but preserves grouping. Primarily used
in the rapid Data Delivery Engine. Valid only for inner, LEFT OUTER, or LEFT ONLY
jointypes. The ATMOST, LIMIT, and KEEP options are supported in conjunction with
GROUPED.

ALL Specifies the rightrecset is a small file that can be fully copied to every node, which
allows the compiler to ignore the lack of any "equality" portion to the condition, elim-
inating the "join too complex" error that the condition would normally produce. If an

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

250

ECL Language Reference
Built-in Functions and Actions

"equality" portion is present, the JOIN is internally executed as a MANY LOOKUP.
The KEEP option is supported in conjunction with this option.

NOSORT Performs the JOIN without dynamically sorting the tables. This implies that the left-
recset and/or rightrecset must have been previously sorted and partitioned based on
the fields specified in the joincondition so that records can be easily matched.

which Optional. The keywords LEFT or RIGHT to indicate the leftrecset or rightrecset has
been previously sorted. If omitted, NOSORT assumes both the leftrecset and rightrec-
set have been previously sorted.

KEYED Specifies using indexed access into the rightrecset (see INDEX).

index Optional. The name of an INDEX into the rightrecset for a full-keyed JOIN (see be-
low). If omitted, indicates the rightrecset will always be an INDEX (useful when the
rightrecset is passed in as a parameter to a function).

UNORDERED Optional. Specifies the KEYED JOIN operation does not preserve the sort order of
the leftrecset.

LOCAL Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation main-
tains the distribution of any previous DISTRIBUTE.

HASH Specifies an implicit DISTRIBUTE of the leftrecset and rightrecset across the super-
computer nodes based on the joincondition so each node can do its job with local data.

KEEP(n) Specifies the maximum number of matching records (n) to generate into the result
set from each leftrecset record. If omitted, all matches are kept. This is useful where
there may be many matching pairs and you need to limit the number in the result
set. KEEP is not supported for RIGHT OUTER, RIGHT ONLY, LEFT ONLY, or FULL
ONLY jointypes.

ATMOST Specifies a maximum number of matching records which, if exceeded, eliminates
all those matches from the result set. This is useful for situations where you need
to eliminate all "too many matches" record pairs from the result set. ATMOST
is not supported on RIGHT ONLY or RIGHT OUTER jointypes. There are two
forms: ATMOST(condition, n) -- maximum is computed only for the condition. AT-
MOST(n) -- maximum is computed for the entire joincondition, unless KEYED is
used in the joincondition, in which case only the KEYED expressions are used.
When ATMOST is specified (and the JOIN is not full or half-keyed), the joincon-
dition and condition may include string field comparisons that use string index-
ing with an asterisk as the upper bound, as in this example: J1 := JOIN(dsL,dsR,
LEFT.name[1..*]=RIGHT.name[3..*] AND LEFT.val < RIGHT.val, T(LEFT,RIGHT),
ATMOST(LEFT.name[1..*]=RIGHT.name[3..*],3)); The asterisk indicates matching
as many characters as necessary to reduce the number of candidate matches to be-
low the ATMOST number (n).

condition A portion of the joincondition expression.

n Specifies the maximum number of matches allowed.

LIMIT Specifies a maximum number of matching records which, if exceeded, either fails
the job, or eliminates all those matches from the result set. This is useful for situa-
tions where you need to eliminate all "too many matches" record pairs from the re-
sult set. Typically used for KEYED and "half-keyed" joins (see below), LIMIT differs
from ATMOST primarily by its affect on a LEFT OUTER join, in which a leftrecset
record with too many matching records would be treated as a non-match by ATMOST
(the leftrecset record would be in the output with no matching rightrecset records),
whereas LIMIT would either fail the job entirely, or SKIP the record (eliminating the
leftrecset record entirely from the output). The LIMIT is applied to the set of records

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

251

ECL Language Reference
Built-in Functions and Actions

that meet the the hard match ("equality") portion of the joincondition but before the
soft match ("non-equality") portion of the joincondition is evaluated. If omitted, the
default is LIMIT(10000). The implicit limit is only added if there is no explicit LIMIT, no
ATMOST, and no KEEP, or has a non-keyed filter and isn't a left only JOIN.

value The maximum number of matches allowed; LIMIT(0) is unlimited.

SKIP Optional. Specifies eliminating all the matching records whose total number exceeds
the maximum value of the LIMIT result instead of failing the job.

transform Optional. Specifies outputting a single record produced by the transform instead of
failing the workunit (similar to the ONFAIL option of the LIMIT function).

FAIL Optional. Specifies using the FAIL action to configure the error message when the
job fails.

SKEW Indicates that you know the data for this join will not be spread evenly across nodes
(will be skewed after both files have been distributed based on the join condition) and
you choose to override the default by specifying your own limit value to allow the job
to continue despite the skewing. Only valid on non-keyed joins (the KEYED option is
not present and the rightrecset is not an INDEX).

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage
of skew to allow before the job fails (the default skew is 1.0 / <number of worker nodes
on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired max-
imum percentage of skew to allow (the default skew is 1.0 / <number of worker nodes
on cluster>).

THRESHOLD Indicates the minimum size for a single part of either the leftrecset or rightrecset before
the SKEW limit is enforced. Only valid on non-keyed joins (the KEYED option is not
present and the rightrecset is not an INDEX).

size An integer value indicating the minimum number of bytes for a single part.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The following options are mutually exclusive and may only be used to the exclusion of the others in this list:
PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP | GROUPED | ALL | NOSORT | HASH

In addition to this list, the KEYED and LOCAL options are also mutually exclusive with the options listed
above, but not to each other. When both KEYED and LOCAL options are specified, only the INDEX part(s)
on each node are accessed by that node.

Typically, the leftrecset should be larger than the rightrecset to prevent skewing problems (because
PARTITION LEFT is the default behavior). If the LOOKUP or ALL options are specified, the rightrecset
must be small enough to be loaded into memory on every node, and the operation is then implicitly LOCAL.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

252

ECL Language Reference
Built-in Functions and Actions

The ALL option is impractical if the rightrecset is larger than a few thousand records (due to the number of
comparisons required). The size of the rightrecset is irrelevant in the case of "half-keyed" and "full-keyed"
JOINs (see the Keyed Join discussion below).

Use SMART when the right side dataset is likely to be small enough to fit in memory, but is not guaranteed
to fit.

If you get an error similar to this:

"error: 1301: Pool memory exhausted:..."

this means the rightrecset is too large and a LOOKUP JOIN should not be used. A SMART JOIN may be
a good option in this case.

Example:

//this example demos the implicit DEDUP of the lookup dataset
r1 := {INTEGER1 fred};
r2 := {INTEGER1 fred,INTEGER1 sue};
ds1 := DATASET([1,2,3,4],r1);
ds2 := DATASET([{1,2},{2,2},
 {1,1},{2,1},
 {3,1},{4,1}],r2);
r2 XF(ds1 L, ds2 R) := TRANSFORM
 SELF.fred := L.fred;
 SELF.sue := R.sue;
END;
JOIN(ds1,ds2,
 LEFT.Fred = RIGHT.fred,
 XF(LEFT,RIGHT),LOOKUP);

Keyed Joins
A "full-keyed" JOIN uses the KEYED option and the joincondition must be based on key fields in the index.
The join is actually done between the leftrecset and the index into the rightrecset--the index needs the
dataset's record pointer (VIRTUAL(fileposition)) field to properly fetch records from the rightrecset. The
typical KEYED join passes only the rightrecset to the TRANSFORM.

If the rightrecset is an INDEX, the operation is a "half-keyed" JOIN. Usually, the INDEX in a "half-keyed"
JOIN contains "payload" fields, which frequently eliminates the need to read the base dataset. If this is
the case, the "payload" INDEX does not need to have the dataset's record pointer (VIRTUAL(fileposition))
field declared. For a "half-keyed" JOIN the joincondition may use the KEYED and WILD keywords that are
available for use in INDEX filters, only.

For both types of keyed join, any GROUPing and/or distribution of the base record sets is left untouched.
See KEYED and WILD for a discussion of INDEX filtering.

Join Logic
The JOIN operation follows this logic:

1. Record distribution/sorting to get match candidates on the same nodes.

The PARTITION LEFT, PARTITION RIGHT, LOOKUP, ALL, NOSORT, KEYED, HASH, and LOCAL op-
tions indicate how this happens. These options are mutually exclusive; only one may be specified, and
PARTITION LEFT is the default. SKEW and THRESHOLD may modify the requested behaviour. LOOKUP
also has the additional effect of deduping the rightrecset by the joincondition.

2. Record matching.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

253

ECL Language Reference
Built-in Functions and Actions

The joincondition, LIMIT, and ATMOST determine how this is done.

An implicit limit of 10000 is added when there is no LIMIT specified AND the following is true:

There is no ATMOST limit specified AND it is not a LEFT ONLY JOIN AND (there is either no KEEP limit
specified OR the JOIN has a postfilter).

3. Determine what matches to pass to transform.

The jointype determines this.

4. Generate output records through the TRANSFORM function.

The implicit or explicit transform parameter determines this.

5. Filter output records with SKIP.

If the transform for a record pair results in a SKIP, then the output record is not counted towards any KEEP
option totals.

6. Limit output records with KEEP.

Any output records for a given leftrecset record over and above the permitted KEEP value are discarded.
In a FULL OUTER join, rightrecset records that match no record are treated as if they all matched different
default leftrecset records (that is, the KEEP counter is reset for each one).

TRANSFORM Function Requirements - JOIN
The transform function must take at least one or two parameters: a LEFT record formatted like the leftrecset,
and/or a RIGHT record formatted like the rightrecset (which may be of different formats). The format of the
resulting record set need not be the same as either of the inputs.

Join Types: Two Datasets
The following jointypes produce the following types of results, based on the records matching produced
by the joincondition:

inner (default) Only those records that exist in both the leftrecset and rightrecset.

LEFT OUTER At least one record for every record in the leftrecset.

RIGHT OUTER At least one record for every record in the rightrecset.

FULL OUTER At least one record for every record in the leftrecset and rightrecset.

LEFT ONLY One record for each leftrecset record with no match in the rightrecset.

RIGHT ONLY One record for each rightrecset record with no match in the leftrecset.

FULL ONLY One record for each leftrecset and rightrecset record with no match in the opposite
record set.

Examples:

outrec := RECORD
 people.id;
 people.firstname;
 people.lastname;
END;

RT_folk := JOIN(people(firstname[1] = 'R'),
 people(lastname[1] = 'T'),
 LEFT.id=RIGHT.id,

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

254

ECL Language Reference
Built-in Functions and Actions

 TRANSFORM(outrec,SELF := LEFT));
OUTPUT(RT_folk);

//*********************** Half KEYED JOIN example:
peopleRecord := RECORD
 INTEGER8 id;
 STRING20 addr;
END;
peopleDataset := DATASET([{3000,'LONDON'},{3500,'SMITH'},
 {30,'TAYLOR'}], peopleRecord);
PtblRec doHalfJoin(peopleRecord l) := TRANSFORM
 SELF := l;
END;
FilledRecs3 := JOIN(peopleDataset, SequenceKey,
 LEFT.id=RIGHT.sequence,doHalfJoin(LEFT));
FilledRecs4 := JOIN(peopleDataset, AlphaKey,
 LEFT.addr=RIGHT.Lname,doHalfJoin(LEFT));

//******************* Full KEYED JOIN example:
PtblRec := RECORD
 INTEGER8 seq;
 STRING2 State;
 STRING20 City;
 STRING25 Lname;
 STRING15 Fname;
END;
PtblRec Xform(person L, INTEGER C) := TRANSFORM
 SELF.seq := C;
 SELF.State := L.per_st;
 SELF.City := L.per_full_city;
 SELF.Lname := L.per_last_name;
 SELF.Fname := L.per_first_name;
END;
Proj := PROJECT(Person(per_last_name[1]=per_first_name[1]),
 Xform(LEFT,COUNTER));
PtblOut := OUTPUT(Proj,,'~RTTEMP::TestKeyedJoin',OVERWRITE);

Ptbl := DATASET('RTTEMP::TestKeyedJoin',
 {PtblRec,UNSIGNED8 __fpos {VIRTUAL(fileposition)}},
 FLAT);
AlphaKey := INDEX(Ptbl,{lname,fname,__fpos},
 '~RTTEMPkey::lname.fname');
SeqKey := INDEX(Ptbl,{seq,__fpos},'~RTTEMPkey::sequence');

Bld1 := BUILD(AlphaKey ,OVERWRITE);
Bld2 := BUILD(SeqKey,OVERWRITE);
peopleRecord := RECORD
 INTEGER8 id;
 STRING20 addr;
END;
peopleDataset := DATASET([{3000,'LONDON'},{3500,'SMITH'},
 {30,'TAYLOR'}], peopleRecord);
joinedRecord := RECORD
 PtblRec;
 peopleRecord;
END;
joinedRecord doJoin(peopleRecord l, Ptbl r) := TRANSFORM
 SELF := l;
 SELF := r;
END;

FilledRecs1 := JOIN(peopleDataset, Ptbl,LEFT.id=RIGHT.seq,
 doJoin(LEFT,RIGHT), KEYED(SeqKey));
FilledRecs2 := JOIN(peopleDataset, Ptbl,LEFT.addr=RIGHT.Lname,
 doJoin(LEFT,RIGHT), KEYED(AlphaKey));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

255

ECL Language Reference
Built-in Functions and Actions

SEQUENTIAL(PtblOut,Bld1,Bld2,OUTPUT(FilledRecs1),OUTPUT(FilledRecs2))

JOIN Set of Datasets
JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype] [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

The second form of JOIN is similar to the MERGEJOIN function in that it takes a SET OF DATASETs
as its first parameter. This allows the possibility of joining more than two datasets in a single op-
eration.

Record Matching Logic
The record matching joincondition may contain two parts: a STEPPED condition that may optionally be
ANDed with non-STEPPED conditions. The STEPPED expression contains leading equality expressions of
the fields from the SORTED option (trailing components may be range comparisons if the range values are
independent of the LEFT and RIGHT rows), ANDed together, using LEFT and RIGHT as dataset qualifiers.
If not present, the STEPPED condition is deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated.
The joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

 LEFT.field = RIGHT.field

when applied against a setofdatasets containing three datasets, is logically equivalent to:

 ds1.field = ds2.field AND ds2.field = ds3.field

TRANSFORM Function Requirements - JOIN setof-
datasets
The transform function must take at least one parameter which must take either of two forms:

LEFT formatted like any of the setofdatasets. This indicates the first dataset in the setof-
datasets.

ROWS(LEFT) formatted like any of the setofdatasets. This indicates a record set made up of all
records from any dataset in the setofdatasets that match the joincondition--this may not
include all the datasets in the setofdatasets, depending on which jointype is specified.

The format of the resulting output record set must be the same as the input datasets.

Join Types: setofdatasets
The following jointypes produce the following types of results, based on the records matching produced
by the joincondition:

INNER This is the default if no jointype is specified. Only those records that exist in all
datasets in the setofdatasets.

LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.

LEFT ONLY One record for every record in the first dataset in the setofdatasets for which there
is no match in any of the subsequent datasets.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

256

ECL Language Reference
Built-in Functions and Actions

MOFN(min [,max]) One record for every record with matching records in min number of adjacent
datasets within the setofdatasets. If max is specified, the record is not included if max
number of dataset matches are exceeded.

Example:

Rec := RECORD,MAXLENGTH(4096)
 STRING1 Letter;
 UNSIGNED1 DS;
 UNSIGNED1 Matches := 0;
 UNSIGNED1 LastMatch := 0;
 SET OF UNSIGNED1 MatchDSs := [];
END;

ds1 := DATASET([{'A',1},{'B',1},{'C',1},{'D',1},{'E',1}],Rec);
ds2 := DATASET([{'A',2},{'B',2},{'H',2},{'I',2},{'J',2}],Rec);
ds3 := DATASET([{'B',3},{'C',3},{'M',3},{'N',3},{'O',3}],Rec);
ds4 := DATASET([{'A',4},{'B',4},{'R',4},{'S',4},{'T',4}],Rec);
ds5 := DATASET([{'B',5},{'V',5},{'W',5},{'X',5},{'Y',5}],Rec);
SetDS := [ds1,ds2,ds3,ds4,ds5];

Rec XF(Rec L,DATASET(Rec) Matches) := TRANSFORM
 SELF.Matches := COUNT(Matches);
 SELF.LastMatch := MAX(Matches,DS);
 SELF.MatchDSs := SET(Matches,DS);
 SELF := L;
END;
j1 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter));
j2 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),LEFT OUTER);
j3 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),LEFT ONLY);
j4 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),MOFN(3));
j5 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),MOFN(3,4));

OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(j4);
OUTPUT(j5);

See Also: TRANSFORM Structure, RECORD Structure, SKIP, ROWDIFF, STEPPED, KEYED/WILD,
MERGEJOIN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

257

ECL Language Reference
Built-in Functions and Actions

KEYDIFF
[attrname :=] KEYDIFF(index1, index2, file [, OVERWRITE] [, EXPIRE([days])] [, UNORDERED |
ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]);

attrname Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attrname is used as an action.

index1 An INDEX attribute.

index2 An INDEX attribute whose structure is identical to index1.

file A string constant specifying the logical name of the file to write the differences to.

OVERWRITE Optional. Specifies overwriting the filename if it already exists.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If
omitted, the default is seven (7).

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The KEYDIFF action compares index1 to index2 and writes the differences to the specified file. If index1
to index2 are not exactly the same structure, an error occurs. Once generated, the file may be used by
the KEYPATCH action.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{VIRTUAL(fileposition)}},
 FLAT);

i1 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20041201::st.city.lname');
i2 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20050101::st.city.lname');

KEYDIFF(i1,i2,'KEY::DIFF::20050101::i1i2',OVERWRITE);

See Also: KEYPATCH, INDEX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

258

ECL Language Reference
Built-in Functions and Actions

KEYPATCH
[attrname :=] KEYPATCH(index, patchfile, newfile [, OVERWRITE] [, EXPIRE([days])] [, UN-
ORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGO-
RITHM(name)]);

attrname Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attrname is used as an action.

index The INDEX attribute to apply the changes to.

patchfile A string constant specifying the logical name of the file containing the changes to
implement (created by KEYDIFF).

newfile A string constant specifying the logical name of the file to write the new index to.

OVERWRITE Optional. Specifies overwriting the newfile if it already exists.

EXPIRE Optional. Specifies the newfile is a temporary file that may be automatically deleted
after the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If
omitted, the default is seven (7).

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The KEYPATCH action uses the index and patchfile to write a new index to the specified newfile containing
all the original index data updated by the information from the patchfile.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{VIRTUAL(fileposition)}},
 FLAT);
i1 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20041201::st.city.lname');
i2 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20050101::st.city.lname');
a := KEYDIFF(i1,i2,'KEY::DIFF::20050101::i1i2',OVERWRITE);
b := KEYPATCH(i1,
 'KEY::DIFF::20050101::i1i2',
 'vkey::st.city.lname'OVERWRITE);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

259

ECL Language Reference
Built-in Functions and Actions

SEQUENTIAL(a,b);

See Also: KEYDIFF, INDEX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

260

ECL Language Reference
Built-in Functions and Actions

KEYUNICODE
KEYUNICODE(string)

string A UNICODE string.

Return: KEYUNICODE returns a single DATA value.

The KEYUNICODE function returns a DATA value derived from the string parameter, such that a compar-
ison of these data values is equivalent to a locale sensitive comparison of the Unicode values that gener-
ated them--and, being a simple memcmp(), is significantly faster. The generating string values must be of
the same locale or the results are unpredictable. This function is particularly useful if you're doing a lot of
compares on a UNICODE field in a large dataset--it can be a good idea to generate a key field and do the
compares on that instead.

Example:

//where you might do this:
my_record := RECORD
 UNICODE_en_US str;
END;
my_dataset := DATASET('filename', my_record, FLAT);
my_sorted := SORT(my_dataset, str);
//you could instead do this:
my_record := RECORD
 UNICODE_en_US str;
 DATA strkey := KEYUNICODE(SELF.str);
END;
my_dataset := DATASET('filename', my_record, FLAT);
my_sorted := SORT(my_dataset, strkey);

See Also: UNICODE, LOCALE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

261

ECL Language Reference
Built-in Functions and Actions

LENGTH
LENGTH(expression)

expression A string expression.

Return: LENGTH returns a single integer value.

The LENGTH function returns the length of the string resulting from the expression by treating the expres-
sion as a temporary STRING.

Example:

INTEGER MyLength := LENGTH('XYZ' + 'ABC');
OUTPUT(MyLength); //MyLength is 6

See Also: String Operators, STRING

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

262

ECL Language Reference
Built-in Functions and Actions

LIBRARY
LIBRARY(INTERNAL(module), interface [(parameters)])

LIBRARY(module , interface [(parameters)])

INTERNAL Optional. Specifies the module is an attribute, not an external library (created by the
BUILD action).

module The name of the query library. When INTERNAL, this is the name of the MODULE
attribute that implements the query library. If not INTERNAL, this is a string expression
containing the name of the workunit that compiled the query library (typically defined
with #WORKUNIT).

interface The name of the INTERFACE structure that defines the query library.

parameters Optional. The values to pass to the INTERFACE, if defined to receive parameters.

Return: LIBRARY results in a MODULE that can be used to reference the exported attributes
from the specified module.

The LIBRARY function defines an instance of a query library--the interface as implemented by the module
when passed the specified parameters. Query libraries are only used by hthor and Roxie.

INTERNAL libraries are typically used when developing queries, while external libraries are best for pro-
duction queries. An INTERNAL library generates the library code as a separate unit, but then includes that
unit within the query workunit. It doesn't have the advantage of reducing compile time or memory usage in
Roxie that an external library would have, but it does retain the library structure, and means that changes
to the code cannot affect anyone else using the system.

External libraries are created by the BUILD action and use the "name" form of #WORKUNIT to specify
the external name of the library. An external library is pre-compiled and therefore reduces compile time for
queries that use it. They also reduce memory usage in Roxie

Example:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;
 STRING20 LName;
END;
NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);
FilterLibIface1(DATASET(namesRec) ds, STRING search) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;
FilterDsLib1(DATASET(namesRec) ds, STRING search) :=
 MODULE,LIBRARY(FilterLibIface1)
 EXPORT matches := ds(Lname = search);
 EXPORT others := ds(Lname != search);
END;

// Run this to create the 'Ppass.FilterDsLib' external library
// #WORKUNIT('name','Ppass.FilterDsLib')
// BUILD(FilterDsLib1);
lib1 := LIBRARY(INTERNAL(FilterDsLib1),

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

263

ECL Language Reference
Built-in Functions and Actions

 FilterLibIface1(NamesTable, 'Holliday'));
lib2 := LIBRARY('Ppass.FilterDsLib',
 FilterLibIface1(NamesTable, 'Holliday'));
IFilterArgs := INTERFACE
 EXPORT DATASET(namesRec) ds;
 EXPORT STRING search;
END;
FilterLibIface2(IFilterArgs args) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

FilterDsLib2(IFilterArgs args) := MODULE,LIBRARY(FilterLibIface2)
 EXPORT matches := args.ds(Lname = args.search);
 EXPORT others := args.ds(Lname != args.search);
END;
// Run this to create the 'Ipass.FilterDsLib' external library
// #WORKUNIT('name','Ipass.FilterDsLib')
// BUILD(FilterDsLib2);
SearchArgs := MODULE(IFilterArgs)
 EXPORT DATASET(namesRec) ds := NamesTable;
 EXPORT STRING search := 'Holliday';
END;
lib3 := LIBRARY(INTERNAL(FilterDsLib2),
 FilterLibIface2(SearchArgs));
lib4 := LIBRARY('Ipass.FilterDsLib',
 FilterLibIface2(SearchArgs));

OUTPUT(lib1.matches,NAMED('INTERNAL_matches_straight_parms'));
OUTPUT(lib1.others, NAMED('INTERNAL_nonmatches_straight_parms'));
OUTPUT(lib2.matches,NAMED('EXTERNAL_matches_straight_parms'));
OUTPUT(lib2.others, NAMED('EXTERNAL_nonmatches_straight_parms'));
OUTPUT(lib3.matches,NAMED('INTERNAL_matches_interface_parms'));
OUTPUT(lib3.others, NAMED('INTERNAL_nonmatches_interface_parms'));
OUTPUT(lib4.matches,NAMED('EXTERNAL_matches_interface_parms'));
OUTPUT(lib4.others, NAMED('EXTERNAL_nonmatches_interface_parms'));

See Also: MODULE, INTERFACE, BUILD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

264

ECL Language Reference
Built-in Functions and Actions

LIMIT
LIMIT(recset, maxrecs [, failclause] [, KEYED [, COUNT]] [, SKIP [, UNORDERED | ORDERED(bool)]
[, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

LIMIT(recset, maxrecs [, ONFAIL(transform)] [, KEYED [, COUNT]] [, UNORDERED | ORDERED(bool
)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]

recset The set of records to limit. This may be an INDEX or any expression that produces a
recordset result.

maxrecs The maximum number of records allowed on a single supercomputer node.

failclause Optional. A standard FAIL workflow service call.

KEYED Optional. Specifies limiting the keyed portion of an INDEX read.

COUNT Optional. Specifies the KEYED limit is pre-checked using keyspan.

SKIP Optional. Specifies that when the limit is exceeded it is simply eliminated from any result
instead of failing the workunit.

ONFAIL Optional. Specifies outputting a single record produced by the transform instead of failing
the workunit.

transform The TRANSFORM function to call to produce the single output record.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The LIMIT function causes the attribute to fail with an exception if the recset contains more records than
maxrecs on any single node of the supercomputer (unless the SKIP option is used for an index read or the
ONFAIL option is present). If the failclause is present, it specifies the exception number and message. This
is typically used to control "runaway" queries in the Rapid Data Delivery Engine supercomputer.

Example:

RecStruct := RECORD
 INTEGER1 Number;
 STRING1 Letter;
END;
SomeFile := DATASET([{1,'A'},{1,'B'},{1,'C'},{1,'D'},{1,'E'},
 {1,'F'},{1,'G'},{1,'H'},{1,'I'},{1,'J'},
 {2,'K'},{2,'L'},{2,'M'},{2,'N'},{2,'O'},
 {2,'P'},{2,'Q'},{2,'R'},{2,'S'},{2,'T'},
 {2,'U'},{2,'V'},{2,'W'},{2,'X'},{2,'Y'}],
 RecStruct);
//throw an exception

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

265

ECL Language Reference
Built-in Functions and Actions

X := LIMIT(SomeFile,10, FAIL(99,'error!'));
//single record output
Y := LIMIT(SomeFile,10,
 ONFAIL(TRANSFORM(RecStruct,
 SELF := ROW({0,''},RecStruct))));
//no exception, just no record
Z := LIMIT(SomeFile,10,SKIP);
// OUTPUT(X); //This one will throw an exception
OUTPUT(Y);
OUTPUT(Z);

See Also: FAIL, TRANSFORM

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

266

ECL Language Reference
Built-in Functions and Actions

LN
LN(n)

n The real number to evaluate.

Return: LN returns a single real value.

The LN function returns the natural logarithm of the parameter. This is the opposite of the EXP function.

Example:

MyLogPI := LN(3.14159); //1.144729041185178
OUTPUT(MyLogPI);

See Also: EXP, SQRT, POWER, LOG

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

267

ECL Language Reference
Built-in Functions and Actions

LOADXML
[attributename :=] LOADXML(xmlstring | symbol [, branch])

attributename Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attributename is used as an action.

xmlstring A string expression containing the XML text to process inline (no carriage returns or
line feeds).

symbol The template symbol containing the XML text to process (typically loaded by #EXPORT
or #EXPORTXML).

branch A user-defined string naming the XML text, allowing #FOR to operate.

LOADXML opens an active XML scope for Template language statements or symbols to act on. LOADXML
must be the first line of code to function correctly.

LOADXML is also used in "drilldown" MACRO code.

Example:

LOADXML('<section><item type="count"><set>person</set></item></section>');
//this macro receives in-line XML as its parameter
//and demonstrates the code for multiple row drilldown
EXPORT id(xmlRow) := MACRO
STRING myxmlText := xmlRow;
LOADXML(myxmlText);
#DECLARE(OutStr)
#SET(OutStr, '')
#FOR(row)
 #APPEND(OutStr,
 'OUTPUT(FETCH(Files.People,Files.PeopleIDX(id='
 + %'id'% + '),RIGHT.RecPos));\n')
 #APPEND(OutStr,
 'ds' + %'id'%
 + ' := FETCH(Files.Property,Files.PropertyIDX(personid= '
 + %'id'% + '),RIGHT.RecPos);\n')
 #APPEND(OutStr,
 'OUTPUT(ds' + %'id'%
 + ',{countTaxdata := COUNT(Taxrecs), ds'
 + %'id'% + '});\n')
 #APPEND(OutStr,
 'OUTPUT(FETCH(Files.Vehicle,Files.VehicleIDX(personid= '
 + %'id'% + '),RIGHT.RecPos));\n')
#END
%OutStr%
ENDMACRO;

//this is an example of code for a drilldown (1 per row)
EXPORT CountTaxdata(xmlRow) := MACRO
LOADXML(xmlRow);
OUTPUT(FETCH(Files.TaxData,
 Files.TaxdataIDX(propertyid=%propertyid%),
 RIGHT.RecPos));
ENDMACRO;

//This example uses #EXPORT to generate the XML

NamesRecord := RECORD
 STRING10 first;
 STRING20 last;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

268

ECL Language Reference
Built-in Functions and Actions

END;
r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
END;

ds := DATASET('~RTTEST::OUT::ds', r, thor);

//Walk a record and do some processing on it.
#DECLARE(out)
#EXPORT(out, r);
LOADXML(%'out'%, 'FileStruct');

#FOR (FileStruct)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
OUTPUT('END');
 #ELSE
OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
+ %'{@size}'%
 #END
+ ' ' + %'{@label}'% + ';');
 #END
 #END
#END
OUTPUT('Done');

See Also: Templates, #EXPORT, #EXPORTXML

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

269

ECL Language Reference
Built-in Functions and Actions

LOCAL
LOCAL(data)

data The name of a DATASET or INDEX attribute.

Return: LOCAL returns a record set or index.

The LOCAL function specifies that all subsequent operations on the data are performed locally on each node
(similar to use of the LOCAL option on a function). This is typically used within an ALLNODES operation.
Available for use only in Roxie.

Example:

ds := JOIN(SomeData,LOCAL(SomeIndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, NOLOCAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

270

ECL Language Reference
Built-in Functions and Actions

LOG
LOG(n)

n The real number to evaluate.

Return: LOG returns a single real value.

The LOG function returns the base-10 logarithm of the parameter.

Example:

MyLogPI := LOG(3.14159); // 0.4971495058611233
OUTPUT(MyLogPI);

See Also: EXP, SQRT, POWER, LN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

271

ECL Language Reference
Built-in Functions and Actions

LOOP
LOOP(dataset [,loopcount][,loopfilter][,loopcondition] , loopbody [, UNORDERED |
ORDERED(bool)] [, STABLE | UNSTABLE] [,ALGORITHM(name)][, FEW])

dataset The record set to process.

loopcount Optional. An integer expression specifying the number of times to iterate.

loopfilter Optional. A Boolean expression that must be a record filter for the dataset identifying
records whose processing is not yet complete. Records filtered out are complete, there-
fore immediately placed into the final result set. This evaluation occurs prior to each
iteration of the loopbody.

loopcondition Optional. A Boolean expression that continues loopbody iteration while TRUE. This can
be any logical expression.

loopbody The operation to iteratively perform. This might be a PROJECT, JOIN, a function, or
any other such operation. ROWS(LEFT) is always used as a parameter to the loopbody
operation, passing the current form of the dataset as the input parameter for each
iteration.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

FEW Optional. Indicates that activities will not require a large amount of memory. This may
reduce the number of subgraphs generated within a LOOP which reduces overhead.
Use only on Thor queries.

Return: LOOP returns a record set.

The LOOP function iteratively performs the loopbody operation. The COUNTER keyword is implicitly avail-
able for use to return the current iteration.

The loopcount, loopfilter, and loopcondition parameters are all optional, but at least one of the three must
be present.

For each successive iteration, the input dataset (expressed as ROWS(LEFT) as the parameter to the loop-
body) is the result set of the previous iteration after application of any loopfilter. The final result of the LOOP
returns all records that completed processing, no matter which iteration that completion occurred (not just
the result set from the final iteration).

Example:

namesRec := RECORD
 STRING20 lname;
 STRING10 fname;
 UNSIGNED2 age := 25;
 UNSIGNED2 ctr := 0;
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

272

ECL Language Reference
Built-in Functions and Actions

namesTable := DATASET([{'Flintstone','Fred',35},
 {'Flintstone','Wilma',43},
 {'Jetson','Georgie',10},
 {'Mr. T','Z-man'}], namesRec);
BodyFunc(DATASET(namesRec) ds, UNSIGNED4 c) :=
 PROJECT(ds,
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*c;
 SELF.ctr := COUNTER*c ;
 SELF := LEFT));

/* Form 1 -- LOOP(ds, loopcount, loopbody)
 Processes loopcount times, basically a "for loop" construct.

 This example also demonstrates the two possible scopes of the COUNTER
 keyword within a LOOP:
 * The COUNTER in the LOOP function (passed to BodyFunc) is the number
 of iterations the LOOP has done.
 * The COUNTER in the TRANSFORM for the PROJECT in the BodyFunc counts
 the number of records processed by the current iteration of PROJECT.
*/
Form1 := LOOP(namesTable,
 2, //iterate 2 times
 ROWS(LEFT) & BodyFunc(ROWS(LEFT),COUNTER)); //16 rows
OUTPUT(Form1,NAMED('Form1_example'));

/* Form 2 -- LOOP(ds, loopfilter, loopbody)
 Continues processing while the loopfilter expression is TRUE for any
 records in ROWS(LEFT). This is basically a "while loop" construct. The
 loopfilter expression is evaluated on the entire set of ROWS(LEFT)
 records prior to each iteration.
 */
Form2 := LOOP(namesTable,
 LEFT.age < 100, //process only recs where TRUE
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2;
 SELF := LEFT)));
OUTPUT(Form2,NAMED('Form2_example'));

/* Form 3 -- LOOP(ds, loopcondition, loopbody)
 Continues processing while the loopcondition expression is TRUE.
 This is basically a "while loop" construct. The loopcondition expression
 is evaluated on the entire set of ROWS(LEFT) records prior to each
 iteration.
 */
Form3 := LOOP(namesTable,
 SUM(ROWS(LEFT), age) < 1000 * COUNTER,
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2;
 SELF := LEFT)));
OUTPUT(Form3,NAMED('Form3_example'));

/* Form 4 -- LOOP(ds, loopcount, loopfilter, loopbody)
 Processes loopcount times, with the loopfilter expression
 defining when each record continues to process through the loopbody
 expression. This is basically a "for loop" construct with a filter
 specifying which records are processed each iteration.
 */
Form4 := LOOP(namesTable,
 10,
 LEFT.age < 100, //process only recs where TRUE
 BodyFunc(ROWS(LEFT), COUNTER));
OUTPUT(Form4,NAMED('Form4_example'));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

273

ECL Language Reference
Built-in Functions and Actions

/* Form 5 -- LOOP(ds, loopcount, loopcondition, loopbody)
 Processes loopcount times, with the loopcondition expression
 defining the set of records that continue to process through the loopbody
 expression. This is basically a "for loop" construct with a filter
 specifying the record set processed for each iteration.

 This example also demonstrates the two possible scopes of the COUNTER
 keyword within a LOOP:
 * The COUNTER in the LOOP function's loopfilter expression is the number
 of recursive iterations the LOOP has done.
 * The COUNTER in the TRANSFORM for the PROJECT counts the number of records
 processed by the current iteration of PROJECT.
*/
Form5 := LOOP(namesTable,
 10, //iterate 10 times
 LEFT.age * COUNTER <= 200, //process only recs where TRUE
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2,
 SELF.ctr := COUNTER,
 SELF := LEFT)));
OUTPUT(Form5,NAMED('Form5_example'));

/* Form 6 -- LOOP(ds, loopfilter, loopcondition, loopbody)
 Continues processing while the loopcondition expression is TRUE.
 Records where the loopfilter expression is TRUE continue processing.
 This is basically a "while loop" construct with individual record
 processing continuation logic.
 */
Form6 := LOOP(namesTable,
 LEFT.age < 100,
 EXISTS(ROWS(LEFT)) and SUM(ROWS(LEFT), age) < 1000,
 BodyFunc(ROWS(LEFT), COUNTER));
OUTPUT(Form6,NAMED('Form6_example'));

/* Form 7 -- LOOP(ds, loopcount, loopfilter, loopcondition, loopbody)
 Continues processing while the loopcondition expression is TRUE.
 Records where the loopfilter expression is TRUE continue processing.
 This is basically a "while loop" construct with individual record
 processing continuation logic.
 */
Form7 := LOOP(namesTable,
 10,
 LEFT.age < 100,
 EXISTS(ROWS(LEFT)) and SUM(ROWS(LEFT), age) < 1000,
 BodyFunc(ROWS(LEFT), COUNTER));
OUTPUT(Form7,NAMED('Form7_example'));

See Also: GRAPH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

274

ECL Language Reference
Built-in Functions and Actions

MAP
MAP(expression => value, [expression => value, ...] [, elsevalue])

expression A conditional expression.

=> The "results in" operator--valid only in MAP, CASE, and CHOOSESETS.

value The value to return if the expression is true. This may be a single value expression, a
set of values, a DATASET, a DICTIONARY, a record set, or an action.

elsevalue Optional. The value to return if all expressions are false. This may be a single value
expression, a set of values, a record set, or an action. May be omitted if all return values
are actions (the default would then be no action), or all return values are record sets (the
default would then be an empty record set).

Return: MAP returns a single value.

The MAP function evaluates the list of expressions and returns the value associated with the first true
expression. If none of them match, the elsevalue is returned. MAP may be thought of as an "IF ... ELSIF ...
ELSIF ... ELSE" type of structure.

All return value and elsevalue values must be of exactly the same type or a "type mismatch" error will occur.
All expressions must reference the same level of dataset scoping, else an "invalid scope" error will occur.
Therefore, all expressions must either reference fields in the same dataset or the existence of a set of
related child records (see EXISTS).

The expressions are typically evaluated in the order in which they appear, but if all the return values are
scalar, the code optimizer may change that order.

Example:

Attr01 := MAP(EXISTS(Person(Person.EyeColor = 'Blue')) => 1,
 EXISTS(Person(Person.Haircolor = 'Brown')) => 2,
 3);
 //If there are any blue-eyed people, Attr01 gets 1
 //elsif there any brown-haired people, Attr01 gets 2
 //else, Attr01 gets 3

Valu6012 := MAP(NoTrades => 99,
 NoValidTrades => 98,
 NoValidDates => 96,
 Count6012);
 //If there are no trades, Valu6012 gets 99
 //elsif there are no valid trades, Valu6012 gets 98
 //elsif there are no valid dates, Valu6012 gets 96
 //else, Valu6012 gets Count6012

MyTrades := MAP(rms.rms14 >= 93 => trades(trd_bal >= 10000),
 rms.rms14 >= 2 => trades(trd_bal >= 2000),
 rms.rms14 >= 1 => trades(trd_bal >= 1000),
 Trades);
 // this example takes the value of rms.rms14 and returns a
 // set of trades based on that value. If the value is <= 0,
 // then all trades are returned.

See Also: EVALUATE, IF, CASE, CHOOSE, CHOOSESETS, REJECTED, WHICH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

275

ECL Language Reference
Built-in Functions and Actions

MAX
MAX(recordset, value [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

MAX(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the keyword GROUP to indicate finding the maximum value of the field in
a group, when used in a RECORD structure to generate crosstab statistics.

value The expression to find the maximum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the maximum value of. This may also be
a SET of values.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: MAX returns a single value.

The MAX function either returns the maximum value from the specified recordset or the valuelist. It is defined
to return zero if the recordset is empty.

Example:

MaxVal2 := MAX(4,8,16,2,1);
SetVals := [4,8,16,2,1];
MaxVal3 := MAX(SetVals);

OUTPUT(MaxVal2); //returns 16
OUTPUT(MaxVal3); //returns 16

//example using a DATASET
SalesRecord := RECORD
 INTEGER OrderNumber;
 INTEGER SaleAmount;
END;
Sales := DATASET([{923,1001},
 {924,23},
 {925,3000},
 {926,3423},
 {927,9999},

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

276

ECL Language Reference
Built-in Functions and Actions

 {931,113}], SalesRecord);

OUTPUT(MAX(Sales,Sales.SaleAmount)); //returns 9999

See Also: MIN, AVE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

277

ECL Language Reference
Built-in Functions and Actions

MERGE
MERGE(recordsetlist , SORTED(fieldlist) [, DEDUP] [, LOCAL] [, UNORDERED | ORDERED(bool)]
[, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

MERGE(recordsetset , fieldlist , SORTED(fieldlist) [, DEDUP] [, LOCAL] [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordsetlist A comma-delimited list of the datasets or indexes to merge, which must all be in exactly
the same format and sort order.

SORTED Specifies the sort order of the recordsetlist.

fieldlist A comma-delimited list of the fields that define the sort order.

DEDUP Optional. Specifies the result contains only records with unique values in the fields that
specify the sort order fieldlist.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

recordsetset A SET ([ds1,ds2,ds3]) of the datasets or indexes to merge, which must all be in exactly
the same format.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: MERGE returns a record set.

The MERGE function returns a single dataset or index containing all the records from the datasets or indexes
named in the recordsetlist or recordsetset. This is particularly useful for incremental data updates as it
allows you to merge a smaller set of new records into an existing large dataset or index without having to
re-process all the source data again.

The recordsetset form makes merging a variable number of datasets possible when used inside a GRAPH
function.

To write a MERGEd index to disk, you must use the BUILD action.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

278

ECL Language Reference
Built-in Functions and Actions

Example:

ds1 := SORTED(DATASET([{1,'A'},{1,'B'},{1,'C'},{1,'D'},{1,'E'},
 {1,'F'},{1,'G'},{1,'H'},{1,'I'},{1,'J'}],
 {INTEGER1 number,STRING1 Letter}),
 letter,number);
ds2 := SORTED(DATASET([{2,'A'},{2,'B'},{2,'C'},{2,'D'},{2,'E'},
 {2,'F'},{2,'G'},{2,'H'},{2,'I'},{2,'J'}],
 {INTEGER1 number,STRING1 Letter}),
 letter,number);

ds3 := MERGE(ds1,ds2,SORTED(letter,number));

SetDS := [ds1,ds2];
ds4 := MERGE(SetDS,SORTED(letter,number));

OUTPUT(ds3);
OUTPUT(ds4);

See Also: BUILD

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

279

ECL Language Reference
Built-in Functions and Actions

MERGEJOIN
MERGEJOIN(setofdatasets, joincondition, SORTED(fields) [, jointype] [, DEDUP] [, UNORDERED | OR-
DERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must
have the same format.

joincondition An expression specifying how to match records in the setofdatasets.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort
order of the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input
sort order. These fields must all be used in the joincondition as they define the order
in which the fields are STEPPED.

jointype Optional. An inner join if omitted, else one of the listed types below.

DEDUP Optional. Specifies the output result set contains only unique records.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

The MERGEJOIN function is a variation of the SET OF DATASETs forms of the MERGE and JOIN functions.
Like MERGE, it merges records from the setofdatasets into a single result set, but like JOIN, it uses the
joincondition and jointype to determine which records to include in the result set. It does not, however, use
a TRANSFORM function to produce the result; it includes all records, unchanged, from the setofdatasets
that match the joincondition.

Matching Logic
The record matching joincondition may contain two parts: a STEPPED condition that may optionally be AND-
ed with non-STEPPED conditions. The STEPPED expression contains equality expressions of the fields
from the SORTED option, ANDed together, using LEFT and RIGHT as dataset qualifiers. If not present, the
STEPPED condition is deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated.
The joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

LEFT.field = RIGHT.field

when applied against a setofdatasets containing three datasets, is logically equivalent to:

ds1.field = ds2.field AND ds2.field = ds3.field

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

280

ECL Language Reference
Built-in Functions and Actions

Join Types:
The following jointypes produce the following types of results, based on the records matching produced
by the joincondition:

INNER Only those records that exist in all datasets in the setofdatasets.

LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.

LEFT ONLY One record for every record in the first dataset in the setofdatasets for which there
is no match in any of the subsequent datasets.

MOFN(min [,max]) One record for every record with matching records in min number of adjacent
datasets within the setofdatasets. If max is specified, the record is not included if max
number of dataset matches are exceeded.

Example:

Rec := RECORD,MAXLENGTH(4096)
 STRING1 Letter;
 UNSIGNED1 DS;
END;
ds1 := DATASET([{'A',1},{'B',1},{'C',1},{'D',1},{'E',1}],Rec);
ds2 := DATASET([{'A',2},{'B',2},{'H',2},{'I',2},{'J',2}],Rec);
ds3 := DATASET([{'B',3},{'C',3},{'M',3},{'N',3},{'O',3}],Rec);
ds4 := DATASET([{'A',4},{'B',4},{'R',4},{'S',4},{'T',4}],Rec);
ds5 := DATASET([{'B',5},{'V',5},{'W',5},{'X',5},{'Y',5}],Rec);
SetDS := [ds1,ds2,ds3,ds4,ds5];
j1 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter));
j2 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),LEFT OUTER);
j3 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),LEFT ONLY);
j4 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),MOFN(3));
j5 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),MOFN(3,4));
OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(j4);
OUTPUT(j5);

See Also: MERGE, JOIN, STEPPED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

281

ECL Language Reference
Built-in Functions and Actions

MIN
MIN(recordset, value [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

MIN(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the keyword GROUP to indicate finding the minimum value of the field in a
group, when used in a RECORD structure to generate crosstab statistics.

value The expression to find the minimum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the minimum value of. This may also be
a SET of values.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: MIN returns a single value.

The MIN function either returns the minimum value from the specified recordset or the valuelist. It is defined
to return zero if the recordset is empty.

Example:

MinVal2 := MIN(4,8,16,2,1);
SetVals := [4,8,16,2,1];
MinVal3 := MIN(SetVals);

OUTPUT(MinVal2); //returns 1
OUTPUT(MinVal3); //returns 1

//example using a DATASET
SalesRecord := RECORD
 INTEGER OrderNumber;
 INTEGER SaleAmount;
END;
Sales := DATASET([{923,1001},
 {924,23},
 {925,3000},
 {926,3423},
 {927,9999},

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

282

ECL Language Reference
Built-in Functions and Actions

 {931,113}], SalesRecord);

OUTPUT(MIN(Sales,Sales.SaleAmount)); //returns 23

See Also: MAX, AVE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

283

ECL Language Reference
Built-in Functions and Actions

NOLOCAL
NOLOCAL(data)

data The name of a DATASET or INDEX attribute.

Return: NOLOCAL returns a record set or index.

The NOLOCAL function specifies that all subsequent operations on the data are performed on all nodes.
This is typically used within a THISNODE operation. Available for use only in Roxie.

Example:

ds := JOIN(SomeData,NOLOCAL(SomeIndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, LOCAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

284

ECL Language Reference
Built-in Functions and Actions

NONEMPTY
NONEMPTY(recordsetlist)

recordsetlist A comma-delimited list of record sets.

Return: NONEMPTY returns a record set.

The NONEMPTY function returns the first record set from the recordsetlist that contains any records. This
is similar to using the EXISTS function in an IF expression to return one of two possible record sets.

Example:

SalesRecord := RECORD
 INTEGER OrderNumber;
 INTEGER SaleAmount;
END;
Sales := DATASET([{923,1001},
 {924,23},
 {925,3000},
 {926,3423},
 {927,9999},
 {931,113}], SalesRecord);
ds := NONEMPTY(Sales(SaleAmount>20000),
 Sales(SaleAmount>10000),
 Sales(SaleAmount>3000));
OUTPUT(ds);

See Also: EXISTS

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

285

ECL Language Reference
Built-in Functions and Actions

NORMALIZE
NORMALIZE(recordset, expression, transform [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

NORMALIZE(recordset, LEFT.childdataset, transform [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process.

expression A numeric expression specifying the total number of times to call the transform for that
record.

transform The TRANSFORM function to call for each record in the recordset.

childdataset The field name of a child DATASET in the recordset. This must use the keyword LEFT
as its qualifier.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: NORMALIZE returns a record set.

The NORMALIZE function normalizes child records out of a recordset where the child records are appended
to the end of the parent data records. The purpose is to take variable-length flat-file records and split out
the child information. The parent information can easily be extracted using either TABLE or PROJECT.

NORMALIZE Form 1
Form 1 processes through all records in the recordset performing the transform function the expression
number of times on each record in turn.

TRANSFORM Function Requirements for Form 1
The transform function must take at least two parameters: a LEFT record of the same format as the record-
set, and an integer COUNTER specifying the number of times the transform has been called for that record.
The resulting record set format does not need to be the same as the input.

NORMALIZE Form 2
Form 2 processes through all records in the recordset iterating the transform function through all the child-
dataset records in each record in turn.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

286

ECL Language Reference
Built-in Functions and Actions

TRANSFORM Function Requirements for Form 2
The transform function must take at least one parameter: a RIGHT record of the same format as the child-
dataset. The resulting record set format does not need to be the same as the input.

Example:

//Form 1 example
NamesRec := RECORD

UNSIGNED1 numRows;
STRING20 thename;
STRING20 addr1 := '';
STRING20 addr2 := '';
STRING20 addr3 := '';
STRING20 addr4 := '';
END;
NamesTable := DATASET([{1,'Kevin','10 Malt Lane'},
{2,'Liz','10 Malt Lane','3 The cottages'},
{0,'Mr Nobody'},
{4,'Anywhere','Here','There','Near','Far'}],
NamesRec);

OutRec := RECORD
UNSIGNED1 numRows;
STRING20 thename;
STRING20 addr;
END;

OutRec NormIt(NamesRec L, INTEGER C) := TRANSFORM
SELF := L;
SELF.addr := CHOOSE(C, L.addr1, L.addr2, L.addr3,
 L.addr4);
END;

NormAddrs :=
 NORMALIZE(namesTable,LEFT.numRows,NormIt(LEFT,COUNTER));
OUTPUT(NormAddrs);
/* the result is:
numRows thename addr
1 Kevin 10 Malt Lane
2 Liz 10 Malt Lane
2 Liz 3 The cottages
4 Anywhere Here
4 Anywhere There
4 Anywhere Near
4 Anywhere Far
*/

//************************
//Form 2 example
ChildRec := RECORD
INTEGER1 NameID;
STRING20 Addr;
END;
DenormedRec := RECORD
INTEGER1 NameID;
STRING20 Name;
DATASET(ChildRec) Children;
END;

ds := DATASET([{1,'Kevin',[{1,'10 Malt Lane'}]},
{2,'Liz', [{2,'10 Malt Lane'},
{2,'3 The cottages'}]},

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

287

ECL Language Reference
Built-in Functions and Actions

{3,'Mr Nobody', []},
{4,'Anywhere',[{4,'Far'},
{4,'Here'},
{4,'There'},
{4,'Near'}]}],
DenormedRec);
ChildRec NewChildren(ChildRec R) := TRANSFORM
SELF := R;
END;
NewChilds := NORMALIZE(ds,LEFT.Children,NewChildren(RIGHT));
OUTPUT(NewChilds);

See Also: TRANSFORM Structure, RECORD Structure, DENORMALIZE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

288

ECL Language Reference
Built-in Functions and Actions

NOFOLD
[name :=] NOFOLD(expression)

name Optional. The identifier for this function.

expression The expression to evaluate.

The NOFOLD function creates a barrier that prevents optimizations occurring between the expression and
the context it is used in. This is used to prevent constant-folding in the context so that it may be evaluated
as-is. Note that this does not prevent constant-folding within the expression itself. It is normally only used
to prevent test cases being optimized into something completely different, or to temporarily work around
bugs in the compiler.

Example:

OUTPUT(2 * 2); // is normally constant folded to:
OUTPUT(4); // at compile time.

 //However adding NOFOLD() around one argument prevents that
OUTPUT(NOFOLD(2) * 2);

 //Adding NOFOLD() around the entire expression does NOT
 // prevent folding within the argument:
OUTPUT(NOFOLD(2 * 2));
 //is the same as
OUTPUT(NOFOLD(4));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

289

ECL Language Reference
Built-in Functions and Actions

NOTHOR
[name :=] NOTHOR(action)

name Optional. The identifier for this action.

action The action to execute.

The NOTHOR compiler directive indicates the action should not execute on thor, but inline instead, in a
global context. You can only do very simple dataset operations within a NOTHOR, like filtering records or
a simple PROJECT.

NOTHOR needs to be used around operations that use the superfile transactions, (such as the example
below) where the compiler does not spot the appropriate context.

Example:

IMPORT STD;
rec := RECORD
 STRING10 S;
END;

srcnode := '10.239.219.2';
srcdir := '/var/lib/HPCCSystems/mydropzone/';

dir := STD.File.RemoteDirectory(srcnode,srcdir,'*.txt',TRUE);

 //without NOTHOR this code gets this error:
 // "Cannot call function AddSuperFile in a non-global context"
NOTHOR(SEQUENTIAL(
 STD.File.DeleteSuperFile('MultiSuper1'),
 STD.File.CreateSuperFile('MultiSuper1'),
 STD.File.StartSuperFileTransaction(),
 APPLY(dir,STD.File.AddSuperFile('MultiSuper1',
 STD.File.ExternalLogicalFileName(srcnode,srcdir+name))),
 STD.File.FinishSuperFileTransaction()));

F1 := DATASET('MultiSuper1', rec, THOR);
OUTPUT(F1,,'testmulti1',OVERWRITE);

See Also: SEQUENTIAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

290

ECL Language Reference
Built-in Functions and Actions

NOTIFY
[attributename :=] NOTIFY(event [, parm] [, expression])

attributename Optional. The identifier for this action.

event The EVENT function, or a case-insensitive string constant naming the event to generate.

parm A case-insensitive string constant containing the event's parameter as either a single
asterisk ('*') or an XML string beginning and ending with "Event" tags and user-defined
tags within those to contain the specific extra information to pass along with the event.

expression Optional. A case-insensitive string constant allowing simple message passing, to restrict
the event to a specific workunit.

The NOTIFY action fires the event so that the WAIT function or WHEN workflow service can proceed with
operations they are defined to perform.

The expression parameter allows you to define a service in ECL that is initiated by an event, and only
responds to the workunit that initiated it.

Example:

//run this first
doMyService := FUNCTION
 O := OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 N := NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN WHEN(EVENTEXTRA('returnTo'),ORDERED(O,N));
END;
OUTPUT(doMyService) : WHEN('MyService');

Then:

// run this in a separate workunit after the first part above completes:
NOTIFY('MyService',
 '<Event><returnTo>'+ WORKUNIT + '</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

291

ECL Language Reference
Built-in Functions and Actions

ORDERED
[attributename :=] ORDERED(actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore
not executed until the attributename is used as an action.

actionlist A comma-delimited list of the actions to execute in order. These may be ECL actions
or external actions.

The ORDERED action executes the items in the actionlist in the order in which they appear in the actionlist.
This is useful when a subsequent action requires the output of a precedent action.

It has the ordering requirements of SEQUENTIAL. This is most useful for ordering actions which do not
have anything in common, for example, generating files and then sending email. If there is any chance of
a shared value which may change meaning, you should use SEQUENTIAL.

ORDERED has no effect on PERSISTed attributes.

Example:

Action1 := OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Action2 := OUTPUT(Person,{Person.per_first_name,Person.per_last_name})
Action2 := OUTPUT(Person,{Person.per_last_name})));
 //by naming these actions, they become inactive attributes
 //that only execute when the attribute names are called as actions
ORDERED(Action1,PARALLEL(Action2,Action3));
 //executes Action1 alone, and then executes Action2 and Action3 together

See Also: PARALLEL, PERSIST, SEQUENTIAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

292

ECL Language Reference
Built-in Functions and Actions

OUTPUT
[attr :=] OUTPUT(recordset [, [format] [,file [thorfileoptions]] [, NOXPATH] [, UNORDERED | OR-
DERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]);

[attr :=] OUTPUT(recordset, [format] ,file , CSV [(csvoptions)] [csvfileoptions] [, NOXPATH] [,
UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)]);

[attr :=] OUTPUT(recordset, [format] , file , XML [(xmloptions)] [xmlfileoptions] [, NOXPATH] [,
UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)]);

[attr :=] OUTPUT(recordset, [format] , file , JSON [(jsonoptions)] [jsonfileoptions] [, NOXPATH] [,
UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)]);

[attr :=] OUTPUT(recordset, [format] ,PIPE(pipeoptions [, NOXPATH] [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]);

[attr :=] OUTPUT(recordset [, format] , NAMED(name) [,EXTEND] [,ALL] [, NOXPATH] [, UNORDERED
| ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name
)]);

[attr :=] OUTPUT(expression [, NAMED(name)] [, NOXPATH] [, UNORDERED | ORDERED(bool)]
[, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]);

[attr :=] OUTPUT(recordset , THOR [, NOXPATH] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)]);

attr Optional. The action name, which turns the action into a definition, therefore not ex-
ecuted until the attr is used as an action.

recordset The set of records to process. This may be the name of a dataset or a record set
derived from some filter condition, or any expression that results in a derived record
set.

format Optional. The format of the output records. If omitted, all fields in the recordset are
output. If not omitted, this must be either the name of a previously defined RECORD
structure definition or an "on-the-fly" record layout enclosed within curly braces ({}),
and must meet the same requirements as a RECORD structure for the TABLE func-
tion (the "vertical slice" form) by defining the type, name, and source of the data for
each field.

file Optional. The logical name of the file to write the records to. See the Scope & Logical
Filenames section of the Language Reference for more on logical filenames. If omit-
ted, the formatted data stream only returns to the command issuer (command line or
IDE) and is not written to a disk file.

thorfileoptions Optional. A comma-delimited list of options valid for a THOR/FLAT file (see the sec-
tion below for details).

NOXPATH Specifies any XPATHs defined in the format or the RECORD structure of the record-
set are ignored and field names are used instead. This allows control of whether
XPATHs are used for output, so that XPATHs that were meant only for xml or json
input can be ignored for output.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

293

ECL Language Reference
Built-in Functions and Actions

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

CSV Specifies the file is a field-delimited (usually comma separated values) ASCII file.

csvoptions Optional. A comma-delimited list of options defining how the file is delimited.

csvfileoptions Optional. A comma-delimited list of options valid for a CSV file (see the section below
for details).

XML Specifies the file is output as XML data with the name of each field in the format
becoming the XML tag for that field's data.

xmloptions Optional. A comma separated list of options that define how the output XML file is
delimited.

xmlfileoptions Optional. A comma-delimited list of options valid for an XML file (see the section
below for details).

JSON Specifies the file is output as JSON data with the name of each field in the format
becoming the JSON tag for that field's data.

jsonoptions Optional. A comma separated list of options that define how the output JSON file is
delimited.

jsonfileoptions Optional. A comma-delimited list of options valid for an JSON file (see the section
below for details).

PIPE Indicates the specified command executes with the recordset provided as standard
input to the command. This is a "write" pipe.

pipeoptions The name of a program to execute, which takes the file as its input stream, along
with the options valid for an output PIPE.

NAMED Specifies the result name that appears in the workunit. Not valid if the file parameter
is present.

name A string constant containing the result label. This must be a compile-time constant
and meet the attribute naming requirements. This must be a valid label (See Definition
Name Rules)

EXTEND Optional. Specifies appending to the existing NAMED result name in the workunit.
Using this feature requires that all NAMED OUTPUTs to the same name have the
EXTEND option present, including the first instance.

ALL Optional. Specifies all records in the recordset are output to the ECL IDE.

expression Any valid ECL expression that results in a single scalar value.

THOR Specifies the resulting recordset is stored as a file on disk, "owned" by the workunit,
instead of storing it directly within the workunit. The name of the file in the DFU is
scope::RESULT::workunitid.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

294

ECL Language Reference
Built-in Functions and Actions

The OUTPUT action produces a recordset result from the supercomputer, based on which form and options
you choose. If no file to write to is specified, the result is stored in the workunit and returned to the calling
program as a data stream.

OUTPUT Field Names
Field names in an "on the fly" record format {...} must be unique or a syntax error results. For example:

OUTPUT(person(), {module1.attr1, module2.attr1});

will result in a syntax error. Output Field Names are assumed from the definition names.

To get around this situation, you can specify a unique name for the output field in the on-the-fly record
format, like this:

OUTPUT(person(), {module1.attr1, name := module2.attr1});

OUTPUT Thor/Flat Files
[attr :=] OUTPUT(recordset [, [format] [,file [, CLUSTER (target)] | [, PLANE (targetPlane)] [,ENCRYPT(
key)]

[,COMPRESSED] [,OVERWRITE][, UPDATE] [,EXPIRE([days])]]])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the
file is written to the cluster on which the workunit executes. The number of physical
file parts written to disk is always determined by the number of nodes in the cluster
on which the workunit executes, regardless of the number of nodes on the target
cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to
write the file to. The names must be listed as they appear on the ECL Watch Activity
page or returned by the Std.System.Thorlib.Group() function, optionally with square
brackets containing a comma-delimited list of node-numbers (1-based) and/or ranges
(specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

PLANE Optional. Specifies writing the file to the specified list of target planes. If omitted, the
file is written to the default plane. Planes are used by containerized systems, but
since bare-metal clusters are implicitly backed with a plane with the same name, you
can use PLANE('clustername') for bare-metal deployments.

targetPlane A comma-delimited list of string constants containing the names of the plane(s) to
write the file to. The targetPlane names must be listed as they are defined in the
deployment.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW
compression.

key A string constant containing the encryption key to use to encrypt the data.

COMPRESSED Optional. Specifies writing the file using LZW compression.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days since the file was read.

days Optional. The number of days from last file read after which the file may be automat-
ically deleted. If EXPIRE is specified without number of days, it defaults to use the
ExpiryDefault setting in Sasha.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

295

ECL Language Reference
Built-in Functions and Actions

This form writes the recordset to the specified file in the specified format. If the format is omitted, all fields in
the recordset are output. If the file is omitted, then the result is sent back to the requesting program (usually
the ECL IDE or the program that sent the SOAP query to a Roxie).

Example:

OutputFormat1 := RECORD
 People.firstname;
 People.lastname;
END;

A_People := People(lastname[1]='A');
Score1 := HASHCRC(People.firstname);
Attr1 := People.firstname[1] = 'A';

OUTPUT(SORT(A_People,Score1),OutputFormat1,'hold01::fred.out');
 // writes the sorted A_People set to the fred.out file in
 // the format declared in the OutputFormat1 definition

OUTPUT(People,{firstname,lastname});
 // writes just First and Last Names to the command issuer
 // full qualification of the fields is unnecessary, since
 // the "on-the-fly" records structure is within the
 // scope of the OUTPUT -- People is assumed

OUTPUT(People(Attr1=FALSE));
 // writes all Peeople fields from records where Attr1 is
 // false to the command issuer

OUTPUT CSV Files
[attr :=] OUTPUT(recordset, [format] ,file , CSV[(csvoptions)] [, CLUSTER (target)] | [, PLANE (target-
Plane)] [,ENCRYPT(key)] [,COMPRESSED]

[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the
file is written to the cluster on which the workunit executes. The number of physical
file parts written to disk is always determined by the number of nodes in the cluster
on which the workunit executes, regardless of the number of nodes on the target
cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to
write the file to. The names must be listed as they appear on the ECL Watch Activity
page or returned by the Std.System.Thorlib.Group() function, optionally with square
brackets containing a comma-delimited list of node-numbers (1-based) and/or ranges
(specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

PLANE Optional. Specifies writing the file to the specified list of target planes. If omitted, the
file is written to the default plane. Planes are used by containerized systems, but
since bare-metal clusters are implicitly backed with a plane with the same name, you
can use PLANE('clustername') for bare-metal deployments.

targetPlane A comma-delimited list of string constants containing the names of the plane(s) to
write the file to. The targetPlane names must be listed as they are defined in the
deployment.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW
compression.

key A string constant containing the encryption key to use to encrypt the data.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

296

ECL Language Reference
Built-in Functions and Actions

COMPRESSED Optional. Specifies writing the file using LZW compression.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If
omitted, the default is seven (7).

This form writes the recordset to the specified file in the specified format as a comma separated values
ASCII file. The valid set of csvoptions are:

HEADING([headertext [, footertext]] [, SINGLE][, FORMAT(stringfunction)])

SEPARATOR(delimiters)

TERMINATOR(delimiters)

QUOTE([delimiters])

ASCII | EBCDIC | UNICODE

HEADING Specifies file headers and footers.

headertext Optional. The text of the header record to place in the file. If omitted, the field names
are used.

footertext Optional. The text of the footer record to place in the file. If omitted, no footertext
is output.

SINGLE Optional. Specifies the headertext is written only to the beginning of part 1 and the
footertext is written only at the end of part n (producing a "standard" CSV file). If
omitted, the headertext and footertext are placed at the beginning and end of each
file part (useful for producing complex XML output).

FORMAT Optional. Specifies the headertext should be formatted using the stringfunction.

stringfunction Optional. The function to use to format the column headers. This can be any function
that takes a single string parameter and returns a string result

SEPARATOR Specifies the field delimiters.

delimiters A single string constant (or comma-delimited list of string constants) that define the
character(s) used to delimit the data in the CSV file.

TERMINATOR Specifies the record delimiters.

QUOTE Specifies the quotation delimiters for string values that may contain SEPARATOR or
TERMINATOR delimiters as part of their data.

ASCII Specifies all output is in ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifies all output is in EBCDIC format except the SEPARATOR and TERMINA-
TOR (which are expressed as ASCII values).

UNICODE Specifies all output is in Unicode UTF8 format

If none of the ASCII, EBCDIC, or UNICODE options are specified, the default output is in ASCII format with
any UNICODE fields in UTF8 format. The other default csvoptions are:

 CSV(HEADING('',''), SEPARATOR(','), TERMINATOR('\n'), QUOTE())

Example:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

297

ECL Language Reference
Built-in Functions and Actions

//SINGLE option writes the header only to the first file part:
OUTPUT(ds,,'~thor::outdata.csv',CSV(HEADING(SINGLE)));

//This example writes the header and footer to every file part:
OUTPUT(XMLds,,'~thor::outdata.xml',CSV(HEADING('<XML>','</XML>')));

//FORMAT option writes the header using the specified formatting function:
IMPORT STD;
OUTPUT(ds,,'~thor::outdata.csv',CSV(HEADING(FORMAT(STD.Str.ToUpperCase))));

OUTPUT XML Files
[attr :=] OUTPUT(recordset, [format] ,file ,XML [(xmloptions)] [,ENCRYPT(key)] [, CLUSTER (target)]
| [, PLANE (targetPlane)] [, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the
file is written to the cluster on which the workunit executes. The number of physical
file parts written to disk is always determined by the number of nodes in the cluster
on which the workunit executes, regardless of the number of nodes on the target
cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to
write the file to. The names must be listed as they appear on the ECL Watch Activity
page or returned by the Std.System.Thorlib.Group() function, optionally with square
brackets containing a comma-delimited list of node-numbers (1-based) and/or ranges
(specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

PLANE Optional. Specifies writing the file to the specified list of target planes. If omitted, the
file is written to the default plane. Planes are used by containerized systems, but
since bare-metal clusters are implicitly backed with a plane with the same name, you
can use PLANE('clustername') for bare-metal deployments.

targetPlane A comma-delimited list of string constants containing the names of the plane(s) to
write the file to. The targetPlane names must be listed as they are defined in the
deployment.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW
compression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If
omitted, the default is seven (7).

This form writes the recordset to the specified file as XML data with the name of each field in the specified
format becoming the XML tag for that field's data. The valid set of xmloptions are:

'rowtag'

HEADING(headertext [, footertext])

TRIM

OPT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

298

ECL Language Reference
Built-in Functions and Actions

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer records in the file.

headertext The text of the header record to place in the file.

footertext The text of the footer record to place in the file.

TRIM Specifies removing trailing blanks from string fields before output.

OPT Specifies omitting tags for any empty string field from the output.

If no xmloptions are specified, the defaults are:

 XML('Row',HEADING('<Dataset>\n','</Dataset>\n'))

Example:

R := {STRING10 fname,STRING12 lname};
B := DATASET([{'Fred','Bell'},{'George','Blanda'},{'Sam',''}],R);

OUTPUT(B,,'fred1.xml', XML); // writes B to the fred1.xml file
/* the Fred1.XML file looks like this:
<Dataset>
 <Row><fname>Fred </fname><lname>Bell</lname></Row>
 <Row><fname>George</fname><lname>Blanda </lname></Row>
 <Row><fname>Sam </fname><lname></lname></Row>
</Dataset> */

OUTPUT(B,,'fred2.xml',XML('MyRow', HEADING('<?xml version=1.0 ...?>\n<filetag>\n','</filetag>\n')));
/* the Fred2.XML file looks like this:
<?xml version=1.0 ...?>
<filetag>
 <MyRow><fname>Fred </fname><lname>Bell</lname></MyRow>
 <MyRow><fname>George</fname><lname>Blanda</lname></MyRow>
 <MyRow><fname>Sam </fname><lname></lname></MyRow>
</filetag> */

OUTPUT(B,,'fred3.xml',XML('MyRow',TRIM,OPT));
/* the Fred3.XML file looks like this:
<Dataset>
 <MyRow><fname>Fred</fname><lname>Bell</lname></MyRow>
 <MyRow><fname>George</fname><lname>Blanda</lname></MyRow>
 <MyRow><fname>Sam</fname></MyRow>
</Dataset> */

OUTPUT JSON Files
[attr :=] OUTPUT(recordset, [format] ,file ,JSON [(jsonoptions)] [,ENCRYPT(key)] [, CLUSTER (
target)] | [, PLANE (targetPlane)] [, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the
file is written to the cluster on which the workunit executes. The number of physical
file parts written to disk is always determined by the number of nodes in the cluster
on which the workunit executes, regardless of the number of nodes on the target
cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to
write the file to. The names must be listed as they appear on the ECL Watch Activity
page or returned by the Std.System.Thorlib.Group() function, optionally with square
brackets containing a comma-delimited list of node-numbers (1-based) and/or ranges
(specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

299

ECL Language Reference
Built-in Functions and Actions

PLANE Optional. Specifies writing the file to the specified list of target planes. If omitted, the
file is written to the default plane. Planes are used by containerized systems, but
since bare-metal clusters are implicitly backed with a plane with the same name, you
can use PLANE('clustername') for bare-metal deployments.

targetPlane A comma-delimited list of string constants containing the names of the plane(s) to
write the file to. The targetPlane names must be listed as they are defined in the
deployment.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW
compression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If
omitted, the default is seven (7).

This form writes the recordset to the specified file as JSON data with the name of each field in the specified
format becoming the JSON tag for that field's data. The valid set of jsonoptions are:

'rowtag'

HEADING(headertext [, footertext])

TRIM

OPT

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer records in the file.

headertext The text of the header record to place in the file.

footertext The text of the footer record to place in the file.

TRIM Specifies removing trailing blanks from string fields before output.

OPT Specifies omitting tags for any empty string field from the output.

If no jsonoptions are specified, the defaults are:

 JSON('Row',HEADING('[',']'))

Example:

R := {STRING10 fname,STRING12 lname};
B := DATASET([{'Fred','Bell'},{'George','Blanda'},{'Sam',''}],R);

OUTPUT(B,,'fred1.json', JSON); // writes B to the fred1.json file
/* the Fred1.json file looks like this:
{"Row": [
{"fname": "Fred ", "lname": "Bell "},
{"fname": "George ", "lname": "Blanda "},
{"fname": "Sam ", "lname": " "}
]}
*/
OUTPUT(B,,'fred2.json',JSON('MyResult', HEADING('[', ']')));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

300

ECL Language Reference
Built-in Functions and Actions

/* the Fred2.json file looks like this:
["MyResult": [
{"fname": "Fred ", "lname": "Bell "},
{"fname": "George ", "lname": "Blanda "},
{"fname": "Sam ", "lname": " "}
]]

OUTPUT PIPE Files
[attr :=] OUTPUT(recordset, [format] ,PIPE(command [, CSV | XML]) [, REPEAT])

PIPE Indicates the specified command executes with the recordset provided as standard
input to the command. This is a "write" pipe.

command The name of a program to execute, which takes the file as its input stream.

CSV Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

REPEAT Optional. Indicates a new instance of the specified command executes for each row
in the recordset.

This form sends the recordset in the specified format as standard input to the command. This is commonly
known as an "output pipe."

Example:

OUTPUT(A_People,,PIPE('MyCommandLIneProgram'),OVERWRITE);
 // sends the A_People to MyCommandLIneProgram as
 // standard in

Named OUTPUT
[attr :=] OUTPUT(recordset [, format] ,NAMED(name) [,EXTEND] [,ALL])

This form writes the recordset to the workunit with the specified name. This must be a valid label (See
Definition Name Rules)

The EXTEND option allows multiple OUTPUT actions to the same named result. The ALL option is used to
override the implicit CHOOSEN applied to interactive queries in the Query Builder program. This specifies
returning all records.

Example:

OUTPUT(CHOOSEN(people(firstname[1]='A'),10));
 // writes the A People to the workunit
OUTPUT(CHOOSEN(people(firstname[1]='A'),10),ALL);
 // writes all the A People to the workunit
OUTPUT(CHOOSEN(people(firstname[1]='A'),10),NAMED('fred'));
 // writes the A People to the fred named output

//a NAMED, EXTEND example:
errMsgRec := RECORD
 UNSIGNED4 code;
 STRING text;
END;
makeErrMsg(UNSIGNED4 _code,STRING _text) := DATASET([{_code, _text}], errMsgRec);
rptErrMsg(UNSIGNED4 _code,STRING _text) := OUTPUT(makeErrMsg(_code,_text),
 NAMED('ErrorResult'),EXTEND);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

301

ECL Language Reference
Built-in Functions and Actions

OUTPUT(DATASET([{100, 'Failed'}],errMsgRec),NAMED('ErrorResult'),EXTEND);
 //Explicit syntax.

//Something else creates the dataset
OUTPUT(makeErrMsg(101, 'Failed again'),NAMED('ErrorResult'),EXTEND);

//output and dataset handled elsewhere.
rptErrMsg(102, 'And again');

OUTPUT Scalar Values
[attr :=] OUTPUT(expression [, NAMED(name)])

This form is used to allow scalar expression output, particularly within SEQUENTIAL and PARALLEL ac-
tions.

Example:

OUTPUT(10) // scalar value output
OUTPUT('Fred') // scalar value output

OUTPUT Workunit Files
[attr :=] OUTPUT(recordset , THOR)

This form is used to store the resulting recordset as a file on disk "owned" by the workunit. The name of the
file in the DFU is scope::RESULT::workunitid. This is useful when you want to view a large result recordset
in the Query Builder program but do not want that much data to take up memory in the system data store.

Example:

OUTPUT(Person(per_st='FL'), THOR)
 // output records to screen, but store the
 // result on disk instead of in the workunit

See Also: TABLE, DATASET, PIPE, CHOOSEN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

302

ECL Language Reference
Built-in Functions and Actions

PARALLEL
[definitionname :=] PARALLEL(actionlist)

definitionname Optional. The action name, which turns the action into a definition, therefore not exe-
cuted until the definitionname is used as an action.

actionlist A comma-delimited list of the actions to execute simultaneously. These may be ECL
actions or external actions.

The PARALLEL action allows the items in the actionlist to execute simultaneously. It does not force parallel
execution, only allows it -- the compiler determines the actual execution order. This is already the default
operative mode, so PARALLEL is only useful within the action list of a SEQUENTIAL set of actions.

Example:

Act1 :=
OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Act2 :=
OUTPUT(Person,{Person.per_first_name,Person.per_last_name});

Act2 := OUTPUT(Person,{Person.per_last_name});

//by naming these actions, they become inactive definitions
//that only execute when the definition names are called as actions

SEQUENTIAL(Act1,PARALLEL(Act2,Act3));

//executes Act1 alone, and only when it's finished,
// executes Act2 and Act3 together

See Also: ORDERED , SEQUENTIAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

303

ECL Language Reference
Built-in Functions and Actions

PARSE
PARSE(dataset, data, pattern, result , flags [, MAXLENGTH(length)])

PARSE(dataset, data, result , XML(path) [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE]
[, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

dataset The set of records to process.

data An expression specifying the text to parse, typically the name of a field in the dataset.

pattern The parsing pattern to match.

result The name of either the RECORD structure attribute that specifies the format of the
output record set (like the TABLE function), or the TRANSFORM function that pro-
duces the output record set (like PROJECT).

flags One or more parsing options, listed below.

MAXLENGTH Specifies the the maximum length the pattern can match. If omitted, the default length
is 4096.

length An integer constant specifying the maximum number of matching characters.

XML Specifies the dataset contains XML data.

path A string constant containing the XPATH to the tag that delimits the XML data in the
dataset.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: PARSE returns a record set.

The PARSE function performs a text or XML parsing operation.

PARSE Text Data
The first form operates on the dataset, finding records whose data contains a match for the pattern, produc-
ing a result set of those matches in the result format. If the pattern finds multiple matches in the data, then
a result record is generated for each match. Each match for a PARSE is effectively a single path through
the pattern. If there is more than one path that matches, then the result transform is either called once for
each path, or if the BEST option is used, the path with the lowest penalty is selected.

If the result names a RECORD structure, then this form of PARSE operates like the TABLE function to
generate the result set, but may also operate on variable length text. If the result names a TRANSFORM
function, then the transform generates the result set. The TRANSFORM function must take at least one

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

304

ECL Language Reference
Built-in Functions and Actions

parameter: a LEFT record of the same format as the dataset. The format of the resulting record set does
not need to be the same as the input.

Flags can have the following values:

FIRST Only return a row for the first match starting at a particular position.

ALL Return a row for every possible match of the string at a particular position.

WHOLE Only match the whole string.

NOSCAN If a position matches, don't continue searching for other matches.

SCAN If a position matches, continue searching from the end of the match, otherwise
continue from the next position.

SCAN ALL Return matches for every possible start position. Use the TRIM function to eliminate
parsing extraneous trailing blanks.

NOCASE Perform a case insensitive comparison.

CASE Perform a case sensitive comparison (this is the default).

SKIP(separator-pat-
tern)

Specify a pattern that can be inserted after each token in a search pattern. For
example, SKIP ([' ','\t']*) skips spaces and tabs between tokens.

KEEP(max) Only keep the first max matches.

ATMOST(max) Don't produce any matches if there are more than max matches.

MAX Return a row for the result that matches the longest sequence of the input. Only
one match is returned unless the MANY option is also specified.

MIN Return a row for the result that matches the shortest sequence of the input. Only
one match is returned unless the MANY option is also specified.

MATCHED([rule-ref-
erence])

Used when rule-reference is used in a user-matching function. If a rule-reference
is not specified, the matching information may not be preserved.

MATCHED(ALL) Retain all rule-names -- if they are used by user match functions.

NOT MATCHED Generate a row if there were no matches on the input row. All calls to the
MATCHED() function return false inside the resultstructure.

NOT MATCHED ON-
LY

Only generate a row if no matches were found.

BEST Pick the match with the highest score (lowest penalty). If the MAX or MIN flags are
also present, they are applied first. Only one match is returned unless the MANY
option is also specified.

MANY Return multiple matches for BEST, MAX, or MIN options.

PARSE Implements Tomita parsing instead of regular expression parsing technology.

USE([struct,] x) Specifies using a RULE pattern attribute defined further on in the code with the
DEFINE(x) function, introducing a recursive grammar (the only recursion allowed
in ECL). If the optional struct RECORD structure is specified, USE specifies using
a RULE pattern attribute defined further on in the code with the DEFINE(x) function
that produces a row result in the struct RECORD structure format (valid only with
the PARSE option also present). USE is required on PARSE when any patterns
cannot be found by walking the rules from the root down without following any
USEs.

Example:

rec := {STRING10000 line};

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

305

ECL Language Reference
Built-in Functions and Actions

datafile := DATASET([
 {'Ge 34:2 And when Shechem the son of Hamor the Hivite, prince of the country, saw her,'+
 ' he took her, and lay with her, and defiled her.'},
 {'Ge 36:10 These are the names of Esaus sons; Eliphaz the son of Adah the wife of Esau,'+
 ' Reuel the son of Bashemath the wife of Esau.'}],rec);
PATTERN ws1 := [' ','\t',','];
PATTERN ws := ws1 ws1?;
PATTERN patStart := FIRST | ws;
PATTERN patEnd := LAST | ws;
PATTERN article := ['A','The','Thou','a','the','thou'];

TOKEN patWord := PATTERN('[a-zA-Z]+');
TOKEN Name := PATTERN('[A-Z][a-zA-Z]+');

RULE Namet := name OPT(ws ['the','king of','prince of'] ws name);
PATTERN produced := OPT(article ws) ['begat','father of','mother of'];
PATTERN produced_by := OPT(article ws) ['son of','daughter of'];
PATTERN produces_with := OPT(article ws) ['wife of'];

RULE relationtype := (produced | produced_by | produces_with);
RULE progeny := namet ws relationtype ws namet;

results := RECORD
 STRING60 Le := MATCHTEXT(Namet[1]);
 STRING60 Ri := MATCHTEXT(Namet[2]);
 STRING30 RelationPhrase := MatchText(relationtype);
END;
outfile1 := PARSE(datafile,line,progeny,results,SCAN ALL);
OUTPUT(outfile1);

PARSE XML Data
The second form operates on an XML dataset, parsing the XML data and creating a result set using the
result parameter, one output record per input. The expectation is that each row of data contains a complete
block of XML. If the result names a RECORD structure, then this form of PARSE operates like the TABLE
function to generate the result set.

If the result names a TRANSFORM function, then the transform generates the result set. The TRANSFORM
function must take at least one parameter: a LEFT record of the same format as the dataset. The format of
the resulting record set does not need to be the same as the input.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In
particular, if the specified xpath matches a very large amount of data, then a large data structure will be
provided to the transform. Therefore, the more you match, the more resources you consume per match.
For example, if you have a very large document and you match an element near the root that virtually
encompasses the whole thing, then the whole thing will be constructed as a referenceable structure that
the ECL can get at.

Example:

linerec := { STRING line };
in1 := DATASET([{
 '<ENTITY eid="P101" type="PERSON" subtype="MILITARY">' +
 ' <ATTRIBUTE name="fullname">JOHN SMITH</ATTRIBUTE>' +
 ' <ATTRIBUTE name="honorific">Mr.</ATTRIBUTE>' +
 ' <ATTRIBUTEGRP descriptor="passport">' +
 ' <ATTRIBUTE name="idNumber">W12468</ATTRIBUTE>' +
 ' <ATTRIBUTE name="idType">pp</ATTRIBUTE>' +
 ' <ATTRIBUTE name="issuingAuthority">JAPAN PASSPORT AUTHORITY</ATTRIBUTE>' +
 ' <ATTRIBUTE name="country" value="L202"/>' +
 ' <ATTRIBUTE name="age" value="19"/>' +

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

306

ECL Language Reference
Built-in Functions and Actions

 ' </ATTRIBUTEGRP>' +
 '</ENTITY>'}],
 linerec);
passportRec := RECORD
 STRING id;
 STRING idType;
 STRING issuer;
 STRING country;
 INTEGER age;
END;
outrec := RECORD
 STRING id;
 UNICODE fullname;
 UNICODE title;
 passportRec passport;
 STRING line;
END;
outrec t(lineRec L) := TRANSFORM
 SELF.id := XMLTEXT('@eid');
 SELF.fullname := XMLUNICODE('ATTRIBUTE[@name="fullname"]');
 SELF.title := XMLUNICODE('ATTRIBUTE[@name="honorific"]');
 SELF.passport.id := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="idNumber"]');
 SELF.passport.idType := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="idType"]');
 SELF.passport.issuer := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="issuingAuthority"]');
 SELF.passport.country := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="country"]/@value');
 SELF.passport.age := (INTEGER)XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="age"]/@value');
 SELF := L;
END;

textout := PARSE(in1, line, t(LEFT), XML('/ENTITY[@type="PERSON"]'));
OUTPUT(textout);

See Also: DATASET, OUTPUT, XMLENCODE, XMLDECODE, REGEXFIND, REGEXREPLACE, DEFINE

Extended PARSE Examples
This example parses raw phone numbers from a specific field in an input dataset into a single standard
output containing just the numbers. A missing area code in the raw input results in three leading zeroes
in the output.

infile := DATASET([{'5615554581'},{'15615554581'},
 {'(561) 555-4581'},{'(561)555-4581'},
 {'561-555-4581'},{'561 555 4581'},
 {'561.555.4581'},{'561/555/4581'},
 {'561 555-4581'},{'5554581'},
 {'555-4581'}],{STRING20 rawnumber});

PATTERN numbers := PATTERN('[0-9]')+;
PATTERN alpha := PATTERN('[A-Za-z]')+;
PATTERN ws := [' ','\t']*;
PATTERN sepchar := PATTERN('[-./]');
PATTERN Seperator := ws sepchar ws;

// Area Code
PATTERN OpenParen := ['[','(','{','<'];
PATTERN CloseParen := [']',')','}','>'];
PATTERN FrontDigit := ['1', '0'] OPT(Seperator);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

307

ECL Language Reference
Built-in Functions and Actions

PATTERN areacode := OPT(FrontDigit) OPT(OpenParen) numbers length(3) OPT(CloseParen);

// Last Seven digits
PATTERN exchange := numbers length(3);
PATTERN lastfour := numbers length(4);
PATTERN seven := exchange OPT(Seperator) lastfour;

// Extension
PATTERN extension := ws alpha ws numbers;

// Phone Number
PATTERN phonenumber := OPT(areacode) OPT(Seperator) seven
 opt(extension) ws;

layout_phone_append := RECORD
 infile;
 STRING10 clean_phone := MAP(NOT MATCHED(phonenumber) => '',
 NOT MATCHED(areacode) => '000' + MATCHTEXT(exchange) + MATCHTEXT(lastfour),
 MATCHTEXT(areacode/numbers) + MATCHTEXT(exchange) + MATCHTEXT(lastfour));
END;

outfile :=
 PARSE(infile, rawnumber, phonenumber, layout_phone_append,FIRST, NOT MATCHED, WHOLE);

OUTPUT(outfile);

This example parses a small subset of raw movie data into standard database fields:

IMPORT Std;
Layout_Actors_Raw := RECORD
STRING120 IMDB_Actor_Desc;
END;

File_Actors := DATASET([
{'A.V., Subba Rao Chenchu Lakshmi (1958/I) <10>'},
{' Jayabheri (1959) <17>'},
{' Madalasa (1948) <3>'},
{' Mangalya Balam (1958) <12>'},
{' Mohini Bhasmasura (1938) <3>'},
{' Palletoori Pilla (1950) [Kampanna Dora] <4>'},
{' Peddamanushulu (1954) <6>'},
{' Sarangadhara (1957) <12>'},
{' Sri Seetha Rama Kalyanam (1961) <12>'},
{' Sri Venkateswara Mahatmyam (1960) [Akasa Raju] <5>'},
{' Vara Vikrayam (1939) [Judge] <12>'},
{' Vindhyarani (1948) <7>'},
{''},
{'Aa, Brynjar Adjo solidaritet (1985) [Ponker] <40>'},
{''},
{'Aabel, Andreas Bor Borson Jr. (1938) [O.G. Hansen] <9>'},
{' Jeppe pa bjerget (1933) [En skomakerlaerling]'},
{' Kampen om tungtvannet (1948) <8>'},
{' Prinsessen som ingen kunne maqlbinde (1932) [Espen
 Askeladd] <3>'},
{' Spokelse forelsker seg, Et (1946) [Et spokelse] <6>'},
{''},
{'Aabel, Hauk (I) Alexander den store (1917) [Alexander Nyberg]'},
{' Du har lovet mig en kone! (1935) [Professoren] <6>'},
{' Glad gutt, En (1932) [Ola Nordistua] <1>'},
{' Jeppe pa bjerget (1933) [Jeppe] <1>'},
{' Morderen uten ansikt (1936)'},
{' Store barnedapen, Den (1931) [Evensen, kirketjener] <5>'},
{' Troll-Elgen (1927) [Piper, direktor] <9>'},
{' Ungen (1938) [Krestoffer] <8>'},
{' Valfangare (1939) [Jensen Sr.] <4>'},

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

308

ECL Language Reference
Built-in Functions and Actions

{''},
{'Aabel, Per (I) Brudebuketten (1953) [Hoyland jr.] <3>'},
{' Cafajestes, Os (1962)'},
{' Farlige leken, Den (1942) [Fredrik Holm, doktor]'},
{' Herre med bart, En (1942) [Ole Grong, advokat] <1>'},
{' Kjaere Maren (1976) [Doktor]'},
{' Kjaerlighet og vennskap (1941) [Anton Schack] <3>'},
{' Ombyte fornojer (1939) [Gregor Ivanow] <2>'},
{' Portrettet (1954) [Per Haug, provisor] <1>'}],
Layout_Actors_Raw);

//Basic patterns:
PATTERN arb := PATTERN('[-!.,\t a-zA-Z0-9]')+;

//all alphanumeric & certain special characters
PATTERN ws := [' ','\t']+; //word separators (space & tab)
PATTERN number := PATTERN('[0-9]')+; //numbers

//extended patterns:
PATTERN age := '(' number OPT('/I') ')';

//movie year -- OPT('/I') required for first rec
PATTERN role := '[' arb ']'; //character played
PATTERN m_rank := '<' number '>'; //credit appearance number
PATTERN actor := arb OPT(ws '(I)' ws);
//actor's name -- OPT(ws '(I)' ws)
// required for last two actors

//extended pattern to parse the actual text:
PATTERN line := actor '\t' arb ws OPT(age) ws OPT(role) ws OPT(m_rank) ws;

//output record structure:
NLP_layout_actor_movie := RECORD
 STRING30 actor_name := Std.Str.filterout(MATCHTEXT(actor),'\t');
 STRING50 movie_name := MATCHTEXT(arb[2]);
 UNSIGNED2 movie_year := (UNSIGNED)MATCHTEXT(age/number);
 STRING20 movie_role := MATCHTEXT(role/arb);
 UNSIGNED1 cast_rank := (UNSIGNED)MATCHTEXT(m_rank/number);
END;

//and the actual parsing operation
Actor_Movie_Init := PARSE(File_Actors,
 IMDB_Actor_Desc,
 line,
 NLP_layout_actor_movie,WHOLE,FIRST);

// then iterate to propagate actor name in each record
NLP_layout_actor_movie IterNames(NLP_layout_actor_movie L,
 NLP_layout_actor_movie R) := TRANSFORM
 SELF.actor_name := IF(R.actor_Name='',L.actor_Name,R.actor_name);
 SELF:= R;
END;

NLP_Actor_Movie := ITERATE(Actor_Movie_Init,IterNames(LEFT,RIGHT));

// and output the result set
OUTPUT(NLP_Actor_Movie);

An example of Tomita Parsing (using SELF):

//an example of Tomita Parsing (using SELF):

r1 := RECORD
 STRING value;
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

309

ECL Language Reference
Built-in Functions and Actions

ds := DATASET([{'1'},{'222+33*(1+2+(1))'}], r1);

TOKEN val := PATTERN('[0-9]')+;
RULE expr := SELF '*' SELF | SELF '+' SELF | SELF '(' SELF ')' | val;

parsed_record := RECORD
 STRING result := MATCHTEXT(expr);
END;

PARSE(ds, value, expr, parsed_record,PARSE);

Another example of Tomita parsing:

// This example demonstrates the use of productions in PARSE code
//(only supported in the Tomita version of PARSE)

PATTERN ws := ['','\t'];
TOKEN number := PATTERN('[0-9]+');
TOKEN plus := '+';
TOKEN minus := '-';
attrRec := RECORD //record structure for Tomita parsing
 INTEGER val;
END;
RULE(attrRec) e0 := '(' USE(attrRec,expr)? ')' //USE = forward reference to "expr" definition
 | number TRANSFORM(attrRec, SELF.val := (INTEGER)$1;)
 | minus SELF TRANSFORM(attrRec, SELF.val := -$2.val;);

RULE(attrRec) e1 := e0
 | SELF '*' e0 TRANSFORM(attrRec, SELF.val := $1.val * $3.val;)
 | SELF '/' e0 TRANSFORM(attrRec, SELF.val := $1.val / $3.val;);
RULE(attrRec) e2 := e1
 | SELF plus e1 TRANSFORM(attrRec, SELF.val := $1.val + $3.val;)
 | SELF minus e1 TRANSFORM(attrRec, SELF.val := $1.val - $3.val;);
RULE(attrRec) expr := e2;
infile := DATASET([{'1+2*3'},{'1+2*100'},{'1+2+(3+4)*4/2'},{'-4*5'}], { STRING line });
resultsRec := RECORD
 RECORDOF(infile);
 attrRec;
 STRING exprText;
 INTEGER value3;
END;
resultsRec extractResults(infile L, attrRec attr) := TRANSFORM
 SELF := L;
 SELF := attr;
 SELF.exprText := MATCHTEXT;
 SELF.value3 := MATCHROW(e0[3]).val;
END;
OUTPUT(PARSE(infile,line,expr,extractResults(LEFT, $1),FIRST,WHOLE,PARSE,SKIP(ws+)));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

310

ECL Language Reference
Built-in Functions and Actions

PIPE
PIPE(command, recorddef [, CSV | XML])

PIPE(recordset, command [, recorddef] [, REPEAT] [, CSV | XML] [, OUTPUT(CSV | XML)] [, GROUP]
[, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)])

command The name of a program to execute, which must take any input data through stdin and
produce its output through stdout. This program must have already been deployed on
the HPCC Systems cluster in the Thor instance directory (such as: /var/lib/HPCCSys-
tems/mythor/) but that can be overridden by the externalProgDir environment setting for
the Thor cluster).

recorddef The RECORD structure format for output. If omitted, output is the same as the input
format.

CSV Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output
data format is CSV. In form 2, specifies the input data format is CSV. If omitted, the
format is raw.

XML Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output
data format is XML. In form 2, specifies the input data format is XML. If omitted, the
format is raw.

recordset The input dataset.

REPEAT Optional. Specifies a new instance of the command program is created for each row
in the recordset.

OUTPUT Optional. Specifies CSV or XML result data format.

GROUP Optional. Specifies each result record is generated in a separate GROUP (only if RE-
PEAT is specified).

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: PIPE returns a record set.

The PIPE function allows ECL code to launch an external command program on each node, effectively
parallelizing a non-parallel processing program. PIPE has two forms:

Form 1 takes no input, executes the command, and produces its output in the recorddef format. This is an
"input" pipe (like the PIPE option on a DATASET definition).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

311

ECL Language Reference
Built-in Functions and Actions

Form 2 takes the input recordset, executes the command, producing output in the recorddef format. This
is a "through" pipe.

Example:

namesRecord := RECORD
 STRING10 forename;
 STRING10 surname;
 STRING2 nl := '\r\n';
END;

d := PIPE('pipeRead 200', namesRecord); //form 1 - input pipe

t := PIPE(d, 'pipeThrough'); //form 2 - through pipe

OUTPUT(t,,PIPE('pipeWrite \\thordata\\names.all')); //output pipe

//Form 2 with XML input:
namesRecord := RECORD
 STRING10 Firstname{xpath('/Name/FName')};
 STRING10 Lastname{xpath('/Name/LName')};
END;

p := PIPE('echo <Name><FName>George</FName><LName>Jetson</LName></Name>', namesRecord, XML);
OUTPUT(p);

See Also: OUTPUT, DATASET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

312

ECL Language Reference
Built-in Functions and Actions

POWER
POWER(base,exponent)

base The real number to raise.

exponent The real power to raise x to.

Return: POWER returns a single real value.

The POWER function returns the result of the base raised to the exponent power.

Example:

MyCube := POWER(2.0,3.0); // = 8.0
MySquare := POWER(3.0,2.0); // = 9.0
OUTPUT(MyCube);
OUTPUT(MySquare);

See Also: SQRT, EXP, LN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

313

ECL Language Reference
Built-in Functions and Actions

PRELOAD
PRELOAD(file [, nbr])

file The name of a DATASET definition.

nbr Optional. An integer constant specifying how many indexes to create "on the fly" for
speedier access to the specified DATASET file (only). If > 1000, specifies the amount of
memory set aside for these indexes.

Return: PRELOAD returns a record set.

The PRELOAD function leaves the file in memory after loading (valid only for Data Delivery Engine (Roxie)
use). This is exactly equivalent to using the PRELOAD option on the DATASET definition.

Example:

MyFile := DATASET('MyFile',{STRING20 F1, STRING20 F2},THOR);
 COUNT(PRELOAD(MyFile))

See Also: DATASET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

314

ECL Language Reference
Built-in Functions and Actions

PROCESS
PROCESS(recordset, datarow, datasettransform, rowtransform [, LOCAL] [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process.

datarow The initial RIGHT record to process, typically expressed by the ROW function.

datasettransform The TRANSFORM function to call for each record in the recordset.

rowtransform The TRANSFORM function to call to produce the next RIGHT record for the dataset-
transform.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: PROCESS returns a record set.

The PROCESS function operates in a similar manner to ITERATE in that it processes through all records
in the recordset one pair of records at a time, performing the datasettransform function on each pair of
records in turn. The first record in the recordset is passed to the datasettransform as the first left record,
paired with the datarow as the right record. The rowtransform is used to construct the right record for the
next pair. If either the datasettransform or the rowtransform contains a SKIP, then no record is produced
by the datasettransform for the skipped record.

TRANSFORM Function Requirements - PROCESS
The datasettransform and rowtransform functions both must take at least two parameters: a LEFT record
of the same format as the recordset and a RIGHT record of the same format as the datarow. The format of
the resulting record set for the datasettransform both must be the same as the input recordset. The format
of the resulting record set for the rowtransform both must be the same as the initial datarow. Optionally,
the datsettransform may take a third parameter: an integer COUNTER specifying the number of times the
transform has been called for the recordset or the current group in the recordset (see the GROUP function).

Examples:

DSrec := RECORD
 STRING4 Letter;
 STRING4 LeftRecIn := '';
 STRING4 RightRecIn := '';

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

315

ECL Language Reference
Built-in Functions and Actions

END;
StateRec := RECORD
 STRING2 Letter;
END;
ds := DATASET([{'AA'},{'BB'},{'CC'},{'DD'},{'EE'}],DSrec);

DSrec DSxform(DSrec L,StateRec R) := TRANSFORM
 SELF.Letter := L.Letter[1..2] + R.Letter;
 SELF.LeftRecIn := L.Letter;
 SELF.RightRecIn := R.Letter;
END;
StateRec ROWxform(DSrec L,StateRec R) := TRANSFORM
 SELF.Letter := L.Letter[1] + R.Letter[1];
END;

p := PROCESS(ds,
 ROW({'ZZ'},StateRec),
 DSxform(LEFT,RIGHT),
 ROWxform(LEFT,RIGHT));
OUTPUT(p);
/* Result:
AAZZ AA ZZ
BBAZ BB AZ
CCBA CC BA
DDCB DD CB
EEDC EE DC */

/* ***
 This example uses different information for state tracking
 (the point of the PROCESS function) through the input record set.
** */

w1 := RECORD
 STRING v{MAXLENGTH(100)};
END;

s1 := RECORD
 BOOLEAN priorA;
END;

ds := DATASET([{'B'},{'A'}, {'C'}, {'D'}], w1);

s1 doState(w1 l, s1 r) := TRANSFORM
 SELF.priorA := l.v = 'A';
END;

w1 doRecords(w1 l, s1 r) := TRANSFORM
 SELF.v := l.v + IF(r.priorA, '***', '');
END;

initState := ROW({TRUE}, s1);

rs := PROCESS(ds,
 initState,
 doRecords(LEFT,RIGHT),
 doState(LEFT,RIGHT));

OUTPUT(rs);
/* Result:
B***
A
C***
D

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

316

ECL Language Reference
Built-in Functions and Actions

*/

See Also: TRANSFORM Structure, RECORD Structure, ROW, ITERATE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

317

ECL Language Reference
Built-in Functions and Actions

PROJECT
PROJECT(recordset, transform [, PREFETCH [(lookahead [, PARALLEL])]] [, KEYED] [, LOCAL]
[, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [,
ALGORITHM(name)])

PROJECT(recordset, record [, PREFETCH [(lookahead [, PARALLEL])]] [, KEYED] [, LOCAL] [,
UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, AL-
GORITHM(name)])

recordset The set of records to process. This may be a single-record in-line DATASET.

transform The TRANSFORM function to call for each record in the recordset.

PREFETCH Optional. Allows index reads within the transform to be as efficient as keyed JOINs.
Valid for use only in Roxie queries.

lookahead Optional. Specifies the number of look-ahead reads. If omitted, the default is the value
of the _PrefetchProjectPreload tag in the submitted query. If that is omitted, then it is
taken from the value of defaultPrefetchProjectPreload specified in the RoxieTopology
file when the Roxie was deployed. If that is omitted, it defaults to 10.

PARALLEL Optional. Specifies the lookahead is done on a separate thread, in parallel with query
execution.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the
optimizer to generate optimal code for the operation.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

record The output RECORD structure to use for each record in the recordset.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: PROJECT returns a record set.

The PROJECT function processes through all records in the recordset performing the transform function
on each record in turn.

The PROJECT(recordset,record) form is simply a shorthand synonym for:

PROJECT(recordset,TRANSFORM(record,SELF := LEFT)).

making it simple to move data from one structure to another without a TRANSFORM as long as all the fields
in the output record structure are present in the input recordset.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

318

ECL Language Reference
Built-in Functions and Actions

TRANSFORM Function Requirements - PROJECT
The transform function must take at least one parameter: a LEFT record of the same format as the recordset.
Optionally, it may take a second parameter: an integer COUNTER specifying the number of times the
transform has been called for the recordset or the current group in the recordset (see the GROUP function).
The second parameter form is useful for adding sequence numbers. The format of the resulting record set
does not need to be the same as the input.

Example:

//form one example **********************************
Ages := RECORD
 STRING15 per_first_name;
 STRING25 per_last_name;
 INTEGER8 Age;
END;
TodaysYear := 2001;

Ages CalcAges(person l) := TRANSFORM
 SELF.Age := TodaysYear - l.birthdate[1..4];
 SELF := l;
END;
AgedRecs := PROJECT(person, CalcAges(LEFT));

//COUNTER example **********************************
SequencedAges := RECORD
 Ages;
 INTEGER8 Sequence := 0;
END;

SequencedAges AddSequence(Ages l, INTEGER c) :=
 TRANSFORM
 SELF.Sequence := c;
 SELF := l;
END;
SequencedAgedRecs := PROJECT(AgedRecs,
 AddSequence(LEFT,COUNTER));

//form two example **********************************
NewRec := RECORD
 STRING15 firstname;
 STRING25 lastname;
 STRING15 middlename;
END;
NewRecs := PROJECT(People,NewRec);
//equivalent to:
//NewRecs := PROJECT(People,TRANSFORM(NewRec,SELF :=
 LEFT));

//LOCAL example **********************************
MyRec := RECORD
 STRING1 Value1;
 STRING1 Value2;
END;

SomeFile := DATASET([{'C','G'},{'C','C'},{'A','X'},
 {'B','G'},{'A','B'}],MyRec);

MyOutRec := RECORD
 SomeFile.Value1;
 SomeFile.Value2;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

319

ECL Language Reference
Built-in Functions and Actions

 STRING6 CatValues;
END;

DistFile := DISTRIBUTE(SomeFile,HASH32(Value1,Value2));

MyOutRec CatThem(SomeFile L, INTEGER C) := TRANSFORM
 SELF.CatValues := L.Value1 + L.Value2 + '-' +
 (Std.System.Thorlib.Node()+1) + '-' + (STRING)C;
 SELF := L;
END;

CatRecs := PROJECT(DistFile,CatThem(LEFT,COUNTER),LOCAL);

OUTPUT(CatRecs);

/* CatRecs result set is:
Rec# Value1 Value2 CatValues
1 C C CC-1-1
2 B G BG-2-1
3 A X AX-2-2
4 A B AB-3-1
5 C G CG-3-2
*/

See Also: TRANSFORM Structure, RECORD Structure, ROW, DATASET

PROJECT - Module
PROJECT(module, interface [, OPT | attributelist])

module The MODULE structure containing the attribute definitions whose values to pass as the
interface.

interface The INTERFACE structure to pass.

OPT Optional. Suppresses the error message that is generated when an attribute defined in
the interface is not also defined in the module.

attributelist Optional. A comma-delimited list of the specific attributes in the module to supply to the
interface. This allows a specified list of attributes to be implemented, which is useful if
you want closer control, or if the types of the parameters don't match.

Return: PROJECT returns a MODULE compatible with the interface.

The PROJECT function passes a module's attributes in the form of the interface to a function defined to
accept parameters structured like the specified interface. This allows you to create a module for one interface
with the values being provided by another interface. The attributes in the module must be compatible with
the attributes in the interface (same type and same parameters, if any take parameters).

Example:

PROJECT(x,y)
/*is broadly equivalent to
MODULE(y)
 SomeAttributeInY := x.someAttributeInY
 //... repeated for all attributes in Y ...
END;
*/

myService(myInterface myArgs) := FUNCTION
 childArgs := MODULE(PROJECT(myArgs,Iface,isDead,did,ssn,address))
 BOOLEAN isFCRA := myArgs.isFCRA OR myArgs.fakeFCRA
 END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

320

ECL Language Reference
Built-in Functions and Actions

 RETURN childService(childArgs);
 END;

// you could directly pass PROJECT as a module parameter
// to an attribute:
myService(myInterface myArgs) := childService(PROJECT(myArgs, childInterface));

See Also: MODULE Structure, INTERFACE Structure, FUNCTION Structure, STORED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

321

ECL Language Reference
Built-in Functions and Actions

PULL
PULL(dataset)

dataset The set of records to fully load into the Data Refinery.

Return: PULL returns a recordset.

The PULL function is a meta-operation intended only to hint that the dataset should be fully loaded into the
Data Refinery before continuing the operation in Data Refinery.

Example:

MySet := PULL(Person);
 //load Person into Data Refinery before continuing

See Also:

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

322

ECL Language Reference
Built-in Functions and Actions

RANDOM
RANDOM()

Return: RANDOM returns a single value.

The RANDOM function returns a pseudo-random non-negative integer value between 0 and 4,294,967,295.

Example:

INTEGER1 Random1 := (RANDOM() % 25) + 1;
OUTPUT(Random1); // results are random
OUTPUT(Random1);
OUTPUT(Random1);

See Also: DISTRIBUTE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

323

ECL Language Reference
Built-in Functions and Actions

RANGE
RANGE(setofdatasets, setofintegers [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

setofdatasets A set of datasets.

setofintegers A set of integers.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not signifi-
cant. When True, specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads
threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of
supported algorithms for the SORT function's STABLE and
UNSTABLE options.

Return: RANGE returns a set of datasets.

The RANGE function extracts a subset of the setofdatasets as a SET. The setofintegers specifies which
elements of the setofdatasets comprise the resulting SET of datasets. This is typically used in the GRAPH
function.

Example:

r := {STRING1 Letter};
ds1 := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],r);
ds2 := DATASET([{'F'},{'G'},{'H'},{'I'},{'J'}],r);
ds3 := DATASET([{'K'},{'L'},{'M'},{'N'},{'O'}],r);
ds4 := DATASET([{'P'},{'Q'},{'R'},{'S'},{'T'}],r);
ds5 := DATASET([{'U'},{'V'},{'W'},{'X'},{'Y'}],r);

SetDS := [ds1,ds2,ds3,ds4,ds5];
outDS := RANGE(setDS,[1,3]);
//use only 1st and 3rd elements

OUTPUT(outDS[1]); //results in A,B,C,D,E
OUTPUT(outDS[2]); //results in K,L,M,N,O

See Also: GRAPH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

324

ECL Language Reference
Built-in Functions and Actions

RANK
RANK(position, set [,DESCEND])

position An integer indicating the element in the sorted set to return.

set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANK returns a single value.

The RANK function sorts the set in ascending (or descending, if DESCEND is present) order, then returns
the ordinal position (its index value) of the unsorted set's position element after the set has been sorted.
This is the opposite of RANKED.

Example:

Ranking1 := RANK(1,[20,30,10,40]);
// returns 2 - 1st element (20) in unsorted set is
// 2nd element after sorting to [10,20,30,40]

Ranking2 := RANK(1,[20,30,10,40],DESCEND);
// returns 3 - 1st element (20) in unsorted set is
// 3rd element after sorting to [40,30,20,10]

OUTPUT(Ranking1);
OUTPUT(Ranking2);

See Also: RANKED, SORT, SORTED, Sets and Filters

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

325

ECL Language Reference
Built-in Functions and Actions

RANKED
RANKED(position, set [,DESCEND])

position An integer indicating the element in the unsorted set to re-
turn.

set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANKED returns a single value.

The RANKED function sorts the set in ascending (or descending, if DESCEND is present) order, then
returns the ordinal position (its index value) of the sorted set's position element in the unsorted set. This
is the opposite of RANK.

Example:

Ranking1 := RANKED(1,[20,30,10,40]);
// returns 3 - 1st element (10) in sorted set [10,20,30,40]
// was 3rd element in unsorted set

Ranking2 := RANKED(1,[20,30,10,40],DESCEND);
// returns 4 - 1st element (40) in sorted set [40,30,20,10]
// was 4th element in unsorted set

OUTPUT(Ranking1);
OUTPUT(Ranking2);

See Also: RANK, SORT, SORTED, Sets and Filters

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

326

ECL Language Reference
Built-in Functions and Actions

REALFORMAT
REALFORMAT(expression, width, decimals)

expression The expression that specifies the REAL value to format.

width The size of string in which to right-justify the value.

decimals An integer specifying the number of decimal places.

Return: REALFORMAT returns a single value.

The REALFORMAT function returns the value of the expression formatted as a right-justified string of width
characters with the number of decimals specifed.

Example:

REAL8 MyFloat := 1000.0063;
STRING12 FloatStr12 := REALFORMAT(MyFloat,12,6);
OUTPUT(FloatStr12); //results in ' 1000.006300'

See Also: INTFORMAT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

327

ECL Language Reference
Built-in Functions and Actions

REGEXEXTRACT
REGEXEXTRACT(regex, text [, NOCASE])

regex A standard Perl regular expression.

text The text from which to extract.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXEXTRACT returns a SET of STRING, UNICODE, or UTF8 values (depending
on the data type of the text).

The REGEXEXTRACT function allows you to extract match groups (those wrapped in parenthesis) from
a STRING, a UTF-8 string, or a UNICODE string based upon a regular expression you provide. Parts of
a pattern outside match groups are used as part of the overall match process but are not extracted. The
first element in the returned SET is always the text that was searched, with found matched groups deleted.
Subsequent elements contains the contents of a match group match. The match groups are processed in
order, so the first match group result is in position 2, the second result is in position 3, etc. Essentially, it
filters the text, returning the portions that match the provided pattern and the deleted portions separately.

The regex must be a standard Perl regular expression.

We use a third-party library -- Perl-compatible Regular Expressions (PCRE2) to support this. See https://
www.pcre.org/current/doc/html/pcre2syntax.html for details on the PCRE2 pattern syntax.

Example:

// ----- STRING example --
PersonRecStr := RECORD
 STRING name;
 STRING age;
 STRING title;
 STRING other;
END;

s1 := 'id=1001; name="Dan Camp"; supervisor="Gavin"; title="Architect"' : STORED('x');

r1 := REGEXEXTRACT('(name="(.*?)";?)', s1, NOCASE);
// ['id=1001; supervisor="Gavin"; title="Architect"', 'name="Dan Camp";', 'Dan Camp']
// ^ rewritten result ^ captured group ^ capture group 2
OUTPUT(r1, NAMED('r1'));

r2 := REGEXEXTRACT('(age=(\\d+);?)', r1[1], NOCASE);
// ['id=1001; supervisor="Gavin"; title="Architect"']
// ^ rewritten result -- unchanged and no capture groups because no matches
OUTPUT(r2, NAMED('r2'));

r3 := REGEXEXTRACT('(title="(.*?)";?)', r2[1], NOCASE);
// ['id=1001; supervisor="Gavin"; ', 'title="Architect"', 'Architect']
// ^ rewritten result ^ captured group ^ capture group 2
OUTPUT(r3, NAMED('r3'));

foundName1 := r1[3];
foundAge1 := r2[3];
foundTitle1 := r3[3];
other1 := TRIM(r3[1], LEFT, RIGHT);

result1 := DATASET
 (
 [{foundName1, foundAge1, foundTitle1, other1}],
 PersonRecStr

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

328

ECL Language Reference
Built-in Functions and Actions

);

OUTPUT(result1, NAMED('result_1'));
// ----- UTF8 example --
PersonRecU8Str := RECORD
 UTF8 name;
 UTF8 age;
 UTF8 title;
 UTF8 other;
END;

s2 := u8'id=1001; name="Renée Åström"; supervisor="Dan"; title="Développeur"' : STORED('y');

r2_1 := REGEXEXTRACT(u8'(name="(.*?)";?)', s2, NOCASE);
OUTPUT(r2_1, NAMED('r2_1'));
r2_2 := REGEXEXTRACT(u8'(age=(\\d+);?)', r2_1[1], NOCASE);
OUTPUT(r2_2, NAMED('r2_2'));
r2_3 := REGEXEXTRACT(u8'(title="(.*?)";?)', r2_2[1], NOCASE);
OUTPUT(r2_3, NAMED('r2_3'));

foundName2 := r2_1[3];
foundAge2 := r2_2[3];
foundTitle2 := r2_3[3];
other2 := TRIM(r2_3[1], LEFT, RIGHT);

result2 := DATASET
 (
 [{foundName2, foundAge2, foundTitle2, other2}],
 PersonRecU8Str
);

OUTPUT(result2, NAMED('result_2'));

// ----- UNICODE example --

PersonRecUStr := RECORD
 UNICODE name;
 UNICODE age;
 UNICODE title;
 UNICODE other;
END;

s3 := u'id=1001; name="###"; supervisor="Gavin"; title="####"' : STORED('z');

r3_1 := REGEXEXTRACT(u'(name="(.*?)";?)', s3, NOCASE);
OUTPUT(r3_1, NAMED('r3_1'));
r3_2 := REGEXEXTRACT(u'(age=(\\d+);?)', r3_1[1], NOCASE);
OUTPUT(r3_2, NAMED('r3_2'));
r3_3 := REGEXEXTRACT(u'(title="(.*?)";?)', r3_2[1], NOCASE);
OUTPUT(r3_3, NAMED('r3_3'));

foundName3 := r3_1[3];
foundAge3 := r3_2[3];
foundTitle3 := r3_3[3];
other3 := TRIM(r3_3[1], LEFT, RIGHT);

result3 := DATASET
 (
 [{foundName3, foundAge3, foundTitle3, other3}],
 PersonRecUStr
);

OUTPUT(result3, NAMED('result_3'));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

329

ECL Language Reference
Built-in Functions and Actions

See Also: PARSE, REGEXFIND, REGEXFINDSET, REGEXREPLACE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

330

ECL Language Reference
Built-in Functions and Actions

REGEXFIND
REGEXFIND(regex, text [, flag] [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

flag Optional. Specifies the text to return. If omitted, REGEXFIND returns TRUE or FALSE as
to whether the regex was found within the text. If 0, the portion of the text the regex was
matched is returned. If >= 1, the text matched by the nth group in the regex is returned.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXFIND returns a single value.

The REGEXFIND function uses the regex to parse through the text and find matches. The regex must be
a standard Perl regular expression.

We use a third-party library -- Perl-compatible Regular Expressions (PCRE2) to support this. See https://
www.pcre.org/current/doc/html/pcre2syntax.html for details on the PCRE2 pattern syntax.

Example:

namesRecord := RECORD
STRING20 surname;
STRING10 forename;
STRING10 userdate;
END;
namesTbl := DATASET([{'Halligan','Kevin','10/14/1998'},
 {'Halligan','Liz','12/01/1998'},
 {'Halligan','Jason','01/01/2000'},
 {'MacPherson','Jimmy','03/14/2003'}],namesRecord);
searchpattern := '^(.*)/(.*)/(.*)$';
search := '10/14/1998';

filtered := namesTbl(REGEXFIND('^(Mc|Mac)', surname));

OUTPUT(filtered); //returns 1 record -- MacPherson, Jimmy
OUTPUT(namesTbl,{(string30)REGEXFIND(searchpattern,userdate,0),
 (string30)REGEXFIND(searchpattern,userdate,1),
 (string30)REGEXFIND(searchpattern,userdate,2),
 (string30)REGEXFIND(searchpattern,userdate,3)});

REGEXFIND(searchpattern, search, 0); //returns '10/14/1998'
REGEXFIND(searchpattern, search, 1); //returns '10'
REGEXFIND(searchpattern, search, 2); //returns '14'
REGEXFIND(searchpattern, search, 3); //returns '1998'

See Also: PARSE, REGEXEXTRACT, REGEXFINDSET, REGEXREPLACE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

331

ECL Language Reference
Built-in Functions and Actions

REGEXFINDSET
REGEXFINDSET(regex, text [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXFINDSET returns a set of strings.

The REGEXFINDSET function uses the regex to parse through the text and find matches. The regex must
be a standard Perl regular expression.

We use a third-party library -- Perl-compatible Regular Expressions (PCRE2) to support this. See https://
www.pcre.org/current/doc/html/pcre2syntax.html for details on the PCRE2 pattern syntax.

REGEXFINDSET ignores capture groups. REGEXFINDSET repeatedly extracts the text matching the entire
regex pattern.

Example:

 sampleStr :=
 'To: jane@example.com From: john@example.com This is the winter of our discontent.';
eMails:=REGEXFINDSET('\\w+@[a-zA-Z_]+?\\.[a-zA-Z]{2,3}' , sampleStr);
OUTPUT(eMails);

UNICODE sampleStr2:=
 U'To: janë@example.com From john@example.com This is the winter of our discontent.';
eMails2:= REGEXFINDSET(U'\\w+@[a-zA-Z_]+?\\.[a-zA-Z]{2,3}', sampleStr2);
OUTPUT(eMails2);

See Also: PARSE,REGEXEXTRACT, REGEXFIND, REGEXREPLACE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

332

ECL Language Reference
Built-in Functions and Actions

REGEXREPLACE
REGEXREPLACE(regex, text, replacement [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

replacement The replacement text. In this string, $0 refers to the substring that matched the regex
pattern, and $1, $2, $3... match the first, second, third... groups in the pattern.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXREPLACE returns a single value.

The REGEXREPLACE function uses the regex to parse through the text and find matches, then replace
them with the replacement string. The regex must be a standard Perl regular expression.

We use a third-party library -- Perl-compatible Regular Expressions (PCRE2) to support this. See https://
www.pcre.org/current/doc/html/pcre2syntax.html for details on the PCRE2 pattern syntax.

Example:

REGEXREPLACE('(.a)t', 'the cat sat on the mat', '$1p');
 //ASCII
REGEXREPLACE(u'(.a)t', u'the cat sat on the mat', u'$1p');
 //UNICODE
// both of these examples return 'the cap sap on the map'

inrec := {STRING10 str, UNICODE10 ustr};
inset := DATASET([{'She', u'Eins'}, {'Sells', u'Zwei'},
 {'Sea', u'Drei'}, {'Shells', u'Vier'}], inrec);
outrec := {STRING10 orig, STRING10 withcase, STRING10
 wocase,UNICODE10 uorig,UNICODE10 uwithcase,UNICODE10 uwocase};

outrec trans(inrec l) := TRANSFORM
 SELF.orig := l.str;
 SELF.withcase := REGEXREPLACE('s', l.str, 'f');
 SELF.wocase := REGEXREPLACE('s', l.str, 'f', NOCASE);
 SELF.uorig := l.ustr;
 SELF.uwithcase := REGEXREPLACE(u'e', l.ustr, u'\u00EB');
 SELF.uwocase := REGEXREPLACE(u'e', l.ustr, u'\u00EB',NOCASE);
END;
OUTPUT(PROJECT(inset, trans(LEFT)));

/* the result set is:
orig withcase wocase uorig uwithcase uwocase
She She fhe Eins Eins \xc3\xabins
Sells Sellf fellf Zwei Zw\xc3\xabi Zw\xc3\xabi
Sea Sea fea Drei Dr\xc3\xabi Dr\xc3\xabi
Shells Shellf fhellf Vier Vi\xc3\xabr Vi\xc3\xabr */

See Also: PARSE, REGEXEXTRACT, REGEXFIND

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

333

ECL Language Reference
Built-in Functions and Actions

REGROUP
REGROUP(recset,...,recset [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

recset A grouped set of records. Each recset must be of exactly the same type and must contain
the same number of groups.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: REGROUP returns a record set.

The REGROUP function combines the grouped recsets into a single grouped record set. This is accom-
plished by combining each group in the first recset with the groups in the same ordinal position within each
subsequent recset.

Example:

inrec := {UNSIGNED6 did};

outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;
END;

ds := DATASET([1,2,3,4,5,6], inrec);
dsg := GROUP(ds, ROW);

i1 := DATASET([{1, 'Kevin', 10},
 {2, 'Richard', 5},
 {5, 'Nigel', 2},
 {0, '', 0}], outrec);
i2 := DATASET([{1, 'Kevin Halligan', 12},
 {2, 'Ricardo Chapman', 15},
 {3, 'Jake Smith', 20},
 {5, 'David Hicks', 100},
 {0, '', 0}], outrec);
i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Ricardo', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},
 {0, '', 0}], outrec);

j1 := JOIN(dsg, i1, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg, i2, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

334

ECL Language Reference
Built-in Functions and Actions

j3 := JOIN(dsg, i3, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);

combined := REGROUP(j1, j2, j3);
OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(combined);

See Also: GROUP, COMBINE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

335

ECL Language Reference
Built-in Functions and Actions

REJECTED
REJECTED(condition,...,condition)

condition A conditional expression to evaluate.

Return: REJECTED returns a single value.

The REJECTED function evaluates which of the list of conditions returned false and returns its ordinal
position in the list of conditions. Zero (0) returns if none return false. This is the opposite of the WHICH
function.

Example:

Rejects := REJECTED(Person.first_name <> 'Fred',Person.first_name <> 'Sue');
// Rejects receives 0 for everyone except those named Fred or Sue

See Also: WHICH, MAP, CHOOSE, IF, CASE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

336

ECL Language Reference
Built-in Functions and Actions

ROLLUP
ROLLUP(recordset, condition, transform [, LOCAL] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

ROLLUP(recordset, transform, fieldlist [, LOCAL] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

ROLLUP(recordset, GROUP, transform [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE]
[, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process, typically sorted in the same order that the condition or
fieldlist will test.

condition An expression that defines "duplicate" records. The keywords LEFT and RIGHT may be
used as dataset qualifiers for fields in the recordset.

transform The TRANSFORM function to call for each pair of duplicate records found.

LOCAL Optional. Specifies the operation is performed on each node independently, without re-
quiring interaction with all other nodes to acquire data; the operation maintains the dis-
tribution of any previous DISTRIBUTE.

fieldlist A comma-delimited list of expressions or fields in the recordset that defines "duplicate"
records. You may use the keywords WHOLE RECORD (or just RECORD) to indicate all
fields in that structure, and/or you may use the keyword EXCEPT to list fields to exclude.

GROUP Specifies the recordset is GROUPed and the ROLLUP operation will produce a single
output record for each group. If this is not the case, an error occurs.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: ROLLUP returns a record set.

The ROLLUP function is similar to the DEDUP function with the addition of a call to the transform function
to process each duplicate record pair. This allows you to retrieve valuable information from the "duplicate"
record before it's thrown away. Depending on how you code the transform function, ROLLUP can keep the
LEFT or RIGHT record, or any mixture of data from both.

The first form of ROLLUP tests a condition using values from the records that would be passed as LEFT
and RIGHT to the transform. The records are combined if the condition is true. The second form of ROLLUP
compares values from adjacent records in the input recordset, and combines them if they are the same.
These two forms will behave differently if the transform modifies some of the fields used in the matching
condition (see example below).

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

337

ECL Language Reference
Built-in Functions and Actions

For the first pair of candidate records, the LEFT record passed to the transform is the first record of the
pair, and the RIGHT record is the second. For subsequent matches of the same values, the LEFT record
passed is the result record from the previous call to the transform and the RIGHT record is the next record
in the recordset, as in this example:

ds := DATASET([{1,10},{1,20},{1,30},{3,40},{4,50}],
 {UNSIGNED r, UNSIGNED n});
d t(ds L, ds R) := TRANSFORM
 SELF.r := L.r + R.r;
 SELF.n := L.n + R.n;
END;
ROLLUP(ds, t(LEFT, RIGHT), r);
/* results in:
 3 60
 3 40
 4 50
*/
ROLLUP(ds, LEFT.r = RIGHT.r,t(LEFT, RIGHT));
/* results in:
 2 30
 1 30
 3 40
 4 50
 the third record is not combined because the transform modified the value.
*/

TRANSFORM Function Requirements - ROLLUP
For forms 1 and 2 of ROLLUP, the transform function must take at least two parameters: a LEFT record
and a RIGHT record, which must both be in the same format as the recordset. The format of the resulting
record set must also be the same as the inputs.

For form 3 of ROLLUP, the transform function must take at least two parameters: a LEFT record which must
be in the same format as the recordset, and a ROWS(LEFT) whose format must be a DATASET(RECORD-
OF(recordset)) parameter. The format of the resulting record set may be different from the inputs.

ROLLUP Form 1
Form 1 processes through all records in the recordset performing the transform function only on those pairs
of adjacent records where the match condition is met (indicating duplicate records) and passing through all
other records directly to the output.

Example:

//a crosstab table of last names and the number of times they occur
MyRec := RECORD
 Person.per_last_name;
 INTEGER4 PersonCount := 1;
END;
LnameTable := TABLE(Person,MyRec); //create dataset to work with
SortedTable := SORT(LnameTable,per_las_name); //sort it first

MyRec Xform(MyRec L,MyRec R) := TRANSFORM
 SELF.PersonCount := L.PersonCount + 1;
 SELF := L; //keeping the L rec makes it KEEP(1),LEFT
// SELF := R; //keeping the R rec would make it KEEP(1),RIGHT
END;
XtabOut := ROLLUP(SortedTable,
 LEFT.per_last_name=RIGHT.per_last_name,
 Xform(LEFT,RIGHT));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

338

ECL Language Reference
Built-in Functions and Actions

ROLLUP Form 2
Form 2 processes through all records in the recordset performing the transform function only on those pairs
of adjacent records where all the expressions in the fieldlist match (indicating duplicate records) and passing
through all other records to the output. This form allows you to use the same kind of EXCEPT field exclusion
logic available to DEDUP.

Example:

rec := {STRING1 str1,STRING1 str2,STRING1 str3};
ds := DATASET([{'a', 'b', 'c'},{'a', 'b', 'c'},
 {'a', 'c', 'c'},{'a', 'c', 'd'}], rec);
rec tr(rec L, rec R) := TRANSFORM
 SELF := L;
END;
Cat(STRING1 L, STRING1 R) := L + R;
r1 := ROLLUP(ds, tr(LEFT, RIGHT), str1, str2);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2
r2 := ROLLUP(ds, tr(LEFT, RIGHT), WHOLE RECORD, EXCEPT str3);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2
r3 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str3);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2
r4 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str2,str3);
 //equivalent to LEFT.str1 = RIGHT.str1
r5 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2 AND
 // LEFT.str3 = RIGHT.str3
r6 := ROLLUP(ds, tr(LEFT, RIGHT), str1 + str2);
 //equivalent to LEFT.str1+LEFT.str2 = RIGHT.str1+RIGHT.str2
r7 := ROLLUP(ds, tr(LEFT, RIGHT), Cat(str1,str2));
 //equivalent to Cat(LEFT.str1,LEFT.str2) =
 // Cat(RIGHT.str1,RIGHT.str2)
OUTPUT(r1);
OUTPUT(r2);
OUTPUT(r3);
OUTPUT(r4);
OUTPUT(r5);
OUTPUT(r6);
OUTPUT(r7);

ROLLUP Form 3
Form 3 is a special form of ROLLUP where the second parameter passed to the transform is a GROUP
and the first parameter is the first record in that GROUP. It processes through all groups in the recordset,
producing one result record for each group. Aggregate functions can be used inside the transform (such as
TOPN or CHOOSEN) on the second parameter. The result record set is not grouped. This form is implicitly
LOCAL in nature, due to the grouping.

Example:

inrec := RECORD
 UNSIGNED6 did;
END;

outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

339

ECL Language Reference
Built-in Functions and Actions

END;

nameRec := RECORD
 STRING20 name;
END;

finalRec := RECORD(inrec)
 DATASET(nameRec) names;
 STRING20 secondName;
END;

ds := DATASET([1,2,3,4,5,6], inrec);

dsg := GROUP(ds, ROW);

i1 := DATASET([{1, 'Kevin', 10},
 {2, 'Richard', 5},
 {5,'Nigel', 2},
 {0, '', 0}], outrec);

i2 := DATASET([{1, 'Kevin Halligan', 12},
 {2, 'Richard Charles', 15},
 {3, 'Blake Smith', 20},
 {5,'Nigel Hicks', 100},
 {0, '', 0}], outrec);

i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Richard', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},
 {0, '', 0}], outrec);
j1 := JOIN(dsg,
 i1,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg,
 i2,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);

j3 := JOIN(dsg,
 i3,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);

combined := REGROUP(j1, j2, j3);

finalRec doRollup(outRec l, DATASET(outRec) allRows) :=
 TRANSFORM
 SELF.did := l.did;
 SELF.names := PROJECT(allRows(score != 0),
 TRANSFORM(nameRec, SELF := LEFT));
 SELF.secondName := allRows(score != 0)[2].name;
END;

results := ROLLUP(combined, GROUP, doRollup(LEFT,ROWS(LEFT)));
OUTPUT(results);

See Also: TRANSFORM Structure, RECORD Structure, DEDUP, EXCEPT, GROUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

340

ECL Language Reference
Built-in Functions and Actions

ROUND
ROUND(realvalue[, decimals])

realvalue The floating-point value to round.

decimals Optional. An integer specifying the number of decimal places
to round to. If omitted, the default is zero (integer result).

Return: ROUND returns a single numeric value.

The ROUND function returns the rounded realvalue by using standard arithmetic rounding (decimal portions
less than .5 round down and decimal portions greater than or equal to .5 round up).

Example:

SomeRealValue1 := 3.14159;
INTEGER4 MyVal1 := ROUND(SomeRealValue1); // MyVal1 is 3
REAL MyVal2 := ROUND(SomeRealValue1,2); // MyVal2 is 3.14

SomeRealValue2 := 3.5;
INTEGER4 MyVal3 := ROUND(SomeRealValue2); // MyVal is 4

SomeRealValue3 := -1.3;
INTEGER4 MyVal4 := ROUND(SomeRealValue3); // MyVal is -1

SomeRealValue4 := -1.8;
INTEGER4 MyVal5 := ROUND(SomeRealValue4); // MyVal is -2
OUTPUT(MyVal1);
OUTPUT(MyVal2);
OUTPUT(MyVal3);
OUTPUT(MyVal4);
OUTPUT(MyVal5);

See Also: ROUNDUP, TRUNCATE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

341

ECL Language Reference
Built-in Functions and Actions

ROUNDUP
ROUNDUP(realvalue)

realvalue The floating-point value to round.

Return: ROUNDUP returns a single integer value.

The ROUNDUP function returns the rounded integer of the realvalue by rounding any decimal portion to
the next larger integer value, regardless of sign.

Example:

SomeRealValue := 3.14159;
INTEGER4 MyVal1 := ROUNDUP(SomeRealValue); // MyVal is 4

SomeRealValue2 := -3.9;
INTEGER4 MyVal2 := ROUNDUP(SomeRealValue2); // MyVal is -4

OUTPUT(MyVal1);
OUTPUT(MyVal2);

See Also: ROUND, TRUNCATE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

342

ECL Language Reference
Built-in Functions and Actions

ROW
ROW({ fields } , recstruct)

ROW(row , resultrec)

ROW([row ,] transform)

fields A comma-delimited list of data values for each field in the recstruct, contained in curly
braces ({}).

recstruct The name of the RECORD structure defining the field layout.

row A single row of data. This may be an existing record, or formatted in-line data values like
the fields parameter description above, or an empty set ([]) to add a cleared record in
the format of the resultrec. If omitted, the record is produced by the transform function.

resultrec A RECORD structure that defines how to construct the row of data, similar to the type
used by TABLE.

transform A TRANSFORM function that defines how to construct the row of data.

Return: ROW returns a single record.

The ROW function creates a single data record and is valid for use in any expression where a single record
is valid.

ROW Form 1
The first form constructs a record from the in-line data in the fields, structured as defined by the recstruct.
This is typically used within a TRANSFORM structure as the expression defining the output for a child
dataset field.

Example:

AkaRec := {STRING20 forename,STRING20 surname};
outputRec := RECORD
 UNSIGNED id;
 DATASET(AkaRec) kids;
END;
inputRec := {UNSIGNED id,STRING20 forename,STRING20 surname};
inPeople := DATASET([{1,'Kevin','Halligan'},{1,'Kevin','Hall'},
 {2,'Eliza','Hall'},{2,'Beth','Took'}],inputRec);
outputRec makeFatRecord(inputRec L) := TRANSFORM
 SELF.id := l.id;
 SELF.kids := DATASET([{ L.forename, L.surname }],AkaRec);
END;
fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec L, outputRec R) := TRANSFORM
 SELF.id := L.id;
 SELF.kids := L.kids + ROW({R.kids[1].forename,R.kids[1].surname},AkaRec);
END;
r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));
OUTPUT(r);

ROW Form 2
The second form constructs a record from the row passed to it using the resultrec the same way the TABLE
function operates. This is typically used within a TRANSFORM structure as the expression defining the
output for a child dataset field.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

343

ECL Language Reference
Built-in Functions and Actions

Example:

AkaRec := {STRING20 forename,STRING20 surname};
outputRec := RECORD
UNSIGNED id;
DATASET(AkaRec) children;
END;
inputRec := {UNSIGNED id,STRING20 forename,STRING20 surname};
inPeople := DATASET([{1,'Kevin','Halligan'},{1,'Kevin','Hall'},
 {1,'Gawain',''},{2,'Liz','Hall'},
 {2,'Eliza','Hall'},{2,'Beth','Took'}],inputRec);
outputRec makeFatRecord(inputRec L) := TRANSFORM
 SELF.id := l.id;
 SELF.children := ROW(L, AkaRec); //using Form 2 here
END;
fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec L, outputRec R) := TRANSFORM
 SELF.id := L.id;
 SELF.children := L.children +
 ROW({R.children[1].forename,R.children[1].surname},AkaRec);

END;
r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));
OUTPUT(r);

ROW Form 3
The third form uses a TRANSFORM function to produce its single record result. The transform function
must take at least one parameter: a LEFT record, which must be in the same format as the input record.
The format of the resulting record may be different from the input.

Example:

IMPORT Std;
NameRec := RECORD
 STRING5 title;
 STRING20 fname;
 STRING20 mname;
 STRING20 lname;
 STRING5 name_suffix;
 STRING3 name_score;
END;

MyRecord := RECORD
 UNSIGNED id;
 STRING uncleanedName;
 NameRec Name;
END;

x := DATASET('RTTEST::RowFunctionData', MyRecord,THOR);

STRING73 CleanPerson73(STRING inputName) := FUNCTION
 suffix:=[' 0',' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9',
 ' J',' JR',' S',' SR'];
 InWords := Std.Str.CleanSpaces(inputName);
 HasSuffix := InWords[LENGTH(TRIM(InWords))-1 ..] IN suffix;
 WordCount := LENGTH(TRIM(InWords,LEFT,RIGHT)) - LENGTH(TRIM(InWords,ALL))+1;
 HasMiddle := WordCount = 5 OR (WordCount = 4 AND NOT HasSuffix) ;
 Space1 := Std.Str.Find(InWords,' ',1);
 Space2 := Std.Str.Find(InWords,' ',2);
 Space3 := Std.Str.Find(InWords,' ',3);
 Space4 := Std.Str.Find(InWords,' ',4);
 STRING5 title := InWords[1..Space1-1];

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

344

ECL Language Reference
Built-in Functions and Actions

 STRING20 fname := InWords[Space1+1..Space2-1];
 STRING20 mname := IF(HasMiddle,InWords[Space2+1..Space3-1],'');
 STRING20 lname := MAP(HasMiddle AND NOT HasSuffix =>
 InWords[Space3+1..],
 HasMiddle AND HasSuffix =>
 InWords[Space3+1..Space4-1],
 NOT HasMiddle AND NOT HasSuffix =>
 InWords[Space2+1..],
 NOT HasMiddle AND HasSuffix =>
 InWords[Space2+1..Space3-1],
 '');
 STRING5 name_suffix := IF(HasSuffix,InWords[LENGTH(TRIM(InWords))-1 ..],'');
 STRING3 name_score := '';
 RETURN title + fname + mname + lname + name_suffix + name_score;
END;

//Example 1 - a transform to create a row from an uncleaned name
NameRec createRow(string inputName) := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
END;

myRecord t(myRecord L) := TRANSFORM
 SELF.Name := ROW(createRow(L.uncleanedName));
 SELF := L;
END;
y := PROJECT(x, t(LEFT));
OUTPUT(y);

//Example 2 - an attribute using that transform to generate the row.

NameRec cleanedName(STRING inputName) := ROW(createRow(inputName));
myRecord t2(myRecord L) := TRANSFORM
 SELF.Name := cleanedName(L.uncleanedName);
 SELF := L;
END;
y2 := PROJECT(x, t2(LEFT));
OUTPUT(y2);

//Example 3 = Encapsulate the transform inside the attribute by
// defining a FUNCTION structure.
NameRec cleanedName2(STRING inputName) := FUNCTION

 NameRec createRow := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
 END;

 RETURN ROW(createRow); //omitted row parameter
END;

myRecord t3(myRecord L) := TRANSFORM
 SELF.Name := cleanedName2(L.uncleanedName);
 SELF := L;
END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

345

ECL Language Reference
Built-in Functions and Actions

y3 := PROJECT(x, t3(LEFT));
OUTPUT(y3);

See Also: TRANSFORM Structure, DATASET, RECORD Structure, FUNCTION Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

346

ECL Language Reference
Built-in Functions and Actions

ROWDIFF
ROWDIFF(left, right [, COUNT])

left The left record, or a nested record structure.

right The right record, or a nested record structure.

COUNT Optional. Specifies returning a comma delimited set of zeros and ones (0,1) indicating
which fields matched (0) and which did not (1). If omitted, a comma delimited set of the
non-matching field names.

Return: ROWDIFF returns a single value.

The ROWDIFF function is valid for use only within a TRANSFORM structure for a JOIN operation and is
used as the expression defining the output for a string field. Fields are matched by name and only like-
named fields are included in the output.

Example:

FullName := RECORD
 STRING30 forename;
 STRING20 surname;
 IFBLOCK(SELF.surname <> 'Windsor')
 STRING20 middle;
 END;
END;
in1rec := {UNSIGNED1 id,FullName name,UNSIGNED1 age,STRING5 title};
in2rec := {UNSIGNED1 id,FullName name,REAL4 age,BOOLEAN dead};
in1 := DATASET([{1,'Kevin','Halligan','',33,'Mr'},
 {2,'Liz','Halligan','',33,'Dr'},
 {3,'Elizabeth','Windsor',99,'Queen'}], in1rec);
in2 := DATASET([{1,'Kevin','Halligan','',33,false},
 {2,'Liz','','Jean',33,false},
 {3,'Elizabeth','Windsor',99.1,false}], in2rec);
outrec := RECORD
 UNSIGNED1 id;
 STRING35 diff1;
 STRING35 diff2;
 STRING35 diff3;
 STRING35 diff4;
END;
outrec t1(in1 L, in2 R) := TRANSFORM
 SELF.id := L.id;
 SELF.diff1 := ROWDIFF(L,R);
 SELF.diff2 := ROWDIFF(L.name, R.name);
 SELF.diff3 := ROWDIFF(L, R, COUNT);
 SELF.diff4 := ROWDIFF(L.name, R.name, COUNT);
END;
OUTPUT(JOIN(in1, in2, LEFT.id = RIGHT.id, t1(LEFT,RIGHT)));
// The result set from this code is:
//id diff1 diff2 diff3 diff4
//1 0,0,0,0,0 0,0,0
//2 name.surname,name.middle surname,middle 0,0,1,1,0 0,1,1
//3 age 0,0,0,0,1 0,0,0

See Also: TRANSFORM Structure, JOIN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

347

ECL Language Reference
Built-in Functions and Actions

SAMPLE
SAMPLE(recordset, interval [, which] [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to sample. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

interval The interval between records to return.

which Optional. An integer specifying the ordinal number of the sample set to return. This is
used to obtain multiple non-overlapping samples from the same recordset.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: SAMPLE returns a set of records.

The SAMPLE function returns a sample set of records from the nominated recordset.

Example:

personRecord := RECORD
 STRING UID;
 STRING first_name;
 STRING last_name;
 STRING address;
 STRING city;
 STRING state;
 STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
 {'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
 {'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
 {'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
 {'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116'},
 {'928','Tom','Murray','740 SW 10th Street','Boston ','MA','02116'},
 {'929','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);
MySample1 := SAMPLE(Person,3,1); // returns every 3rd record

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 {STRING1 Letter});
MySample2 := SAMPLE(SomeFile,5,1); // returns A, F, K, P, U

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

348

ECL Language Reference
Built-in Functions and Actions

OUTPUT(MySample1);
OUTPUT(MySample2);

See Also: CHOOSEN, ENTH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

349

ECL Language Reference
Built-in Functions and Actions

SEQUENTIAL
[definitionname :=] SEQUENTIAL(actionlist)

definitionname Optional. The action name, which turns the action into a definition, therefore not exe-
cuted until the definitionname is used as an action.

actionlist A comma-delimited list of the actions to execute in order. These may be ECL actions
or external actions.

The SEQUENTIAL action executes the items in the actionlist in the order in which they appear in the ac-
tionlist.

Example:

Act1 := OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Act2 := OUTPUT(Person,{Person.per_first_name,Person.per_last_name});
Act3 := OUTPUT(Person,{Person.per_last_name});
//by naming these actions, they become inactive definitions
//that only execute when the definition names are called as deifnitions

SEQUENTIAL(Act1,PARALLEL(Act2,Act3));
//executes Act1 alone, and only when it's finished,
//executes Act2 and Act3 together

See Also: ORDERED, PARALLEL,PERSIST

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

350

ECL Language Reference
Built-in Functions and Actions

SET
SET(recordset, expression [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

recordset The set of records from which to derive the SET of values.

expression The expression from which to obtain the values, typically just a field in the recordset.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: SET returns a SET of values of the same type as the field.

The SET function returns a SET for use in any set operation (such as the IN operator), similar to a sub-select
in SQL when used with the IN operator. It does not remove duplicate elements and does not order the set.

One common problem is the use of the SET function in a filter condition, like this:

MyDS := myDataset(myField IN SET(anotherDataset, someField));

The code generated for this is inefficient if "anotherDataset" contains a large number of elements, and may
also cause a "Dataset too large to output to workunit" error. A better way to recode the expression would
be this:

MyDS := JOIN(myDataset, anotherDataset, LEFT.myField = RIGHT.someField, TRANSFORM(LEFT), LOOKUP) ;

The end result is the same, the set of "myDataset" records where the "myField" value is one of the "some-
Field" values from "anotherDataset," but the code is much more efficient in execution.

You can construct a DATASET from a SET.

ds := DATASET([{'X',1},{'B',3},{'C',2},{'B',5},
 {'C',4},{'D',6},{'E',2}],
 {STRING1 Ltr, INTEGER1 Val});
s1 := SET(ds,Ltr); //a SET of just the Ltr field values:
DATASET(s1,{STRING1 Ltr}); //a DATASET from the SET

Example:

ds := DATASET([{'X',1},{'B',3},{'C',2},{'B',5},
 {'C',4},{'D',6},{'E',2}],
 {STRING1 Ltr, INTEGER1 Val});

//a SET of just the Ltr field values:
s1 := SET(ds,Ltr);
COUNT(s1); //results in 7

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

351

ECL Language Reference
Built-in Functions and Actions

OUTPUT(s1); //results in ['X','B','C','B','C','D','E']

//a simple way to get just the unique elements
//is to use a crosstab TABLE:
t := TABLE(ds,{Ltr},Ltr); //order indeterminant

s2 := SET(t,Ltr);
COUNT(s2); //results in 5
OUTPUT(s2); //results in ['D','X','C','E','B']

//sorted unique elements
s3 := SET(SORT(t,Ltr),Ltr);
COUNT(s3); //results in 5
OUTPUT(s3); //results in ['B','C','D','E','X']

//a SET of expression values:
s4 := SET(ds,Ltr+Val);
OUTPUT(s4); // results in ['X1','B3','C2','B5','C4','D6','E2']

See Also: Sets and Filters, SET OF, Set Operators, IN Operator

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

352

ECL Language Reference
Built-in Functions and Actions

SIN
SIN(angle)

angle The REAL radian value for which to find the sine.

Return: SIN returns a single REAL value.

The SIN function returns the sine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
Sine45 := SIN(Angle45); //get sine of the 45 degree angle
OUTPUT(Sine45);

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

353

ECL Language Reference
Built-in Functions and Actions

SINH
SINH(angle)

angle The REAL radian value for which to find the hyperbolic sine.

Return: SINH returns a single REAL value.

The SINH function returns the hyperbolic sine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
HyperbolicSine45 := SINH(Angle45); //get hyperbolic sine of the angle
OUTPUT(HyperbolicSine45);

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SIN, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

354

ECL Language Reference
Built-in Functions and Actions

SIZEOF
SIZEOF(data [, MAX])

data The name of a dataset, RECORD structure, a fully-qualified field name, or a constant
string expression.

MAX Specifies the data is variable-length (such as containing child datasets) and the value
to return is the maximum size..

Return: SIZEOF returns a single integer value.

The SIZEOF function returns the total number of bytes defined for storage of the specified data structure
or field.

Example:

MyRec := RECORD
INTEGER1 F1;
INTEGER5 F2;
STRING1 F3;
STRING10 F4;
QSTRING12 F5;
VARSTRING12 F6;
END;
MyData := DATASET([{1,33333333333,'A','A','A',V'A'}],MyRec);
size0 := SIZEOF(MyRec); //result is 39
size1 := SIZEOF(MyData.F1); //result is 1
size2 := SIZEOF(MyData.F2); //result is 5
size3 := SIZEOF(MyData.F3); //result is 1
size4 := SIZEOF(MyData.F4); //result is 10
size5 := SIZEOF(MyData.F5); //result is 9 -12 chars stored in 9 bytes
size6 := SIZEOF(MyData.F6); //result is 13 -12 chars plus null terminator
size7 := SIZEOF('abc' + '123'); //result is 6
OUTPUT(size0);
OUTPUT(size1);
OUTPUT(size2);
OUTPUT(size3);
OUTPUT(size4);
OUTPUT(size5);
OUTPUT(size6);
OUTPUT(size7);

See Also: LENGTH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

355

ECL Language Reference
Built-in Functions and Actions

SOAPCALL
result := SOAPCALL([recset,] url, service, instructure, [transform,] DATASET(outstructure) | outstrucu-
ture [,options [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads
)]] [, ALGORITHM(name)] [, PERSIST [(option)]]) ;

SOAPCALL([recset,] url, service, instructure, [transform,] [options] [, UNORDERED | ORDERED(
bool)] [, STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)] [, PERSIST
[(option)]]) ;

result The attribute name for the resulting recordset or single record.

recset Optional. The input recordset. If omitted, the single input record must be de-
fined by default values for each field in the instructure parameter.

url A string containing a pipe-delimited (|) list of URLs that host the service to
invoke (may append repository module names). This is intended to provide a
means for the client to conduct a Federated search where the request is sent
to each of the target systems in the list. These URLs may contain standard
form usernames and passwords, if required. If calling an ESP Web service,
you can append the ver_=n.nn parameter to specify the version of the service.
For example:

SOAPCALL('https://eclwatch.example.com:8010/Wsdfu/?ver_=1.22',
 'DFUSearchData',
 instructure,DATASET(outsructure));

service A string expression containing the name of the service to invoke. This may be
in the form module.attribute if the service is on a Roxie platform.

instructure A RECORD structure containing the input field definitions from which the XML
input to the SOAP service is constructed. The name of the tags in the XML
are derived from the lowercase names of the fields in the input record; this can
be overridden by placing an xpath on the field ({xpath('tagname')} -- see the
XPATH Support section of the RECORD Structure discussion). If the recset
parameter is not present, each field definition must contain a default value that
will constitute the single input record. If the recset parameter is present, each
field definition must contain a default value unless a transform is also specified
to supply that data values.

transform Optional. The TRANSFORM function to call to process the instructure data.
This eliminates the need to define default values for all fields in the instructure
RECORD structure. The transform function must take at least one parameter:
a LEFT record of the same format as the input recset. The resulting record set
format must be the same as the input instructure.

DATASET (outstructure) Specifies recordset result in the outstructure format.

outstructure A RECORD structure containing the output field definitions. If not used as
a parameter to the DATASET keyword, this specifies a single record result.
Each field definition in the RECORD structure must use an xpath attribute
({xpath('tagname')}) to eliminate case sensitivity issues.

options A comma-delimited list of optional specifications from the list below.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

356

ECL Language Reference
Built-in Functions and Actions

bool When False, specifies the output record order is not significant. When True,
specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads per node.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algo-
rithms for the SORT function's STABLE and UNSTABLE options.

PERSIST Optional. Use persistent connections.

option Optional. If omitted, it uses the default number of requests per connection. If
TRUE, it enables persistent connections. If FALSE or 0, it disables persistent
connections. If set to an integer, it enables persistent connections and sets the
maximum number of requests each connection will be used for.

Return: SOAPCALL returns either a set of records, a single record, or nothing.

SOAPCALL is a function or action that calls a SOAP (Simple Object Access Protocol) service.

Valid options are:

RETRY(count) Specifies re-attempting the call count number of times if non-fatal errors
occur. If omitted, the default is three (3).

TIMEOUT(period) Specifies the amount of time to attempt the read before failing. The period is
a real number where the integer portion specifies seconds. Setting to zero
(0) indicates waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT(period) Specifies the total amount of time allowed for the SOAPCALL. The period
is a real number where the integer portion specifies seconds. If omitted, the
default is zero (0) indicating no limit.

HEADING(prefix,suffix) Specifies tags to wrap around the XML input fields. If omitted, the default
is: HEADING('','').

XPATH(xpath) Specifies the path used to access rows in the output. If omitted, the default
is: 'serviceResponse/Results/Result/Dataset/Row'.

MERGE(n) Specifies processing n records per batch (the blocking). If omitted, the de-
fault is 1 (values other than 1 may be incompatible with non-Roxie services).
Valid for use only if the recset parameter is also present.

PARALLEL(n) Specifies the number of concurrent threads per node to process queries,
to a maximum of 50 (the default is 2). This is intended to limit the number
of concurrent sessions.

ONFAIL(transform) Specifies either the transform function to call if the service fails for a partic-
ular record, or the keyword SKIP. The TRANSFORM function must produce
a resultype the same as the outstructure and may use FAILCODE and/or
FAILMESSAGE to provide details of the failure.

TRIM Specifies all trailing spaces are removed from strings before output.

RESPONSE (NOTRIM) Sets flag to prevent space stripping on the response.

NAMESPACE (namespace) Specifies the top level namespace for the SOAP request.

LITERAL Specifies the service is not necessarily implemented in ESP.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

357

ECL Language Reference
Built-in Functions and Actions

SOAPACTION (value) Specifies a value where that value is a string expression typically containing
a URN or URL that is required by the web service for proper interoperability.

LOG If specified, writes details to the log file of the engine (hThor, Thor, or Roxie)
to which the SOAPCALL is submitted.

LOG (MIN) Specifies to write minimal details of the SOAPCALL to a log file.

LOG (expression) Specifies to add the expression to the log when performing a SOAPCALL.

LOG (start_expression,
end_expression)

Specifies to add the start_expression to the log when a SOAPCALL begins
and add the end_expression to the log when a SOAPCALL ends.

ENCODING Specifies that the Web service being called requires a different message
format, where type information is embedded in the XML.

HTTPHEADER Specifies header information to be passed to the service. SOAPCALL sup-
ports multiple instances of the HTTPHEADER option if you need to specify
multiple key/value header strings.

SOAPCALL Function
This form of SOAPCALL, the function, may take as input either a single record or a recordset, and both
types of input can result in either a single record or a recordset.

The outstructure output record definition may contain an integer field with an XPATH of "_call_latency" to
receive the time, in seconds, for the call which generated the row (from creating the socket to receiving the
response). The latency is placed in every row the call returned, so if a call took 90 seconds and returned
11 rows then you will see 11 rows with 90 in the _call_latency field.

Example:

OutRec1 := RECORD
 STRING500 OutData{XPATH('OutData')};
 UNSIGNED4 Latency{XPATH('_call_latency')};
END;
ip := 'http://service.example.com:8022/';
ips := 'https://service.example.com:8022/';
svc := 'MyModule.SomeService';
ips_secret := 'secret:myConnectSecret';
 /* assumes a secret named http-connect-myConnectSecret exists & contains:
 /*
 {
 "url": "https://service.example.com:8022/",
 "username": "username",
 "password": "password"
 }
 */

//1 rec in, 1 rec out
OneRec1 := SOAPCALL(ips,svc,{STRING500 InData := 'Some Input Data'},OutRec1);

//1 rec in, recordset out
ManyRec1 := SOAPCALL(ip,svc,{STRING500 InData := 'Some Input Data'},DATASET(OutRec1));

//recordset in, 1 rec out
OneRec2 := SOAPCALL(InputDataset,ip,svc,{STRING500 InData},OutRec1);

//recordset in, recordset out
ManyRec2 :=
 SOAPCALL(InputDataset,ips_secret,svc,{STRING500 InData := 'Some In Data'},DATASET(OutRec1));

//TRANSFORM function usage example

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

358

ECL Language Reference
Built-in Functions and Actions

namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
END;
ds := DATASET('x',namesRecord,FLAT);

inRecord := RECORD
 STRING name{xpath('Name')};
 UNSIGNED6 id{XPATH('ADL')};
END;
outRecord := RECORD
 STRING name{xpath('Name')};
 UNSIGNED6 id{XPATH('ADL')};
 REAL8 score;
END;
inRecord t(namesRecord l) := TRANSFORM
 SELF.name := l.surname;
 SELF.id := l.age;
END;
outRecord genDefault1() := TRANSFORM
 SELF.name := FAILMESSAGE;
 SELF.id := FAILCODE;
 SELF.score := (REAL8)FAILMESSAGE('ip');
END;
outRecord genDefault2(namesRecord l) := TRANSFORM
 SELF.name := l.surname;
 SELF.id := l.age;
 SELF.score := 0;
END;

OUTPUT(SOAPCALL(ip, svc,{ STRING20 surname := 'Halligan',STRING20 forename := 'Kevin';},

DATASET(outRecord), ONFAIL(genDefault1())));

OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(genDefault2(LEFT))));
OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(SKIP)));

OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(SKIP),PERSIST(12)));
 //use 12 persistent connections

//Using HTTPHEADER to pass Authorization info
OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(SKIP),
 HTTPHEADER('Authorization','Basic dXNlcm5hbWU6cGFzc3dvcmQ='),
 HTTPHEADER('MyLiteral','FOO')));

SOAPCALL Action
The second form of SOAPCALL, the action, may take as input either a single record or a recordset. Neither
type of input produces any returned result--it simply launches the specified SOAP service, providing it input
data.

Example:

//1 rec in, no result
SOAPCALL('https://service.example.com:8022/','MyModule.SomeService',
 {STRING500 InData := 'Some Input Data'});

//recordset in, no result
SOAPCALL(InputDataset,'https://service.example.com:8022/','MyModule.SomeService',{STRING500 InData});

See Also: RECORD Structure, TRANSFORM Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

359

ECL Language Reference
Built-in Functions and Actions

SORT
SORT(recordset,value [, JOINED(joinedset)][, SKEW(limit [,target])] [, THRESHOLD(size)][, LOCAL]
[,FEW] [, STABLE [(algorithm)] | UNSTABLE [(algorithm)]] [, UNORDERED | ORDERED(bool)] [,
PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set
derived from some filter condition, or any expression that results in a derived record
set.

value A comma-delimited list of expressions or key fields in the recordset on which to sort,
with the leftmost being the most significant sort criteria. A leading minus sign (-) indi-
cates a descending-order sort on that element. You may have multiple value parame-
ters to indicate sorts within sorts. You may use the keyword RECORD (or WHOLE
RECORD) to indicate an ascending sort on all fields, and/or you may use the keyword
EXCEPT to list non-sort fields in the recordset.

JOINED Optional. Indicates this sort will use the same radix-points as already used by the
joinedset so that matching records between the recordset and joinedset end up on
the same supercomputer nodes. Used to optimize supercomputer joins where the
joinedset is very large and the recordset is small.

joinedset A set of records that has been previously sorted by the same value parameters as
the recordset.

SKEW Optional. Indicates that you know the data is not spread evenly across nodes (is
skewed) and you choose to override the default by specifying your own limit value to
allow the job to continue despite the skewing.

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage
of skew to allow before the job fails (the default skew is 1.0 / <number of worker nodes
on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired max-
imum percentage of skew to allow (the default skew is 1.0 / <number of worker nodes
on cluster>).

THRESHOLD Optional. Indicates the minimum size for a single part of the recordset before the
SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part.

LOCAL Optional. Specifies the operation is performed on each node independently, without
requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE. An error occurs if the recordset has been
GROUPed.

FEW Optional. Specifies that few records will be sorted. This prevents spilling the SORT to
disk if another resource-intensive activity is executing concurrently.

STABLE Optional. Specifies a stable sort--duplicates output in the same order they were in
the input. This is the default if neither STABLE nor UNSTABLE sorting is specified.
Ignored if not supported by the target platform.

algorithm Optional. A string constant that specifies the sorting algorithm to use (see the list of
valid values below). If omitted, the default algorithm depends on which platform is
targeted by the query.

UNSTABLE Optional. Specifies an unstable sort--duplicates may output in any order. Ignored if
not supported by the target platform.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

360

ECL Language Reference
Built-in Functions and Actions

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: SORT returns a set of records.

The SORT function orders the recordset according to the values specified, and (if LOCAL Is not specified)
partitions the result such that all records with the same values are on the same node. SORT is usually used
to produce the record sets operated on by the DEDUP, GROUP, and ROLLUP functions, so that those
functions may operate optimally. Sorting final output is, of course, another common use.

Sorting Algorithms
There are three sort algorithms available: quicksort, insertionsort, and heapsort. They are not all available
on all platforms. Specifying an invalid algorithm for the targeted platform will generate a warning and the
default algorithm for that platform will be implemented.

Thor Supports stable and unstable quicksort--the sort will spill to disk, if necessary. Parallel
sorting happens automatically on clusters with multiple-CPU or multi-CPU-core nodes.

hthor Supports stable and unstable quicksort, stable and unstable insertionsort, and stable
heapsort--the sort will spill to disk, if necessary. Stable heapsort is the default if both
STABLE and UNSTABLE are omitted or if STABLE is present without an algorithm
parameter.

Unstable quicksort is the default if UNSTABLE is present without an algorithm para-
meter.

Roxie Supports unstable quicksort, stable insertionsort, and stable heapsort--the sort does
not spill to disk.

Stable heapsort is the default if both STABLE and UNSTABLE are omitted or if STABLE
is present without an algorithm parameter. The insertionsort implements blocking and
heapmerging when there are more than 1024 rows.

Quick Sort
A quick sort does nothing until it receives the last row of its input, and it produces no output until the sort
is complete, so the time required to perform the sort cannot overlap with either the time to process its input
or to produce its output. Under normal circumstances, this type of sort is expected to take the least CPU
time. There are rare exceptional cases where it can perform badly (the famous "median-of-three killer" is
an example) but you are very unlikely to hit these by chance.

On a Thor cluster where each node has multiple CPUs or CPU cores, it is possible to split up the quick sort
problem and run sections of the work in parallel. This happens automatically if the hardware supports it.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

361

ECL Language Reference
Built-in Functions and Actions

Doing this does not improve the amount of actual CPU time used (in fact, it fractionally increases it because
of the overhead of splitting the task) but the overall time required to perform the sort operation is significantly
reduced. On a cluster with dual CPU/core nodes it should only take about half the time, only about a quarter
of the time on a cluster with quad-processor nodes, etc.

Insertion Sort
An insertion sort does all its work while it is receiving its input. Note that the algorithm used performs a binary
search for insertion (unlike the classic insertion sort). Under normal circumstances, this sort is expected to
produce the worst CPU time. In the case where the input source is slow but not CPU-bound (for example,
a slow remote data read or input from a slow SOAPCALL), the time required to perform the sort is entirely
overlapped with the input.

Heap Sort
A heap sort does about half its work while receiving input, and the other half while producing output. Under
normal circumstances, it is expected to take more CPU time than a quick sort, but less than an insertion sort.
Therefore, in queries where the input source is slow but not CPU-bound, half of the time taken to perform
the sort is overlapped with the input. Similarly, in queries where the output processing is slow but not CPU-
bound, the other half of the time taken to perform the sort is overlapped with the output. Also, if the sort
processing terminates without consuming all of its input, then some of the work can be avoided entirely
(about half in the limiting case where no output is consumed), saving both CPU and total time.

In some cases, such as when a SORT is quickly followed by a CHOOSEN, the compiler will be able to spot
that only a part of the sort's output will be required and replace it with a more efficient implementation. This
will not be true in the general case.

Stable vs. Unstable
A stable sort is required when the input might contain duplicates (that is, records that have the same values
for all the sort fields) and you need the duplicates to appear in the result in the same order as they appeared
in the input. When the input contains no duplicates, or when you do not mind what order the duplicates
appear in the result, an unstable sort will do.

An unstable sort will normally be slightly faster than the stable version of the same algorithm. However,
where the ideal sort algorithm is only available in a stable version, it may often be better than the unstable
version of a different algorithm.

Performance Considerations
The following discussion applies principally to local sorts, since Thor is the only platform that performs global
sorts, and Thor does not provide a choice of algorithms.

CPU time vs. Total time

In some situations a query might take the least CPU time using a quick sort, but it might take the most total
time because the sort time cannot be overlapped with the time taken by an I/O-heavy task before or after
it. On a system where only one subgraph or query is being run at once (Thor or hthor), this might make
quick sort a poor choice since the extra time is simply wasted. On a system where many subgraphs or
queries are running concurrently (such as a busy Roxie) there is a trade-off, because minimizing total time
will minimize the latency for the particular query, but minimizing CPU time will maximize the throughput of
the whole system.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

362

ECL Language Reference
Built-in Functions and Actions

When considering the parallel quick sort, we can see that it should significantly reduce the latency for this
query; but that if the other CPUs/cores were in use for other jobs (such as when dual Thors are running
on the same dual CPU/core machines) it will not increase (and will slightly decrease) the throughput for
the machines.

Spilling to disk

Normally, records are sorted in memory. When there is not enough memory, spilling to disk may occur.
This means that blocks of records are sorted in memory and written to disk, and the sorted blocks are then
merged from disk on completion. This significantly slows the sort. It also means that the processing time for
the heap sort will be longer, as it is no longer able to overlap with its output.

When there is not enough memory to hold all the records and spilling to disk is not available (like
on the Roxie platform), the query will fail.

How sorting affects JOINs

A normal JOIN operation requires that both its inputs be sorted by the fields used in the equality portion
of the match condition. The supercomputer automatically performs these sorts "under the covers" unless
it knows that an input is already sorted correctly. Therefore, some of the considerations that apply to the
consideration of the algorithm for a SORT can also apply to a JOIN. To take advantage of these alternate
sorting algorithms in a JOIN context you need to SORT the input dataset(s) the way you want, then specify
the NOSORT option on the JOIN.

Note well that no sorting is required for JOIN operations using the KEYED (or half-keyed), LOOKUP, or ALL
options. Under some circumstances (usually in Roxie queries or in those cases where the optimizer thinks
there are few records in the right input dataset) the supercomputer's optimizer will automatically perform
a LOOKUP or ALL join instead of a regular join. This means that, if you have done your own SORT and
specified the NOSORT option on the JOIN, that you will be defeating this possible optimization.

Example:

MySet1 := SORT(Person,-last_name, first_name);
// descending last name, ascending first name

MySet2 := SORT(Person,RECORD,EXCEPT per_sex,per_marital_status);
// sort by all fields except sex and marital status

MySet3 := SORT(Person,last_name, first_name,STABLE('quicksort'));
// stable quick sort, not supported by Roxie

MySet4 := SORT(Person,last_name, first_name,UNSTABLE('heapsort'));
// unstable heap sort,
// not supported by any platform,
// therefore ignored

MySet5 := SORT(Person,last_name,first_name,STABLE('insertionsort'));
// stable insertion sort, not supported by Thor

See Also: SORTED, RANK, RANKED, EXCEPT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

363

ECL Language Reference
Built-in Functions and Actions

SORTED
SORTED(recordset,value)

SORTED(index)

recordset The set of sorted records. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

value A comma-delimited list of expressions or key fields in the recordset on which the record-
set has been sorted, with the leftmost being the most significant sort criteria. A leading
minus sign (-) indicates a descending-order sort on that element. You may have multiple
value parameters to indicate sorts within sorts. You may use the keyword RECORD to
indicate an ascending sort on all fields, and/or you may use the keyword EXCEPT to list
non-sort fields in the recordset.

index The attribute name of an INDEX definition. This is equivalent to adding the SORTED
option to the INDEX definition.

Return: SORTED is a compiler directive that returns nothing.

The SORTED function indicates to the ECL compiler that the recordset is already sorted according to the
values specified. Any number of value parameters may be supplied, with the leftmost being the most signif-
icant sort criteria. A leading minus sign (-) on any value parameter indicates a descending sort for that one
parameter. SORTED typically refers to a DATASET to indicate the order in which the data is already sorted.

Example:

InputRec := RECORD
INTEGER4 Attr1;
STRING20 Attr2;
INTEGER8 Cid;
END;
MyFile := DATASET('filename',InputRec,FLAT)
MySortedFile := SORTED(MyFile,MyFile.Cid)
// Input file already sorted by Cid

See Also: SORT, DATASET, RANK, RANKED, INDEX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

364

ECL Language Reference
Built-in Functions and Actions

SQRT
SQRT(n)

n The real number to evaluate.

Return: SQRT returns a single real value.

The SQRT function returns the square root of the parameter.

Example:

MyRoot := SQRT(16.0);
OUTPUT(MyRoot); // result is 4.0

See Also: POWER, EXP, LN, LOG

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

365

ECL Language Reference
Built-in Functions and Actions

STEPPED
STEPPED(index, fields [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL
[(numthreads)]] [, ALGORITHM(name)])

index The INDEX to sort. This can be filtered or the result of a PROJECT on an INDEX.

fields A comma-delimited list of fields by which to sort the result, typically trailing elements in
the key.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies the
default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

The STEPPED function sorts the index by the specified fields. This function is used in those cases where
the SORTED(index) function will not suffice.

There are some restrictions in its use:

The key fields before ordered fields should be reasonably well filtered, otherwise the sorting could become
very memory intensive.

Roxie only supports sorting by trailing components on indexes that are read locally (single part indexes or
superkeys containing single part indexes), or NOROOT indexes read within ALLNODES.

Thor does not support STEPPED.

Example:

DataFile := '~RTTEST::TestStepped';
KeyFile := '~RTTEST::TestSteppedKey';
Rec := RECORD
STRING2 state;
STRING20 city;
STRING25 lname;
STRING15 fname;
END;
ds := DATASET(DataFile,s
{Rec,UNSIGNED8 RecPos {VIRTUAL(fileposition)}},
THOR);
IDX := INDEX(ds,{state,city,lname,fname,RecPos},KeyFile);

OUTPUT(IDX(state IN ['FL','PA']));
/* where this OUTPUT produces this result:
FL BOCA RATON WIK PICHA
FL DELAND WIKER OKE
FL GAINESVILLE WIK MACHOUSTON

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

366

ECL Language Reference
Built-in Functions and Actions

PA NEW STANTON WIKER DESSIE */

OUTPUT(STEPPED(IDX(state IN ['FL','PA']),fname));
/* this STEPPED OUTPUT produces this result:
PA NEW STANTON WIKER DESSIE
FL GAINESVILLE WIK MACHOUSTON
FL DELAND WIKER OKE
FL BOCA RATON WIK PICHA */

See Also: INDEX, SORTED, ALLNODES

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

367

ECL Language Reference
Built-in Functions and Actions

STORED
STORED(interface)

interface The name of an INTERFACE structure attribute.

The STORED function is a shorthand method of defining attributes for use in a SOAP interface. It is equiva-
lent to defining a MODULE structure that inherits all the attributes from the interface and adds the STORED
workflow service to each, using the attribute name as the STORED name.

Example:

Iname := INTERFACE
EXPORT STRING20 Name;
EXPORT BOOLEAN KeepName := TRUE;
END;

StoredName := STORED(Iname);
// is equivalent to:
// StoredName := MODULE(Iname)
// EXPORT STRING20 Name := '' : STORED('name');
// EXPORT BOOLEAN KeepName := TRUE : STORED('keepname');
// END;

See Also: STORED Workflow Service, INTERFACE Structure, MODULE Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

368

ECL Language Reference
Built-in Functions and Actions

SUM
SUM(recordset, value, [, expression] [, KEYED])

SUM(valuelist [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(
numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the keyword GROUP to indicate finding the sum of values of the field in a
group, when used in a RECORD structure to generate crosstab statistics.

value The expression to sum.

expression Optional. A logical expression indicating which records to include in the sum. Valid only
when the recordset parameter is the keyword GROUP to indicate summing the elements
in a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the sum of. This may also be a SET of
values.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: SUM returns a single value.

The SUM function returns the additive sum of the value in each record of the recordset or valuelist.

Example:

personRecord := RECORD
 STRING UID;
 STRING first_name;
 STRING last_name;
 INTEGER hourly_wage;
END;
person := DATASET([{'923','James','Jones',15},
 {'924','Sally','Jones',15},
 {'925','Jose','Gomez',17},
 {'926','Adam','Wesson',77},
 {'927','Evelyn','Murray',74},
 {'928','Tom','Murray',74},
 {'929','Joe','Yung',75}], personRecord);
SumOfHourlyWage := SUM(person,person.hourly_wage); // total all hourly wage values
OUTPUT(SumOfHourlyWage);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

369

ECL Language Reference
Built-in Functions and Actions

SumVal1 := SUM(4,8,16,2,1); //returns 31
SetVals := [4,8,16,2,1];
SumVal2 := SUM(SetVals); //returns 31
OUTPUT(SumVal1);
OUTPUT(SumVal2);

See Also: COUNT, AVE, MIN, MAX

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

370

ECL Language Reference
Built-in Functions and Actions

TABLE
TABLE(recordset, format [, expression [,FEW | MANY] [, UNSORTED]] [, LOCAL] [, KEYED] [, MERGE
] [, SKEW(limit[, target]) [, THRESHOLD(size)]] [, UNORDERED | ORDERED(bool)] [, STABLE |
UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

format An output RECORD structure definition that defines the type, name, and source of the
data for each field.

expression Optional. Specifies a "group by" clause. You may have multiple expressions separated
by commas to create a single logical "group by" clause. If expression is a field of the
recordset, then there is a single group record in the resulting table for every distinct
value of the expression. Otherwise expression is a LEFT/RIGHT type expression in
the DEDUP manner.

FEW Optional. Indicates that the expression will result in fewer than 10,000 distinct groups.
This allows optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many distinct groups.

UNSORTED Optional. Specifies that you don't care about the order of the groups. This allows opti-
mization to produce a significantly faster result.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the
optimizer to generate optimal code for the operation.

MERGE Optional. Specifies that results are aggregated on each node and then the aggregat-
ed intermediaries are aggregated globally. This is a safe method of aggregation that
shines particularly well if the underlying data was skewed. If it is known that the num-
ber of groups will be low then ,FEW will be even faster; avoiding the local sort of the
underlying data.

SKEW Indicates that you know the data will not be spread evenly across nodes (will be skewed
and you choose to override the default by specifying your own limit value to allow the
job to continue despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage
of skew to allow before the job fails (the default skew is 1.0 / <number of worker nodes
on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired max-
imum percentage of skew to allow (the default skew is 1.0 / <number of worker nodes
on cluster>).

THRESHOLD Indicates the minimum size for a single part before the SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part. Default is
1GB.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

371

ECL Language Reference
Built-in Functions and Actions

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: TABLE returns a new table.

The TABLE function is similar to OUTPUT, but instead of writing records to a file, it outputs those records
in a new table (a new dataset in the supercomputer), in memory. The new table is temporary and exists
only while the specific query that invoked it is running.

The new table inherits the implicit relationality the recordset has (if any), unless the optional expression is
used to perform aggregation. This means the parent record is available when processing table records, and
you can also access the set of child records related to each table record. There are two forms of TABLE
usage: the "Vertical Slice" form, and the "CrossTab Report" form.

For the "Vertical Slice" form, there is no expression parameter specified. The number of records in the input
recordset is equal to the number of records produced.

For the "CrossTab Report" form there is usually an expression parameter and, more importantly, the output
format RECORD structure contains at least one field using an aggregate function with the keyword GROUP
as its first parameter. The number of records produced is equal to the number of distinct values of the
expression.

Example:

//"vertical slice" form:
MyFormat := RECORD
STRING25 Lname := Person.per_last_name;
Person.per_first_name;
STRING5 NewField := '';
END;
PersonTable := TABLE(Person,MyFormat);
// adding a new field is one use of this form of TABLE

//"CrossTab Report" form:
rec := RECORD
Person.per_st;
StCnt := COUNT(GROUP);
END
Mytable := TABLE(Person,rec,per_st,FEW);
// group persons by state in Mytable to produce a crosstab

See Also: OUTPUT, GROUP, DATASET, RECORD Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

372

ECL Language Reference
Built-in Functions and Actions

TAN
TAN(angle)

angle The REAL radian value for which to find the tangent.

Return: TAN returns a single REAL value.

The TAN function returns the tangent of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
Tangent45 := TAN(Angle45); //get tangent of the 45 degree angle
OUTPUT(Tangent45); // 0.9999999999961035

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TANH

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

373

ECL Language Reference
Built-in Functions and Actions

TANH
TANH(angle)

angle The REAL radian value for which to find the hyperbolic tan-
gent.

Return: TANH returns a single REAL value.

The TANH function returns the hyperbolic tangent of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian
Deg2Rad := 0.0174532925199; //number of radians in a degree
Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians
HyperbolicTangent45 := TANH(Angle45);
 //get hyperbolic tangent of the angle
OUTPUT(HyperbolicTangent45); // 0.655794202631562

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TAN

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

374

ECL Language Reference
Built-in Functions and Actions

THISNODE
THISNODE(operation)

operation The name of an attribute or in-line code that results in a DATASET or INDEX.

Return: THISNODE returns a record set or index.

The THISNODE function specifies that the operation is performed on each node, independently. This is
typically used within an ALLNODES operation. Available for use only in Roxie.

Example:

ds := ALLNODES(JOIN(THISNODE(GetData(SomeData)),
 THISNODE(GetIDX(SomeIndex)),
 LEFT.ID = RIGHT.ID));

See Also: ALLNODES, LOCAL, NOLOCAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

375

ECL Language Reference
Built-in Functions and Actions

TOJSON
TOJSON(record [,ALL])

record The row (record) of data to convert to JSON format.

ALL Specifies fields with empty strings are included in the output. Without the ALL flag, TO-
JSON omits fields that contain only whitespace or are empty after trimming.

Return: TOJSON returns a UTF8.

The TOJSON function returns a single UTF-8 string with the data in the record re-formatted as JSON. If the
RECORD structure of the record has XPATHs defined, then they will be used, otherwise the lower-cased
field names are used as the JSON tag names.

Example:

namesRec1 := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
str1 := TOJSON(ROW({42,'Fred','Flintstone'},namesRec1));
OUTPUT(str1);
//returns this string:
//'"EmpID": 42, "FName": "Fred", "LName": "Flintstone"'
namesRec2 := RECORD
 UNSIGNED2 EmployeeID;
 STRING10 Firstname;
 STRING10 Lastname;
END;
str2 := TOJSON(ROW({42,'Fred','Flintstone'},namesRec2));
OUTPUT(str2);
//returns this string:
//'"employeeid": 42, "firstname": "Fred", "lastname": "Flintstone"'

See Also: ROW, FROMJSON

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

376

ECL Language Reference
Built-in Functions and Actions

TOPN
TOPN(recordset, count, sorts [, BEST(bestvalues)] [,LOCAL] [, UNORDERED | ORDERED(bool)] [,
STABLE | UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recordset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set.

count An integer expression defining the number of records to return.

sorts A comma-delimited list of expressions or key fields in the recordset on which to sort, with
the leftmost being the most significant sort criteria. A leading minus sign (-) indicates a
descending-order sort on that element. You may use the keyword RECORD to indicate
an ascending sort on all fields, and/or you may use the keyword EXCEPT to list non-
sort fields in the recordset.

BEST Optional. Allows early termination of the operation if there are count number of records
and the values contained in the last record match the bestvalues.

bestvalues A comma delimited list, matching the list of sorts, of maximum (or minimum if the corre-
sponding sort is descending) values.

LOCAL Optional. Specifies the operation is performed on each supercomputer node indepen-
dently, without requiring interaction with all other nodes to acquire data; the operation
maintains the distribution of any previous DISTRIBUTE.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Return: TOPN returns a set of records.

The TOPN function returns the first count number of records in the sorts order from the recordset. This is
roughly equivalent to CHOOSEN(SORT(recordset,sorts),count) but with simpler syntax. This also returns
the top number of rows in each group of GROUPed recordsets and local operations.

Example:

y := TOPN(Person,1000,state,sex); //first 1000 recs in state, sex order
z := TOPN(Person,1000,sex,BEST('F')); //first 1000 females

See Also: CHOOSEN, SORT, GROUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

377

ECL Language Reference
Built-in Functions and Actions

TOUNICODE
TOUNICODE(string, encoding)

string The DATA string to translate.

encoding The encoding codepage (supported by IBM's ICU) to use for the translation.

Return: TOUNICODE returns a single UNICODE value.

The TOUNICODE function returns the string translated from the DATA value to the specified unicode en-
coding.

Example:

DATA5 x := FROMUNICODE(u'ABCDE','UTF-8');
y := TOUNICODE(x,'US-ASCII');

OUTPUT(x); //results in 4142434445
OUTPUT(y); //results in 'ABCDE'

See Also: FROMUNICODE, UNICODEORDER

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

378

ECL Language Reference
Built-in Functions and Actions

TOXML
TOXML(record [,ALL])

record The row (record) of data to convert to an XML format.

ALL Specifies fields with empty strings are included in the output. Without the ALL flag,
TOXML omits fields that contain only whitespace or are empty after trimming.

Return: TOXML returns a UTF8.

The TOXML function returns a single UTF-8 string with the data in the record re-formatted as XML. If the
RECORD structure of the record has XPATHs defined, then they will be used, otherwise the lower-cased
field names are used as the XML tag names.

Example:

namesRec1 := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
rec1 := TOXML(ROW({42,'Fred','Flintstone'},namesRec1));
OUTPUT(rec1);

//returns this string:
//'<EmpID>42</EmpID><FName>Fred</FName><LName>Flintstone</LName>'

namesRec2 := RECORD
 UNSIGNED2 EmployeeID;
 STRING10 Firstname;
 STRING10 Lastname;
END;
rec2 := TOXML(ROW({42,'Fred','Flintstone'},namesRec2));
OUTPUT(rec2);
//returns this string:
//'<employeeid>42</employeeid><firstname>Fred</firstname><lastname>Flintstone</lastname>'

See Also: ROW, FROMXML

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

379

ECL Language Reference
Built-in Functions and Actions

TRACE
[attrname :=] TRACE(baserecset, [options]);

attrname Optional. The name for the expression.

baserecset The set of data records for which the TRACE is defined.

options Optional. One or more of the options listed below.

The TRACE expression defines tracing to log files (Thor worker logs, hThor logs, or Roxie logs).

You can add TRACE to your code at interesting junctures without any impact on performance. Later, if
you need to investigate behavior, you can enable them without modifying the code by setting an option or
stored BOOLEAN.

Tracing is written to log files, in the form:

TRACE: <name><fieldname>value</fieldname>...</name>

Tracing is not output by default even if TRACE statements are present; tracing is only output when the
workunit debug value traceEnabled is set or if the default platform settings are changed to always output
tracing. In Roxie you can also request tracing on a deployed query by specifying traceEnabled=1 in the
query XML.

It is therefore possible to leave TRACE statements in the ECL without any detectable overhead until tracing
is enabled. To enable tracing:

#OPTION ('traceEnabled', 1) // trace statements enabled

It is also possible to override the default value for KEEP at a global, per-workunit, or per-query level.

#OPTION ('traceLimit', 100) // overrides the default KEEP value (10)

You can use a stored BOOLEAN as the filter expression for a trace activity to allow you to turn individual
trace activities on and off.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

380

ECL Language Reference
Built-in Functions and Actions

TRACE Options
The following options are available for TRACE:

[filterExpression,] [KEEP(n),] [SKIP(n),] [SAMPLE(n),][NAMED(string)]

filterExpression Optional. A valid expression which acts as a filter. Only rows matching the
filter condition are included in the tracing.

KEEP(n) Optional. Specifies the number of rows to trace.

SKIP(n) Optional. Specifies the number of rows to skip before trace begins.

SAMPLE(n) Optional. Specifies that only every nth row is traced. .

NAMED(string) Optional. Specifies the name for rows in tracing.

Example:

#OPTION ('traceEnabled', TRUE); //TRACE writes to log only if TRUE
FilterValue := 4;
myRec := { STRING Name, REAL x, REAL y };
ds := DATASET([{'Jim' , 1, 1.00039},
 {'Jane', 2, 2.07702},
 {'Emil', 3, 2.86158},
 {'John', 4, 3.87114},
 {'Jean', 5, 5.12417},
 {'Gene', 6, 6.20283}], myRec);
myds := TRACE(ds,x>filterValue,NAMED('person')); //trace only if x > filterValue
myds;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

381

ECL Language Reference
Built-in Functions and Actions

TRANSFER
TRANSFER(value,type)

value An expression containing the bitmap to return.

type The value type to return.

Return: TRANSFER returns a single value.

The TRANSFER function returns the value in the requested type. This is not a type cast because the bit-
pattern stays the same.

Example:

INTEGER1 MyInt := 65; //MyInt is an integer whose value is 65
STRING1 MyVal1 := TRANSFER(MyInt,STRING1); //MyVal is "A" (ASCII 65)
INTEGER1 MyVal2 := (INTEGER)MyVal1; //MyVal2 is 0 (zero) because
 // "A" is not a numeric character
OUTPUT(MyVal1); // returns A
OUTPUT(MyVal2); // returns 0 (zero)

See Also: Type Casting

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

382

ECL Language Reference
Built-in Functions and Actions

TRIM
TRIM(string_value [,flag])

string_value The string from which to remove spaces.

flag Optional. Specify which spaces to remove. Valid flag values are:

RIGHT (remove trailing spaces--this is the default)

LEFT (remove leading spaces)

LEFT, RIGHT (remove leading and trailing spaces)

ALL (remove all spaces, even those within the string_value)

WHITESPACE Used in conjunction with any of the other flags, this removes ALL white
space characters from the specified area. If omitted, only the space character (0x20)
is removed.

Return: TRIM returns a single value.

The TRIM function returns the string_value with all trailing and/or leading spaces (0x20) removed.

The WHITESPACE option removes all white space characters. In STRING, this is space (0x20), horizontal
tab, vertical tab, line feed, form feed, carriage return (0x09 to 0x0D), and non-breaking space (0xA0). For
UNICODE, it removes all characters with the white space property.

Example:

STRING20 MyString1 := 'ABC';
 //contains 17 trailing spaces
VARSTRING MyTrimmedVarString1 := TRIM(MyString1);
 // MyVal is "ABC" with no trailing spaces
STRING20 MyString2 := ' ABC DEF';
 //contains 2 leading and 11 trailing spaces
VARSTRING MyTrimmedVarString2 := TRIM(MyString2,LEFT,RIGHT);
 // MyVal is "ABC DEF" with no trailing spaces
OUTPUT(MyString1);
OUTPUT(MyTrimmedVarString1);
OUTPUT(MyString2);
OUTPUT(MyTrimmedVarString2);

See Also: STRING, VARSTRING

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

383

ECL Language Reference
Built-in Functions and Actions

TRUNCATE
TRUNCATE(real_value)

real_value The floating-point value to truncate.

Return: TRUNCATE returns a single integer value.

The TRUNCATE function returns the integer portion of the real_value.

Example:

MyRealValue := 3.75;
INTEGER4 MyValue := TRUNCATE(MyRealValue);
OUTPUT(MyValue); // MyValue is 3

See Also: ROUND, ROUNDUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

384

ECL Language Reference
Built-in Functions and Actions

UNGROUP
UNGROUP(recordset [, UNORDERED | ORDERED(bool)] [, STABLE | UNSTABLE] [, PARALLEL [(
numthreads)]] [, ALGORITHM(name)])

recordset The set of previously GROUPed records.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not signifi-
cant. When True, specifies the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads
threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of
supported algorithms for the SORT function's STABLE and
UNSTABLE options.

Return: UNGROUP returns a record set.

The UNGROUP function removes previous grouping. This is equivalent to using the GROUP function with-
out a second parameter.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
 {'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
 {'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
 {'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
 {'927','Evelyn','Gomez','740 SW 10th Street','Boston ','MA','02116'},
 {'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);

SortedSet := SORT(person,last_name); //sort by last name
GroupedSet := GROUP(SortedSet,last_name); //then group them
SecondSort := SORT(GroupedSet,first_name); //sorts by first name within each last name group
 // this is a "sort within group"
UnGroupedSet := UNGROUP(GroupedSet); //ungroup the dataset

OUTPUT(person);
OUTPUT(SortedSet);
OUTPUT(GroupedSet);
OUTPUT(SecondSort);
OUTPUT(UnGroupedSet);

See Also: GROUP

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

385

ECL Language Reference
Built-in Functions and Actions

UNICODEORDER
UNICODEORDER(left, right [, locale])

left The left Unicode expression to evaluate.

right The right Unicode expression to evaluate.

locale Optional. A string constant containing a valid locale code, as specified in ISO standards
639 and 3166.

Return: UNICODEORDER returns a single value.

The UNICODEORDER function returns either -1, 0, or 1 depending on the evaluation of the left and right
expressions. This is equivalent to the <=> equivalence comparison operator but taking the unicode locale
as the basis of determination. If left < right then -1 is returned, if left = right then 0 is returned, if left > right
then 1 is returned.

Example:

UNICODE1 x := u'a';
UNICODE1 y := u'b';
UNICODE1 z := u'a';
a := UNICODEORDER(x , y, 'es'); // returns -1
b := UNICODEORDER(x , z, 'es'); // returns 0
c := UNICODEORDER(y , z, 'es'); // returns 1

OUTPUT(a);
OUTPUT(b);
OUTPUT(c);

See Also: FROMUNICODE, TOUNICODE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

386

ECL Language Reference
Built-in Functions and Actions

UNORDERED
UNORDERED(dataset)

dataset The name of the unordered DATASET.

The UNORDERED function is used to indicate that the order of the records in the dataset is not significant.
This will allow the code generator in future versions to apply extra optimizations.

Example:

Def1 := UNORDERED(MyDataset);
 //indicates that the order of MyDataset is not significant,
 //so the code generator can perform optimizations based on that

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

387

ECL Language Reference
Built-in Functions and Actions

VARIANCE
VARIANCE(recset, valuex [, expresssion] [, KEYED] [, UNORDERED | ORDERED(bool)] [, STABLE
| UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGORITHM(name)])

recset The set of records to process. This may be the name of a dataset or a record set derived
from some filter condition, or any expression that results in a derived record set. This
also may be the GROUP keyword to indicate operating on the elements in each group,
when used in a RECORD structure to generate crosstab statistics.

valuex A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid
only when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the opti-
mizer to generate optimal code for the operation.

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies
the default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for
the SORT function's STABLE and UNSTABLE options.

Return: VARIANCE returns a single REAL value.

The VARIANCE function returns the (population) variance of valuex.

Example:

pointRec := {REAL x, REAL y};
analyse(ds) := MACRO
 #uniquename(stats)
 %stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
 OUTPUT(%stats%);

 // Following should be zero

 OUTPUT(%stats%, {varx - (sxx-sx*sx/c)/c, vary - (syy-sy*sy/c)/c,varxy
 - (sxy-sx*sy/c)/c,rc - (varxy/SQRT(varx*vary)) });
 OUTPUT(%stats%, {'bestFit: y=' + (STRING)((sy-sx*varxy/varx)/c)
 + ' + ' + (STRING)(varxy/varx)+'x' });

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

388

ECL Language Reference
Built-in Functions and Actions

ENDMACRO;

ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);
ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);

analyse(ds1);
analyse(ds2);
analyse(ds3);

See Also: CORRELATION, COVARIANCE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

389

ECL Language Reference
Built-in Functions and Actions

WAIT
WAIT(event)

event A string constant containing the name of the event to wait for.

The WAIT action is similar to the WHEN workflow service, but may be used within conditional code.

Example:

//You can either do this:
action1;
action2 : WHEN('expectedEvent');
//can also be written as:
SEQUENTIAL(action1,WAIT('expectedEvent'),action2);

See Also: EVENT, NOTIFY, WHEN, CRON

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

390

ECL Language Reference
Built-in Functions and Actions

WHEN
WHEN(trigger, action [, BEFORE | SUCCESS | FAILURE])

trigger A dataset or action that launches the action.

action The action to execute.

BEFORE Optional. Specifies an action that should be executed before the input is read.

SUCCESS Optional. Specifies an action that should only be executed on SUCCESS of
the trigger (e.g., no LIMITs exceeded).

FAILURE Optional. Specifies an action that should only be executed on FAILURE of the
trigger (e.g., a LIMIT was exceeded).

The WHEN function associates an action with a trigger (dataset or action) so that when the trigger is exe-
cuted the action is also executed. This allows job scheduling based upon triggers.

Example:

//a FUNCTION with side-effect Action
namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds,O);
END;

z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built
OUTPUT(z);

See Also: FUNCTION Structure, WHEN, WAIT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

391

ECL Language Reference
Built-in Functions and Actions

WHICH
WHICH(condition,...,condition)

condition A conditional expression to evaluate.

Return: WHICH returns a single value.

The WHICH function evaluates which of the list of conditions returned true and returns its ordinal position
in the list of conditions. Returns zero (0) if none return true. This is the opposite of the REJECTED function.

Example:

Accept := WHICH(Person.per_first_name = 'Fred',Person.per_first_name = 'Sue');
 //Accept is 0 for everyone but those named Fred or Sue

See Also: REJECTED, MAP, CHOOSE, IF, CASE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

392

ECL Language Reference
Built-in Functions and Actions

WORKUNIT
WORKUNIT

WORKUNIT(named [, type])

named A string constant containing the NAMED option scalar value to return.

type Optional. The value type of the named scalar value result to return.

Return: WORKUNIT returns a single value.

The WORKUNIT function returns values stored in the workunit. Given no parameters, it returns the unique
workunit identifier (WUID) for the currently executing workunit, otherwise it returns the NAMED option result
from the OUTPUT or DISTRIBUTION action.

Example:

wuid := WORKUNIT; //get WUID
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age;
END;
namesTable := DATASET([{'Halligan','Kevin',31},
 {'Halligan','Liz',30},
 {'Salter','Abi',10},
 {'X','Z',42}], namesRecord);
OUTPUT(wuid);
DISTRIBUTION(namesTable, surname, forename,NAMED('Stats'));
WORKUNIT('Stats',STRING);

See Also: #WORKUNIT, OUTPUT, DISTRIBUTION

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

393

ECL Language Reference
Built-in Functions and Actions

XMLDECODE
XMLDECODE(unicode)

unicode The unicode text to decode.

Return: XMLDECODE returns a single value.

The XMLDECODE function decodes special characters into an XML string (for example, < is converted to
<) allowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible
by using the XML option.

Example:

encoded := XMLENCODE('<xml version 1><tag>data</tag>');
decoded := XMLDECODE(encoded);

OUTPUT(encoded); //results in '<xml version 1><tag>data</tag>'
OUTPUT(decoded); // results in '<xml version 1><tag>data</tag>'

See Also: XMLENCODE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

394

ECL Language Reference
Built-in Functions and Actions

XMLENCODE
XMLENCODE(xml [, ALL])

xml The XML to encode.

ALL Optional. Specifies including new line characters in the encoding so the text can be used
in attribute definitions.

Return: XMLENCODE returns a single value.

The XMLENCODE function encodes special characters in an XML string (for example, < is converted to
<) allowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible
by using the XML option.

Example:

encoded := XMLENCODE('<xml version 1><tag>data</tag>');
decoded := XMLDECODE(encoded);

OUTPUT(encoded); //results in '<xml version 1><tag>data</tag>'
OUTPUT(decoded); // results in '<xml version 1><tag>data</tag>'

See Also: XMLDECODE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

395

ECL Language Reference
Workflow Services

Workflow Services

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

396

ECL Language Reference
Workflow Services

Workflow Overview
Workflow control within ECL is generally handled automatically by the system. It spots which processes can
happen in parallel, when synchronization is required, and when processes must happen in series. These
workflow services allow exceptions to the normal flow of execution to be specified by the programmer to
give extra control (such as the FAILURE clause).

Workflow operations are implicitly evaluated in a separate global scope from the code to which it is attached.
Therefore, any values from the code to which it is attached (such as loop counters) are unavailable to the
workflow service.

It should also be noted that when a workflow operation is present within multiple SEQUENTIAL statements
only the first instance will be evaluated.

Example:

Chesney := OUTPUT('"I am the one and only!" said Chesney')
 : SUCCESS(OUTPUT('"Oh yeah, prove it?"'));

SEQUENTIAL(
 OUTPUT('"I am Spartacus" said one from the mob'),
 Chesney
);

SEQUENTIAL(
 OUTPUT('"No, I am Spartacus" confessed another'),
 Chesney,
 OUTPUT('"Ok, so you are!"')
);

yields:

"I am Spartacus" said one from the mob
"I am the one and only!" said Chesney
"Oh yeah, prove it?"
"No, I am Spartacus" confessed another
"Ok, so you are!"

See Also: SEQUENTIAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

397

ECL Language Reference
Workflow Services

CHECKPOINT
attribute := expression : CHECKPOINT(name) ;

attribute The name of the Attribute.

expression The definition of the attribute.

name A string constant specifying the storage name of the value.

The CHECKPOINT service stores the result of the expression in the workunit so it remains available if the
workunit fails to complete, and is automatically deleted when the job completes successfully. This is partic-
ularly useful for attributes based on large, expensive data manipulation sequences. This service implicitly
causes the attribute to be evaluated at global scope instead of any enclosing scope.

However, CHECKPOINT is only useful when the unsuccessful workunit is resubmitted through ECL Watch; if
a new workunit is instantiated, CHECKPOINT has no effect. The PERSIST service is more generally useful.

Example:

CountPeople := COUNT(Person) : CHECKPOINT('PeopleCount');
 //Makes CountPeople available for reuse if
 // the job does not complete

See Also: PERSIST

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

398

ECL Language Reference
Workflow Services

DEPRECATED
attribute := expression : DEPRECATED [(message)] ;

attribute The name of the Attribute.

expression The definition of the attribute.

message Optional. The text to append to the warning if the attribute is
used.

The DEPRECATED service displays a warning when the attribute is used in code that instantiates a workunit
or during a syntax check. This is meant to be used on attribute definitions that have been superseded.

When used on a structure attribute (RECORD, TRANSFORM, FUNCTION, etc.), this must be placed be-
tween the keyword END and its terminating semi-colon.

Example:

personRecord := RECORD
STRING UID;
STRING first_name;
STRING last_name;
STRING address;
STRING city;
STRING state;
STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
{'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
{'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
{'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
{'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116'},
{'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);

OldSort := SORT(person,first_name) : DEPRECATED('Use NewSort instead.');
NewSort := SORT(person,-first_name);

OUTPUT(OldSort);
 //produces this warning:
 // Definition OldSort is marked as deprecated. Use NewSort instead.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

399

ECL Language Reference
Workflow Services

FAILURE
attribute := expression : FAILURE(handler) [,LABEL(text)];

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression fails.

LABEL Optional. Defines the Text to display for the workflow item in the Graph for the workunit.
If omitted, the code generator will deduce a label from the identifier being defined.

text A string constant containing the text to display.

The FAILURE service executes the handler Attribute when the expression fails. FAILURE notionally exe-
cutes in parallel with the failed return of the result. This service implicitly causes the attribute to be evaluat-
ed at global scope instead of the enclosing scope. Only available if workflow services are turned on (see
#OPTION(workflow)).

Example:

sPeople := SORT(Person,Person.per_first_name);
nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND
 Person.address)): FAILURE(Email.simpleSend(SystemsPersonel,
 SystemsPersonel.email,'ouch.htm'));

See Also: SUCCESS, RECOVERY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

400

ECL Language Reference
Workflow Services

GLOBAL - Service
attribute := expression : GLOBAL [(cluster [, FEW])];

attribute The name of the Attribute.

expression The definition of the attribute.

cluster Optional. A string constant specifying the name of the supercomputer cluster on which to
build the attribute. This makes it possible to use the attribute on a smaller cluster when it
must be built on a larger cluster, allowing for more efficient resource utilization. If omitted,
the attribute is built on the currently executing cluster.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the resulting
dataset is stored completely within the workunit. If not specified, then the dataset is stored
as a THOR file and the workunit contains only the name of the file.

The GLOBAL service causes the attribute to be evaluated at global scope instead of the enclosing scope,
similar to the GLOBAL() function -- that is, not inside a filter/transform etc. It may be evaluated multiple times
in the same workunit if it is used from multiple workflow items, but it will share code with the context it is used.

GLOBAL is different from INDEPENDENT operates in that INDEPENDENT is only ever executed once,
while GLOBAL is executed once in each workflow item that uses it.

Example:

I := RANDOM() : INDEPENDENT; //calculated once, period
G := RANDOM() : GLOBAL; //calculated once in each graph

ds :=
 DATASET([{1,0,0,0},{2,0,0,0}],{UNSIGNED1 rec,UNSIGNED Ival, UNSIGNED Gval , UNSIGNED Aval });

RECORDOF(ds) XF(ds L) := TRANSFORM
 SELF.Ival := I;
 SELF.Gval := G;
 SELF.Aval := RANDOM(); //calculated each time used
 SELF := L;
END;

P1 := PROJECT(ds,XF(left)) : PERSIST('~TEMP::PERSIST::IndependentVsGlobal1');
P2 := PROJECT(ds,XF(left)) : PERSIST('~TEMP::PERSIST::IndependentVsGlobal2');

OUTPUT(P1);
OUTPUT(P2); //this gets the same Ival values as P1, but the Gval value is different than P1

See Also: GLOBAL function, INDEPENDENT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

401

ECL Language Reference
Workflow Services

INDEPENDENT
attribute := expression : INDEPENDENT [(cluster [,LABEL(text)])];

attribute The name of the Attribute.

expression The definition of the attribute.

cluster Optional. A string constant specifying the name of the Thor
cluster on which execute. If omitted, the attribute is run on the
currently executing cluster.

LABEL Optional. Defines the Text to display for the workflow item in
the Graph for the workunit. If omitted, the code generator will
deduce a label from the identifier being defined.

text A string constant containing the text to display.

The INDEPENDENT service causes the attribute to be evaluated at a global scope and forces the attribute
evaluation into a separate workflow item. The new workflow item is evaluated before the first workflow item
that uses that attribute. It executes independently from other workflow items, and is only executed once
(including inside SEQUENTIAL where it should be executed the first time it is used). It will not share any
code with any other workflow items.

One use would be to provide a mechanism to common up code that is shared between different arguments
to a SEQUENTIAL action--normally they are evaluated completely independently.

Example:

I := RANDOM() : INDEPENDENT(LABEL('CalcRandom')); //calculated once, period
G := RANDOM() : GLOBAL; //calculated once in each graph

ds :=
 DATASET([{1,0,0,0},{2,0,0,0}],{UNSIGNED1 rec,UNSIGNED Ival, UNSIGNED Gval , UNSIGNED Aval });

RECORDOF(ds) XF(ds L) := TRANSFORM
 SELF.Ival := I;
 SELF.Gval := G;
 SELF.Aval := RANDOM(); //calculated each time used
 SELF := L;
END;

P1 := PROJECT(ds,XF(left)) : PERSIST('~TEMP::PERSIST::IndependentVsGlobal1');
P2 := PROJECT(ds,XF(left)) : PERSIST('~TEMP::PERSIST::IndependentVsGlobal2');

OUTPUT(P1);
OUTPUT(P2); //this gets the same Ival values as P1, but the Gval value is different than P1

See Also: GLOBAL

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

402

ECL Language Reference
Workflow Services

ONCE
attribute := expression : ONCE ;

attribute The name of the attribute.

expression The definition of the attribute.

The ONCE service allows you to specify that the code is to be executed only once at query load time.

This means a Roxie query will execute it only once even if the query is executed multiple times. For a Thor
or hThor query, ONCE behaves the same as INDEPENDENT.

Example:

InlineDCT := DICTIONARY([{0 => 'Black' , 'Greys'},
 {1 => 'Brown' , 'Earth'},
 {2 => 'Red' , 'Reds'},
 {3 => 'White' , 'Greys'}],
 {UNSIGNED code => STRING10 color ,STRING10 Tone}) : ONCE;

UNSIGNED v := 0 : STORED('v');
OUTPUT(InlineDCT[v].color);

See Also: INDEPENDENT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

403

ECL Language Reference
Workflow Services

ONWARNING
attribute := expression : ONWARNING(code, action) ;

attribute The name of the Attribute.

expression The definition of the attribute.

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.

action One of these actions: ignore, error, or warning.

The ONWARNING service allows you to specify how to handle specific warnings for a given attribute. You
may have it treated as a warning, promote it to an error, or ignore it. Useful warnings can get lost in a sea
of less-useful ones. This feature allows you to get rid of the "clutter."

This service overrides any global warning handling specified by #ONWARNING.

Example:

rec := { STRING x } : ONWARNING(1041, ignore);
 //ignore "Record doesn't have an explicit maximum record size" warning

See Also: #ONWARNING

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

404

ECL Language Reference
Workflow Services

PERSIST
attribute := expression : PERSIST(filename [, cluster] [, PLANE(target)] [, EXPIRE(days)] [, RE-
FRESH(flag)] [, SINGLE | MULTIPLE[(count)]] [,LABEL(text)]);

attribute The name of the Attribute.

expression The definition of the attribute. This typically defines a recordset (but it may be any ex-
pression).

filename A string constant specifying the storage name of the expression result. See Scope and
Logical Filenames.

cluster Optional. A string constant specifying the name of the Thor cluster on which to re-build
the attribute if/when necessary. This makes it possible to use persisted attributes on
smaller clusters but have them rebuilt on larger, making for more efficient resource
utilization. If omitted, the attribute is re-built on the currently executing cluster.

PLANE Optional. Specifies writing the filename to the specified list of target planes or clusters.
If omitted, the filename is written to the cluster on which the PERSIST executes (as
specified by the cluster parameter). The number of physical file parts written to disk
is always determined by the number of nodes in the cluster on which the PERSIST
executes, regardless of the number of nodes on the target(s).

target A comma-delimited list of string constants containing the names of the planes or clusters
to write the filename to. The names must be listed as they appear on the ECL Watch
Activity page or returned by the Std.System.Thorlib.Group() function, optionally with
square brackets containing a comma-delimited list of node-numbers (1-based) and/or
ranges (specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

EXPIRE Optional. Specifies the filename is a temporary file that may be automatically deleted
after the specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omit-
ted, it defaults to use the PersistExpiryDefault setting in Sasha.

REFRESH Optional. Option to control when the PERSIST rebuilds. If omitted, the PERSIST re-
builds if 1) the underlying file does not exist, or 2) the data has changed, or 3) the code
has changed.

flag A boolean value indicating whether to rebuild the PERSIST. When set to FALSE, the
PERSIST rebuilds ONLY if the underlying file does not exist. If your PERSIST layout has
changed and you specify REFRESH(FALSE) the mismatch could cause your job to fail.

SINGLE Optional. Specifies to keep a single PERSIST. The name of the persist file is the same
as the name of the persist. The default is MULTIPLE(-1) which retains all.

MULTIPLE Optional. Specifies to keep different versions of the PERSIST. The name of the persist
file generated is a combination of the name supplied suffixed with a 32-bit value derived
from the ECL.

count Optional. The number of versions of a PERSIST to keep. If omitted, the system default
is used. If set to -1, then an unlimited number are kept.

LABEL Optional. Defines the Text to display for the workflow item in the Graph for the workunit.
If omitted, the code generator will deduce a label from the identifier being defined.

text A string constant containing the text to display.

The PERSIST service stores the result of the expression globally so it remains permanently available for
use (including the result of any DISTRIBUTE or GROUP operation in the expression). This is particularly

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

405

ECL Language Reference
Workflow Services

useful for attributes based on large, expensive data manipulation sequences. The attribute is re-calculated
only when the ECL code or underlying data that was used to create it have changed, otherwise the attribute
data is simply returned from the stored name file on disk when referenced. This service implicitly causes
the attribute to be evaluated at global scope instead of the enclosing scope.

PERSIST may be combined with the WHEN clause so that even though the attribute may be used more than
once, its execution is based upon the WHEN clause (or the first use of the attribute) and not upon the number
of times the attribute is used in the computation. This gives a kind of "compute in anticipation" capability.

Persisted attributes can still be subject to the ordering requirements of SEQUENTIAL. However, since
PERSISTs are shared between workunits, there is no guarantee that the attribute will be evaluated within
any given evaluation order.

You can use #OPTION to override the default settings, as shown in the example.

Example:

// #OPTION ('multiplePersistInstances', true|false); // if true retains MULTIPLE, if false SINGLE
// #OPTION ('defaultNumPersistInstances', <n>); // the number to retain if MULTIPLE allowed.
 // Defaults to -1 (retain all)

CountPeople := COUNT(Person) : PERSIST('PeopleCount');
 //Makes CountPeople available for use in all subsequent work units

sPeople := SORT(Person,first_name): PERSIST('SortPerson'),WHEN(Daily);
 //Makes sPeople available for use in all subsequent work units

s1 := SORT(Person,first_name): PERSIST('SortPerson1','OtherThor');
 //run the code on the OtherThor cluster
s2 := SORT(Person,first_name): PERSIST('SortPerson2','OtherThor',PLANE('AnotherThor'));
 //run the code on the OtherThor cluster
 // and write the file to the AnotherThor plane

See Also: STORED, WHEN, GLOBAL, CHECKPOINT, #OPTION

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

406

ECL Language Reference
Workflow Services

PRIORITY
action : PRIORITY(value) ;

action An action (typically OUTPUT) that will produce a result.

value An integer in the range 0-100 indicating the relative importance
of the action.

The PRIORITY service establishes the relative importance of multiple actions in the workunit. The higher
value an action has, the greater its priority. The highest priority action executes first, if possible. PRIORITY
is not allowed on attribute definitions, it must only be associated with an action. Only available if workflow
services are turned on (see #OPTION(workflow)).

Example:

personRecord := RECORD
 STRING UID;
 STRING first_name;
 STRING last_name;
 STRING address;
 STRING city;
 STRING state;
 STRING zip;
END;
person := DATASET([{'923','James','Jones','123 Elm Street','Hollywood','FL','33022'},
 {'924','Sally','Jones','22 Main Street','Tampa','FL','33604'},
 {'925','Jose','Gomez','111 Biscaya Lane','Miami','FL','33101'},
 {'926','Adam','Wesson','77 Sunset Blvd','Boston','MA','02108'},
 {'927','Evelyn','Murray','740 SW 10th Street','Boston ','MA','02116'},
 {'928','Joe','Yung','7511 Simson Avenue','Chicago','IL','60131'}], personRecord);
OUTPUT(Person(state='MA')) : PRIORITY(30);
OUTPUT(Person(state='IL')) : PRIORITY(60);
OUTPUT(Person(state='FL')) : PRIORITY(90);

See Also: OUTPUT, #OPTION

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

407

ECL Language Reference
Workflow Services

RECOVERY
attribute := expression : RECOVERY(handler [, attempts]) ;

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression fails.

attempts Optional. The number of times to try before giving up.

The RECOVERY service executes the handler Attribute when the expression fails then re-runs the attribute.
If the attribute still fails after the specified number of attempts, any present FAILURE clause will execute.
RECOVERY notionally executes in parallel with the failed return result. This service implicitly causes the
attribute to be evaluated at global scope instead of the enclosing scope. Only available if workflow services
are turned on (see #OPTION(workflow)).

Example:

DoSomethingToFixIt := TRUE; //some action to repair the input
SPeople := SORT(Person,first_name);
nUniques := DEDUP(sPeople,first_name)
 : RECOVERY(DoSomethingToFixIt,2),
 FAILURE(Email.simpleSend(SystemsPersonel,SystemsPersonel.email,'ouch.htm'));

See Also: SUCCESS, FAILURE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

408

ECL Language Reference
Workflow Services

STORED - Workflow Service
[attribute :=] expression : STORED(storedname [, FEW][, FORMAT([SELEC-
T(valuestring)] [FIELDWIDTH(widthvalue)][,FIELDHEIGHT(heightvalue)][,SEQUENCE(sequenceval-
ue)][,NOINPUT)][,PASSWORD)]]) ;

attribute Optional. The name of the Attribute.

expression The definition of the attribute.

storedname A string constant containing the name of the stored attribute result.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the dataset
is stored completely within the workunit. If not specified, then the dataset is stored as a
THOR file and the workunit contains only the name of the file. The FEW option is required
when using STORED in a SOAP-enabled MACRO and the expected input is a dataset
(such as tns:xmlDataset).

FORMAT Optional. FORMAT specifies options for formatting the field on a Web form in WsECL.

SELECT Optional. SELECT specifies a droplist input control on a Web form in WsECL.

valuestring An string containing the possible values for the droplist. An asterisk (*) denotes the de-
fault value. A expression in the form of 'apple=1' within the string allows text to display
and a different value to be stored. In that example, apple would display but a value of
1 is stored if the user selects apple.

FIELDWIDTH Optional. FIELDWIDTH specifies the width of the input box on a Web form in WsECL.

widthvalue An integer expression defining the width (number of characters) of the input box

FIELDHEIGHT Optional. FIELDHEIGHT specifies the height of the input box on a Web form in WsECL.

heightvalue An integer expression defining the height (number of rows) of the input box

SEQUENCE Optional. SEQUENCE specifies field ordering on a Web form in WsECL.

sequencevalue An integer expression defining the sequential location of the input box. These can be
sparse values (e.g., 100, 200, 300) to allow insertion of new inputs in the future.

NOINPUT Optional. If NOINPUT is specified, the field is not displayed on the Web form in WsECL.

PASSWORD Optional. If PASSWORD is specified, a password entry box is used on the Web form
in WsECL and the field's supplied value is not displayed while entering it. The value is
also hidden when viewing stored values in the workunit through EclWatch or from the
command line when extracting the WU XML.

The STORED service stores the result of the expression with the work unit that uses the attribute so that
it remains available for use throughout the work unit. If the attribute name is omitted, then the stored value
can only be accessed afterwards from outside of the ECL execution. If an attribute name is provided then
the value of that attribute will be pulled from storage, if it has not yet been set it will be computed, stored
and then used from storage. This service implicitly causes the attribute to be evaluated at a global scope
instead of the enclosing scope.

STORED creates a storage space in the workunit where the interface can place the values to pass to a
published query. See Working with Roxie in the Programmer's Guide.

Example:

COUNT(person) : STORED('myCount');
 // Name in workunit is myCount,
 // stored value accessible only outside ECL
fred := COUNT(person) : STORED('fred');

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

409

ECL Language Reference
Workflow Services

 // Name in workunit is fred
fred := COUNT(person) : STORED('mindy');
 // Name in workunit is mindy

//FORMAT options for WsECL form
Password :='' := STORED('Password',FORMAT(SEQUENCE(1),PASSWORD));
 //password entry box on form
Field1 := 1 : STORED('Field1',FORMAT(SEQUENCE(10)));
Field2 := 2 : STORED('Field2',FORMAT(SEQUENCE(20)));
AddThem := TRUE :STORED ('AddThem',FORMAT(SEQUENCE(15)));
 // places field in between Field1 and Field2
HiddenValue := 12 :STORED ('HiddenValue',FORMAT(NOINPUT)); // not on form
TextField1 :='Fill in description' :Stored('Description',
 FORMAT(FIELDWIDTH(25),FIELDHEIGHT(2),
 SEQUENCE(5)));
 //Creates 25 char wide, 2 row high input box
//SELECT options

UNSIGNED8 u8 := 0 : STORED('u8', FORMAT(fieldwidth(8),
 SEQUENCE(18),
 SELECT('one=1,two=2,three=3,*four=4')));
STRING ch1 := 'ban' : STORED('ch1', FORMAT(SELECT('apple=app,pear,*banana=ban')));
 //banana is default
STRING ch2 := '' : STORED('ch2', FORMAT(SELECT(',apple=app,pear,banana=ban')));
 //starts empty, no specified default
STRING ch3 := '' : STORED('ch3', FORMAT(SELECT('apple=app,pear,*,banana=ban')));
 //empty in middle, empty is default

See Also: STORED function, #WEBSERVICE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

410

ECL Language Reference
Workflow Services

SUCCESS
attribute := expression : SUCCESS(handler) [,LABEL(text)];

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression succeeds.

LABEL Optional. Defines the Text to display for the workflow item in
the Graph for the workunit. If omitted, the code generator will
deduce a label from the identifier being defined.

text A string constant containing the text to display.

The SUCCESS service executes the handler Attribute when the expression succeeds. SUCCESS notionally
executes in parallel with the successful return of the result. This service implicitly causes the attribute to
be evaluated at global scope instead of the enclosing scope. Only available if workflow services are turned
on (see #OPTION(workflow)).

Example:

SPeople := SORT(Person,Person.first_name);
nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND Person.address))
 : SUCCESS(Email.simpleSend(SystemsPersonel,
 SystemsPersonel.email,'yeah.htm'));

See Also: FAILURE, RECOVERY

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

411

ECL Language Reference
Workflow Services

WHEN
action : WHEN(event [,COUNT(repeat)]) ;

action Any valid ECL Action to execute.

event The event that triggers action execution. This may be either the EVENT or CRON func-
tions, EVENTNAME or the name of an EVENT (as a shorthand for EVENT(event,'*')),
or any attribute defined with those functions.

COUNT Optional. Specifies the number of events to trigger instances of the action. If omitted, the
default is unlimited (continuously waiting for another event to trigger another instance
of the action), until the workunit is manually removed from the list of workunits being
monitored by the scheduler.

repeat An integer expression.

The WHEN service executes the action whenever the event occurs.

Example:

IMPORT STD;
IF (STD.File.FileExists('test::myfile'),
 STD.File.DeleteLogicalFile('test::myfile'));
 //deletes the file if it already exists
STD.File.MonitorLogicalFileName('MyFileEvent','test::myfile');
 //sets up monitoring and the event name
 //to fire when the file is found
OUTPUT('File Created') : WHEN(EVENT('MyFileEvent','*'));
 //this OUTPUT occurs only after the event has fired
 //may also be coded in this shorthand form:
 // OUTPUT('File Created') : WHEN('MyFileEvent');
afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
OUTPUT(afile,,'test::myfile');
 //this creates a file that the DFU file monitor will find
 //when it periodically polls
 //**********************************
EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
END;
BUILD(teenagers) : WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));
BUILD(oldies) : WHEN(EVENT('FileDropped', 'x'));

See Also: EVENT, CRON, NOTIFY, WAIT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

412

ECL Language Reference
Template Language

Template Language

Template Language Overview
ECL was created to be the programming language for all of our HPCC Systems technology. Therefore, it
must be able to meet all the demands of a complete business solution: from data ingest, through querying
and processing, and all the way to fulfillment and customer output.

In most every business solution that we create, the end-users will be using some kind of a custom Graphical
User Interface (GUI) application specific to their business (typically created for them by us) to specify their
queries into the data and set up processing jobs for the supercomputer. These custom GUI applications can
generate for the user the ECL that will actually perform the query or process. The task of generating that
ECL can be daunting if approached through a hard-coding perspective when you consider the exponential
curve of all possible sets of choices the user could make in any moderately-complex system, and as the
system grows more complex the problem becomes even worse. That means that a hard-coding solution
is out of the question.

ECL's Template language provides the solution to this problem. The Template language is a Meta-language
that takes standard XML input, typically generated from an end-user GUI application (thereby vastly sim-
plifying the coding problem in the GUI) and in turn generating the appropriate ECL code to implement the
user's choices.

Template Language Statements
Template Language statements all begin with # to clearly differentiate them from the ECL code that will be
generated by the template. Most statements take parameters that determine their specific action in each
instance.

The required statement terminator is the semi-colon (just as in ECL) and there are multi-line structures that
terminate with the #END statement. These structures may be nested within each other.

Template Symbols
Template Language uses user-defined symbols as variables. These symbols must be explicitly declared
before use (see #DECLARE). The tag names in the XML text being processed are also treated like
user-defined symbols.

A user-defined symbol or XML tag is referenced by surrounding the name of the symbol or tag with percent
signs. An XML tag used as a template symbol may be a simple tag name, or an xpath to the XML data to
retrieve (see the RECORD structure documentation for a description of the supported xpath syntax). If an
xpath is used, then the symbol used must be the full xpath to the data expressed inside curly braces ({}).
This syntax takes several forms:

%symbol% returns the value of the symbol

%'symbol'%. returns value of the symbol as a string

%'' % (an empty string) returns the contents of the current XML tag

%{xpath}% returns the value of the data pointed to by the xpath

%'{xpath}'%. returns value of the data pointed to by the xpath as a string

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

413

ECL Language Reference
Template Language

#APPEND
#APPEND(symbol, expression);

symbol The name of a previously declared user-defined symbol.

expression The string expression specifying the string to concatenate to the existing symbol con-
tents.

The #APPEND statement adds the value of the expression to the end of the existing string contents of
the symbol.

Example:

#DECLARE(MySymbol); //declare a symbol named "MySymbol"
#SET(MySymbol,'Hello'); //initialize MySymbol to "Hello"
#APPEND(MySymbol,' World'); //make MySymbol's value "Hello World"
OUTPUT(%'MySymbol'%);

See Also: #DECLARE, #SET

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

414

ECL Language Reference
Template Language

#CONSTANT
#CONSTANT(name, value);

name A string constant containing the name of the stored value.

value An expression for the value to assign to the stored name.

The #CONSTANT statement is similar to #STORED in that it assigns the value to the name, but #CONS-
TANT specifies the value is not over-writable at runtime. This statement may be used outside an XML scope
and does not require a previous LOADXML to instantiate an XML scope.

Example:

PersonCount := 0 : STORED('myCount');
#CONSTANT('myCount',100);
 //set the stored PersonCount attribute value to 100
OUTPUT(PersonCount);

See Also: #STORED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

415

ECL Language Reference
Template Language

#DECLARE
#DECLARE(symbol);

symbol The name of the template variable.

The #DECLARE statement declares a user-defined symbol for use in the template. The symbol is simply
created and not initialized to any particular value, therefore it may be destined to contain either string or
numeric data.

Example:

#DECLARE(MySymbol); //declare a symbol named "MySymbol"
#SET(MySymbol,11); //initialize MySymbol to 11
OUTPUT(%'MySymbol'%)

See Also: #SET, #APPEND

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

416

ECL Language Reference
Template Language

#DEMANGLE
#DEMANGLE(identifier);

identifier A valid ECL identifier label containing only letters, numbers, dollar sign ($), and under-
score (_) characters.

The #DEMANGLE statement takes an identifier string and returns the string as it was before it was #MAN-
GLEd.

Example:

#DECLARE (mstg);
#DECLARE (dmstg);
#SET (mstg, #MANGLE('SECTION_STATES/AREACODES'));
EXPORT res1 := %'mstg'%;
OUTPUT(res1); //res1 = 'SECTION_5fSTATES_2fAREACODES'

 // Do some processing with ECL Valid Label name "mstg"
#SET (dmstg, #DEMANGLE(%'mstg'%));
EXPORT res2 := %'dmstg'%;
OUTPUT(res2); //res2 = 'SECTION_STATES/AREACODES'

See Also: #MANGLE, Attribute Names

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

417

ECL Language Reference
Template Language

#ERROR
#ERROR(errormessage);

errormessage A string expression containing the message to display.

The #ERROR statement immediately halts processing on the workunit and displays the errormessage. This
statement may be used outside an XML scope and does not require a previous LOADXML to instantiate
an XML scope.

Example:

a := TRUE; // pick one of these
//a := FALSE;
#IF(a)
 #ERROR('broken');
 OUTPUT('broken');
#ELSE
 #WARNING('maybe broken');
 OUTPUT('maybe broken');
#END;

See Also: #WARNING

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

418

ECL Language Reference
Template Language

#EXPAND
#EXPAND(token);

token The name of the MACRO parameter whose passed string constant value to expand.

The #EXPAND statement substitutes and parses the text of the passed token's string within the MACRO.

Example:

MAC_join(attrname, leftDS, rightDS, linkflags) := MACRO
 attrname := JOIN(leftDS,rightDS,#EXPAND(linkflags));
ENDMACRO;

MAC_join(J1,People,Property,'LEFT.ID=RIGHT.PeopleID,LEFT OUTER')
 //expands out to:
 // J1 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID,LEFT OUTER);

MAC_join(J2,People,Property,'LEFT.ID=RIGHT.PeopleID')
 //expands out to:
 // J2 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID);

See Also: MACRO

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

419

ECL Language Reference
Template Language

#EXPORT
#EXPORT(symbol, data);

symbol The name of a previously declared template variable.

data The name of a field, RECORD structure, or dataset.

The #EXPORT statement produces XML text from the specified data and places it in the symbol. This allows
the LOADXML(symbol,name) form to instantiate an XML scope on the information from the data to process.

The XML output is generated with the following format:

 <Data>
 <Field label="<label-of-field>"
 name="<name-of-field>"
 position="<n>"
 rawtype="<n>"
 size="<n>"
 type="<ecl-type-without-size>" />
 ...
 </Data>

IFBLOCKs are simply expanded out in the XML. Nested RECORD types have an isRecord attribute that
is set to 1, and are followed by the fields they contain, and then a Field tag with no name and the isEnd
attribute set to 1. This representation is used rather than nested objects so it can be processed by a #FOR
statement. Child dataset types are also expanded out in a similar way, and have an isDataset attribute set
to 1 on the field.

Example:

NamesRecord := RECORD
 STRING10 first;
 STRING20 last;
END;
r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
END;

ds := DATASET('~RTTEST::OUT::ds', r, thor);

#DECLARE(out);
#EXPORT(out, r);
OUTPUT(%'out'%);
 /* produces this result:
 <Data>
 <Field label="DG_ParentID"
 name="DG_ParentID"
 position="0"
 rawtype="262401"
 size="4"
 type="unsigned integer"/>
 <Field label="DG_firstname"
 name="DG_firstname"

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

420

ECL Language Reference
Template Language

 position="1"
 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="DG_lastname"
 name="DG_lastname"
 position="2"
 rawtype="-983036"
 size="-15"
 type="string"/>
 <Field label="DG_Prange"
 name="DG_Prange"
 position="3"
 rawtype="65793"
 size="1"
 type="unsigned integer"/>
 <Field label="ExtraField"
 name="ExtraField"
 position="4"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isRecord="1"
 label="namerec"
 name="namerec"
 position="5"
 rawtype="13"
 size="30"
 type="namesRecord"/>
 <Field label="first"
 name="first"
 position="6"
 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="last"
 name="last"
 position="7"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isEnd="1" name="namerec"/>
 <Field isDataset="1"
 label="childNames"
 name="childNames"
 position="8"
 rawtype="-983020"
 size="30"
 type="table of <unnamed>"/>
 <Field label="first"
 name="first"
 position="9"
 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="last"
 name="last"
 position="10"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isEnd="1" name="childNames"/>
 </Data>
 */

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

421

ECL Language Reference
Template Language

 //which you can then process ;ike this:
LOADXML(%'out'%, 'Fred');
#FOR (Fred)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
 OUTPUT('END');
 #ELSE
 OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
 + %'{@size}'%
 #END
 + ' ' + %'{@label}'% + ';');
 #END
 #END
#END
OUTPUT('Done');

See Also: LOADXML, #EXPORTXML, #DECLARE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

422

ECL Language Reference
Template Language

#EXPORTXML
#EXPORTXML(symbol, data);

symbol The name of a template variable that has not been previously declared.

data The name of a field, RECORD structure, or dataset.

The #EXPORTXML statement produces the same XML as #EXPORT from the specified data and places
it in the symbol, then does a LOADXML(symbol, 'label') on the data.

Example:

 NamesRecord := RECORD
 STRING10 first;
 STRING20 last;
 END;

 r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
 END;

 ds := DATASET('~RTTEST::OUT::ds', r, THOR);

 //This example produces the same result as the example for #EXPORT.
 //Notice the lack of #DECLARE and LOADXML in this version:
 #EXPORTXML(Fred,r);

 #FOR (Fred)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
 OUTPUT('END');
 #ELSE
 OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
 + %'{@size}'%
 #END
 + ' ' + %'{@label}'% + ';');
 #END
 #END
 #END
 OUTPUT('Done');
 //**
 //These examples show some other possible uses of #EXPORTXML:

 //This could be greatly simplified as
 // (%'{IsAStringMetaInfo/Field[1]/@type}'%='string')
 isAString(inputField) := MACRO
 #EXPORTXML(IsAStringMetaInfo, inputField);
 #IF (%'IsAString'%='')
 #DECLARE(IsAString);
 #END;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

423

ECL Language Reference
Template Language

 #SET(IsAString, false);
 #FOR (IsAStringMetaInfo)
 #FOR (Field)
 #IF (%'{@type}'% = 'string')
 #SET (IsAString, true);
 #END
 #BREAK
 #END
 #END
 %IsAString%
 ENDMACRO;

 getFieldName(inputField) := MACRO
 #EXPORTXML(GetFieldNameMetaInfo, inputField);
 %'{GetFieldNameMetaInfo/Field[1]/@name}'%
 ENDMACRO;
 displayIsAString(inputField) := MACRO
 OUTPUT(getFieldName(inputField)
 + TRIM(IF(isAString(inputField), ' is', ' is not'))
 + ' a string.')
 ENDMACRO;

 SIZEOF(r.dg_firstname);
 isAString(r.dg_firstname);
 getFieldName(r.dg_firstname);
 OUTPUT('ds.dg_firstname isAString? '
 + (STRING)isAString(ds.dg_firstname));
 isAString(ds.namerec);

 displayIsAString(ds.namerec);
 displayIsAString(r.dg_firstname);

See Also: LOADXML, #EXPORT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

424

ECL Language Reference
Template Language

#FOR
#FOR(tag [(filter)])

statements

#END

tag An XML tag.

filter A logical expression indicating which specific tag instances to process.

statements The Template statements to execute.

#END The #FOR structure terminator.

The #FOR structure loops through the XML, searching for each instance of the tag that meets the filter
expression and executes the statements on the data contained within that tag.

Example:

 // This script processes XML and generates ECL COUNT statements
 // which run against the datasets and filters specified in the XML.
 XMLstuff :=
 '<section>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'RICHARD\'</filter>'+
 '</item>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'JOHN\'</filter>'+
 '</item>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'HENRY\'</filter>'+
 '</item>'+
 '</section>';

 LOADXML(XMLstuff);
 #DECLARE(CountStr); // Declare CountStr
 #SET(CountStr, ''); // Initialize it to an empty string
 #FOR(item)
 #APPEND(CountStr,'COUNT(' + %'dataset'% + '(' + %'filter'% + '));\n');
 #END

 OUTPUT(%'CountStr'%); // output the string just built
 %CountStr% // then execute the generated "COUNT" actions

 // Note that the "CountStr" will have 3 COUNT actions in it:
 // COUNT(person(person.firstname = 'RICHARD'));
 // COUNT(person(person.firstname = 'JOHN'));
 // COUNT(person(person.firstname = 'HENRY'));

See Also: #LOOP, #DECLARE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

425

ECL Language Reference
Template Language

#GETDATATYPE
#GETDATATYPE(field);

field A previously defined user-defined symbol containing the name of a field in a dataset..

The #GETDATATYPE function returns the value type of the field. The field argument must be a scalar value
or a field from a dataset (rather than a field from a record definition.)

Example:

person := DATASET([{D'6789ABCDE6789ABCDE'}],{DATA9 per_cid});
#DECLARE(fieldtype);
#DECLARE(field);
#SET(field, 'person.per_cid');
#SET(fieldtype, #GETDATATYPE(%field%));
res := %'fieldtype'%;
OUTPUT(res); // 'data9'

See Also: Value Types

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

426

ECL Language Reference
Template Language

#IF
#IF(condition)

truestatements

[#ELSEIF(condition)

truestatements]

[#ELSE falsestatements]

#END

condition A logical expression.

truestatements The Template statements to execute if the condition is true.

#ELSEIF Optional. Provides structure for statements to execute if its condition is true.

#ELSE Optional. Provides structure for statements to execute if the condition is false.

falsestatements Optional. The Template statements to execute if the condition is false.

#END The #IF structure terminator.

The #IF structure evaluates the condition and executes either the truestatements or falsestatements (if
present). This statement may be used outside an XML scope and does not require a previous LOADXML
to instantiate an XML scope.

Example:

// This script creates a set attribute definition of the 1st 10
// natural numbers and defines an attribute named "Set10"

#DECLARE (SetString);
#DECLARE (Ndx);
#SET (SetString, '['); //initialize SetString to [
#SET (Ndx, 1); //initialize Ndx to 1
#LOOP
 #IF (%Ndx% > 9) //if we've iterated 9 times
 #BREAK // break out of the loop
 #ELSE //otherwise
 #APPEND (SetString, %'Ndx'% + ',');
 //append Ndx and comma to SetString
 #SET (Ndx, %Ndx% + 1);
 //and increment the value of Ndx
 #END
#END
#APPEND (SetString, %'Ndx'% + ']'); //add 10th element and closing]
EXPORT Set10 := %'SetString'%; //generate the ECL code
 // This generates:
 // EXPORT Set10 := [1,2,3,4,5,6,7,8,9,10];
OUTPUT(Set10); // [1,2,3,4,5,6,7,8,9,10]

See Also: #LOOP, #DECLARE

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

427

ECL Language Reference
Template Language

#IFDEFINED
#IFDEFINED(definition, defaultValue)

definition The name of an ECL definition.

defaultValue The default value to use if the definition does not exist.

#IFDEFINED determines whether or not the definition has been defined at the point it appears in the code.
If it has been defined, it generates the definition. If it has not been defined, it generates the defaultValue.

Example:

definitions := MODULE
 EXPORT val1 := 'hi';
END;
root := MODULE
 EXPORT val2 := 'defined';
END;

val1 := 'me';
#IFDEFINED(val1, 'val1 undefined'); //me
IF(#IFDEFINED(val1, 'val1 undefined') = 'me','FRED','JOEY'); //FRED
IF(#IFDEFINED(val1, 'val1 undefined') = 'me too','FRED','JOEY'); //JOEY

#IFDEFINED(val2, 'val2 undefined'); //val2 undefined

#IFDEFINED(definitions.val1, 'definitions.val1 undefined'); //hi
#IFDEFINED(root.val2, 'root.val2 undefined'); //defined

See Also: #ISDEFINED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

428

ECL Language Reference
Template Language

#ISDEFINED
#ISDEFINED(definition)

definition The name of an ECL definition.

Returns A BOOLEAN value

#ISDEFINED returns whether or not the definition has been defined at the point it appears in the code.

Example:

getFlagsValue(defname) := MACRO
 defname :=
 #IF (#ISDEFINED(DoAlways))
 1 +
 #ELSEIF (#ISDEFINED(DoNever))
 2 +
 #END
 3;
ENDMACRO;

#ISDEFINED(DoNever); //false

getFlagsValue(x1); //neither is defined yet = 3
OUTPUT(x1); //3

DoNever := 'fred';
getFlagsValue(x2); //only DoNever is defined = 5
OUTPUT(x2); //5

DoAlways := 42;
getFlagsValue(x3); //both are defined = 4 (so the #ELSEIF isn't evaluated)
OUTPUT(x3); //4

#ISDEFINED(DoNever); //true

See Also: #IFDEFINED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

429

ECL Language Reference
Template Language

#INMODULE
#INMODULE(module, attribute);

module A previously defined user-defined symbol containing the name of an ECL source module.

attribute A previously defined user-defined symbol containing the name of an Attribute that may
or may not be in the module.

The #INMODULE statement returns a Boolean TRUE or FALSE as to whether the attribute exists in the
specified module.

Example:

#DECLARE (mod)
#DECLARE (attr)
#DECLARE (stg)

#SET(mod, 'default')
#SET(attr, 'YearOf')

#IF(#INMODULE(%mod%, %attr%))
 #SET(stg, %'attr'% + ' Exists In Module ' + %'mod'%);
#ELSE
 #SET(stg, %'attr'% + ' Does Not Exist In Module ' + %'mod'%);
#END

EXPORT res := %'stg'%;
OUTPUT(res);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

430

ECL Language Reference
Template Language

#LOOP / #BREAK
#LOOP

[statements]

#BREAK

[statements]

#END

statements The Template statements to execute each time.

#BREAK Terminates the loop.

#END The #LOOP structure terminator.

The #LOOP structure iterates, executing the statements each time through the loop until a #BREAK state-
ment executes. If there is no #BREAK then #LOOP iterates infinitely.

Example:

// This script creates a set attribute definition of the 1st 10
// natural numbers and defines an attribute named "Set10"

#DECLARE (SetString)
#DECLARE (Ndx)
#SET (SetString, '['); //initialize SetString to [
#SET (Ndx, 1); //initialize Ndx to 1
#LOOP
 #IF (%Ndx% > 9) //if we've iterated 9 times
 #BREAK // break out of the loop
 #ELSE //otherwise
 #APPEND (SetString, %'Ndx'% + ',');
 //append Ndx and comma to SetString
 #SET (Ndx, %Ndx% + 1)
 //and increment the value of Ndx
 #END
#END
#APPEND (SetString, %'Ndx'% + ']'); //add 10th element and closing]
EXPORT Set10 := %'SetString'%; //generate the ECL code
 // This generates:
 // EXPORT Set10 := [1,2,3,4,5,6,7,8,9,10];
OUTPUT(Set10); // [1,2,3,4,5,6,7,8,9,10]

See Also: #FOR, #DECLARE, #IF

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

431

ECL Language Reference
Template Language

#MANGLE
#MANGLE(string);

string A string value.

The #MANGLE statement takes any string and returns a valid ECL identifier label containing only letters,
numbers, and underscore (_) characters. #MANGLE replaces non-alphanumeric characters with an under-
score (_) followed by the hex value of the character it's replacing.

Example:

#DECLARE (mstg);
#DECLARE (dmstg);
#SET (mstg, #MANGLE('SECTION_STATES/AREACODES'));
EXPORT res1 := %'mstg'%;
OUTPUT(res1); //res1 = 'SECTION_5fSTATES_2fAREACODES'

 // Do some processing with ECL Valid Label name "mstg"
#SET (dmstg, #DEMANGLE(%'mstg'%));
EXPORT res2 := %'dmstg'%;
OUTPUT(res2); //res2 = 'SECTION_STATES/AREACODES'

See Also: #DEMANGLE, Attribute Names

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

432

ECL Language Reference
Template Language

#ONWARNING
#ONWARNING(code, action);

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.

action One of these actions: ignore, error, or warning.

The #ONWARNING statement allows you to globally specify how to handle specific warnings. You may
have it treated as a warning, promote it to an error, or ignore it. Useful warnings can get lost in a sea of
less-useful ones. This feature allows you to get rid of the "clutter."

The ONWARNING workflow service overrides any global warning handling specified by #ONWARNING.

Example:

#ONWARNING(1041, error);
 //globally promote "Record doesn't have an explicit
 // maximum record size" warnings to errors
rec := { STRING x } : ONWARNING(1041, ignore);
 //ignore "Record doesn't have an explicit maximum
 // record size" warning on this attribute, only

See Also: ONWARNING

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

433

ECL Language Reference
Template Language

#OPTION
#OPTION(option, value);

option A case sensitive string constant containing the name of the option to set.

value The value to set the option to. This may be any type of value, dependent on what the
option expects to be.

The #OPTION statement is typically a compiler directive giving hints to the code generator as to how best
to generate the executable code for a workunit. This statement may be used outside an XML scope and
does not require a previous call to the LOADXML function to instantiate an XML scope.

Definition of Terms
These definitions are "internal-only" terms used in the option definitions that follow.

DFA Deterministic Finite-state Automaton.

Fold To turn a complex expression into a simpler equivalent one. For example, the expression
"1+1" can be replaced with "2" without altering the result.

Spill Writing intermediate result sets to disk so that memory is available for subsequent steps.

Funnel The + (append file) operator between datasets can be visualized as pouring all the
records into a funnel and getting a single stream of records out of the bottom; hence
the term "funnel."

TopN An internally generated activity used in place of CHOOSEN(SORT(xx), n) where n is
small, as it can be computed much more efficiently than sorting the entire record set then
discarding all but the first n.

Activity An ECL operator that takes one or more datasets as inputs.

Graph All the Activities in a query.

Subgraph A collection of Activities that can all be active at the same time in Thor.

Peephole A method of code optimization that looks at a small amount of the unoptimized code at
a time, in order to combine operations into more efficient ones.

Available options
The following options are generally useful:

maxRunTime Default: none Sets the maximum number of seconds a job runs
before it times out

freezePersists Default: false If true, does not calculate/recalculate PERSISTed

expirePersists Default: true If true, PERSISTs expire after the specified period.
This is set in the Sasha configuration setting (Per-
sistExpiryDefault) or using #option ('defaultPersis-
tExpiry', n) where n is the number of days.

defaultPersistExpiry Default: none If set, PERSISTs expire after the number of days
specified (overriding the Sasha PersistExpiryDe-
fault setting).

multiplePersistInstances Default: true If true, multiple PERSISTs are the default.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

434

ECL Language Reference
Template Language

defaultNumPersistInstances Default: none Specifies the default number of PERSISTs. A val-
ue of -1 specifies that all copies should be kept un-
til they expire or manually deleted.

check Default: true If true, check for potential overflows of records.

expandRepeatAnyAsDfa Default: true If true, expand ANY* in a DFA.

forceFakeThor Default: false If true, force code to use hthor.

forceGenerate Default: false If true, force .SO to be generated even if it's not
worth it

globalFold Default: true If true, perform a global constant fold before gen-
erating.

globalOptimize Default: false If true, perform a global optimize.

groupAllDistribute Default: false If true, GROUP,ALL generates a DISTRIBUTE in-
stead of a global SORT.

maximizeLexer Default: false If true, maximize the amount of work done in the
lexer.

maxLength Default: 4096 Specify maximum length of a record.

minimizeSpillSize Default: false If true, if a spill is filtered/deduped etc when read,
reduce spill file size by splitting, filtering and then
writing.

optimizeGraph Default: true If true, optimize expressions in a graph before gen-
eration

orderDiskFunnel Default: true If true, if all inputs to a funnel are disk reads, pull in

parseDfaComplexity Default: 2000 Maximum complexity of expression to convert to a
DFA.

pickBestEngine Default: true If true, use hthor if it is more efficient than Thor

diskReadsAreSimple Default: true If true, modifies the behavior of the pickBestEngine
option so disk read operations are regarded the
same as index read operations when deciding
whether Thor is needed. The benefit is that sim-
ple jobs can run on hthor reading/filtering data re-
motely using dafilesrv.

targetClusterType hthor|Thor|
roxie

What supercomputer type are we generating code
for?

topnLimit Default:
10000

Maximum number of records to do topN on.

outputLimit Default: 10 Sets maximum size (in Mb) of result stored in
workunit.

sortIndexPayload Default: true Specifies sorting (or not) payload fields

workflow Default: true Specifies enabling/disabling workflow services.

foldStored Default: false Specifies that all the stored variables are replaced
with their default values, or values overridden by
#stored. This can significantly reduce the size of
the graph generated.

skipFileFormatCrcCheck Default: false Specifies that the CRC check on indices produces
a warning and not an error.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

435

ECL Language Reference
Template Language

allowedClusters Default: none Specifies the comma-delimited list of cluster
names (as a string constant) where the workunit
may execute. This allows the job to be switched
between clusters, manually or automatically, if the
workunit is blocked on its assigned cluster and an-
other valid cluster is available for use.

AllowAutoQueueSwitch Default: false If true, specifies that the workunit is automatically
re-assigned to execute on another available clus-
ter listed in allowedClusters when blocked on its
assigned cluster.

performWorkflowCse Default: false If true, specifies that the code generator automat-
ically detects opportunities for Common Sub-ex-
pression Elimination that may be "buried" within
multiple PERSISTed attributes. If false, notifica-
tion of these opportunities are displayed to the pro-
grammer as suggestions for the use of the INDE-
PENDENT Workflow Service.

defaultSkewError Default: none A value between 0.0 and 1.0 that determines the
amount of skew needed to generate a skew er-
ror. This value is ignored if the ECL has provided
a SKEW attribute.

defaultSkewWarning Default: none A value between 0.0 and 1.0 that determines the
amount of skew needed to generate a skew warn-
ing. If set higher than defaultSkewError, then the
value is ignored.

overrideSkewError Default: none If set to a value between 0.0 and 1.0, it overrides
any ECL SKEW(nn) attribute values in the current
job.

defaultSkewThreshold Default: 1GB The size of the dataset (in bytes) local to a sin-
gle node needed before Skew errors/warnings are
generated if no THRESHOLD(nn) was supplied in
ECL.

overrideSkewThreshold Default: none The size of the dataset (in bytes) local to a sin-
gle node needed before Skew errors/warnings are
generated. Overrides any ECL THRESHOLD(nn)
attribute values in the current job.

applyInstantEclTransformations Default false Limit non-file outputs with a CHOOSEN

applyInstantEclTransformationsLimit Default 100 Number of records to limit to

divideByZero Default zero 'zero' evaluates to 0, the default behavior. 'fail'
causes the job to fail and report a division by zero
error. 'nan' (only currently supported for real num-
bers) creates a quiet NaN, which will propagate
through any real expressions it is used in. You can
use NOT ISVALID(x) to test if the value is a NaN.
Integer and decimal division by zero continue to
return 0.

outputLimitMb Default 10
[MB]

Limit of output to a workunit in MB.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

436

ECL Language Reference
Template Language

hthorMemoryLimit Default 300
[MB]

Override memory usage limit set in ECL Agent's
defaultMemoryLimitMB configuration option (for
hThor only).

maxCsvRowSizeMb Default 10
[MB]

Upper limit of a CSV line read in MB.

validateFileType Default true If false, the engines use the definition in the ECL
workunit and ignore the file type from the logical
file meta data. If true, this check is always ignored
if the ECL is reading a CSV or a fixed record width
flat file. Also when true, if the ECL is reading XML
or JSON, and there is a mismatch, it issues a warn-
ing not an error.

compressInternalSpills Default true Compress internal spills. (e.g., spills created by
lookahead or sort gathering).

hdCompressorType Default 'FLZ' Distribute compressor to use.

hdCompressorOptions Default '' Distribute compressor options (e.g., AES key)

splitterSpill Default -1 Integer value to indicate whether to force splitters
to spill or not. [1 = force spill | 0 = force in memory
| -1 = adhere to helper setting]

loopMaxEmpty Default 1000 Max # of iterations that LOOP can cycle through
without results before reporting an error

smallSortThreshold Default 0 (dis-
abled)

If estimated size is below this threshold in bytes, a
minisort approach should be used.

sort_max_deviance Default 10
[MB]

Max (byte) variance allowed during sort partition-
ing

joinHelperThreads Default =
same as
number of
cores

Number of threads to use in threaded variety of
join helper

bindCores Default = 0 For Roxie queries. If non-zero, binds the query to
only use the specified number of cores. This over-
rides the value set for coresPerQuery in Roxie con-
figuration.

translateDFSlayouts Default = 0 Specifies that file layouts should be looked up at
compile time. See File Layout Resolution at Com-
pile Time in the Programmer's Guide for more de-
tails.

timeLimit For Roxie queries. Maximum run time (in ms) for
a query.

generateGlobalId Default =
false

For Roxie queries. When true, generates a unique
GlobalId if one is not provided.

analyzeWorkunit Overrides the setting in ECL Agent to analyze
workunits after ECL queries are executed (Thor
only). This allows a workunit to be further analyzed
to identify and display any potential issues. These
possible issues display in ECL Watch's "Warn-
ings & Errors" area. The global setting defaults to

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

437

ECL Language Reference
Template Language

TRUE, but can be changed using Configuration
Manager.

maxCost Default: none Overrides the limit setting in Thor's configuration.
If the maxCost threshold is reached, the job guil-
lotine is enforced and the job is halted. This does
not override the hardlimit setting. This is only valid
for Thor jobs.

writeInlineContent If true, writing a field with XPATH('Name/<>') out-
puts the string without XML/JSON encoding the
content. This allows you to insert arbitrary XML/
JSON into the output. There are 3 forms: '<>'
writes the content without a root tag, reading reads
all content of parent. 'Name<>' writes the content
without a tag, reading reads the content of the tag .
'Name/<>' writes the content inside, reading reads
the content of the tag.

The following options are all about generating Logical graphs in a workunit.

Logical graphs are stored in the workunit and viewed in ECL Watch. They include information about which
attribute/line number/column the symbols are defined in. Exported attributes are represented by <mod-
ule>.<attribute> in the header of the activity. Non-exported (local) attributes are represented as <mod-
ule>.<exported-attribute>::<non-exported-name>

generateLogicalGraph Default: false If true, generates a Logical graph in addition to all
the workunit graphs.

generateLogicalGraphOnly Default: false If true, generates only the Logical graph for the
workunit.

logicalGraphExpandPersist Default: true If true, generates expands PERSISTed attributes.

logicalGraphExpandStored Default: false If true, generates expands STORED attributes.

logicalGraphIncludeName Default: true If true, generates attribute names in the header of
the activity boxes.

logicalGraphIncludeModule Default: true If true, generates module.attribute names in the
header of the activity boxes.

logicalGraphDisplayJavadoc Default: true If true, generates the Javadoc-style com-
ments embedded in the ECL in place of
the standard text that would be generat-
ed (see http://java.sun.com/j2se/javadoc/writing-
doccomments/). Javadoc-style comments on
RECORD structures or scalar attributes will not
generate, as they have no graph Activity box di-
rectly associated.

logicalGraphDisplayJavadocParame-
ters

Default: false If true, generates information about parameters in
any Javadoc-style comments.

filteredReadSpillThreshold Default: 2 Filtered disk reads are spilled if will be duplicated
more than N times.

foldConstantCast Default: true If true, (cast)value is folded at generate time.

foldFilter Default: true If true, filters are constant folded.

foldAssign Default: true If true, TRANSFORMs are constant folded.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

438

ECL Language Reference
Template Language

foldSQL Default: true If true, SQL is constant folded.

optimizeDiskRead Default: true If true, include project and filter in the transform for
a disk read.

optimizeSQL Default: false If true, optimize SQL.

optimizeThorCounts Default: true If true, convert COUNT(diskfile) into optimized ver-
sion.

peephole Default: true If true, peephole optimize memcpy/memsets, etc.

spotCSE Default: true If true, look for common sub-expressions in
TRANSFORMs/filters.

noteRecordSizeInGraph Default: true Add estimates of record sizes to the graph

showActivitySizeInGraph Default: false Show estimates of generated C++ size in the
graph

showMetaInGraph Default: false Add distribution/sort orders to the graph

showRecordCountInGraph Default: true Show estimates of record counts in the graph

spotTopN Default: true If true, convert CHOOSEN(SORT()) into a topN
activity.

spotLocalMerge Default: false If true, if local JOIN and both sides are sorted, gen-
erate a light-weight merge.

countIndex Default: false If true, optimize COUNT(index) into optimized ver-
sion (also requires optimizeThorCounts).

allowThroughSpill Default: true If true, allow through spills.

optimizeBoolReturn Default: true If true, improve code when returning BOOLEAN
from a function.

optimizeSubString Default: true If true, don't allocate memory when doing a sub-
string.

thorKeys Default: true If true, allow INDEX operations in Thor.

regexVersion Default: 0 If set to 1, specifies use of the previous regular ex-
pression implementation, which may be faster but
also may exceed stack limits.

compileOptions Default: none Specify override compiler options (such as /
Zm1000 to double the compiler heap size to
workaround a heap overflow error).

linkOptions Default: none Specify override linker options.

optimizeProjects Default: true If false, disables automatic field projection/distrib-
ution optimization.

notifyOptimizedProjects Default: 0 If set to 1, reports optimizations to named attribut-
es. If set to 2, reports all optimizations.

optimizeProjectsPreservePersists Default: false If true, disables automatic field projection/distribu-
tion optimization around reading PERSISTed files.
If a PERSISTed file is read on a different size clus-
ter than it was created on, optimizing the project-
ed fields can mean that the distribution/sort order
cannot be recreated.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

439

ECL Language Reference
Template Language

aggressiveOptimizeProjects Default: false If true, enables attempted minimization of network
traffic for sorts/distributes. This option doesn't usu-
ally result in significant benefits, but may do so in
some specific cases.

percolateConstants Default: true If false, disables attempted aggressive constant
value optimizations.

The following options are useful for debugging:

debugNlp Default: false If true, output debug information about the NLP
processing to the .cpp file.

resourceMaxMemory Default:
400M

Maximum amount of memory a subgraph can use.

resourceMaxSockets Default: 2000 Maximum number of sockets a subgraph can use.

resourceMaxActivities Default: 200 Maximum number of activities a subgraph can
contain.

unlimitedResources Default: false If true, assume lots of resources when resourcing
the graphs.

traceRowXML Default: false If true, turns on tracing in ECL Watch graphs. This
should only be used with small datasets for debug-
ging purposes.

_Probe Default: false If true, display all result rows from intermediate re-
sult sets in the graph in ECL Watch when used
in conjunction with the traceRowXML option. This
should only be used with small datasets for debug-
ging purposes.

debugQuery Default: false If true, compile query using debug settings.

optimizeLevel Default: 3 for
roxie, else 0

Set the C++ compiler optimization level (optimiza-
tions can cause the compiler to take a lot longer).

checkAsserts Default: true If true, enables ASSERT checking.

soapTraceLevel Default: 1 The level of detail in reporting SOAPCALL or
HTTPCALL information (set to 0 for none, 1 for
normal, 2 - 8 for more detail)

traceEnabled Default:
FALSE

Enables tracing to log files when TRACE actions
are present. See TRACE.

traceLimit Default: 10 Overrides the the default KEEP setting for a
TRACE statement to indicate how many TRACE
statement to write to log file. See TRACE.

maxlogdetail Overrides the the default logging level for a single
workunit. This allows logging levels to be set to a
low level by default, but allow jobs to be resubmit-
ted with a higher logging level for investigation.

The following options are for advanced code generation use:

These options should be left alone unless you REALLY know what you are doing. Typically they are used
internally by our developers to enable/disable features that are still in development. Occasionally the tech-
nical support staff will suggest that you change one of these settings to work around a problem that you
encounter, but otherwise the default settings are recommended in all cases.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

440

ECL Language Reference
Template Language

filteredReadSpillThreshold Default: 2 Filtered disk reads are spilled if will be duplicated
more than N times.

foldConstantCast Default: true If true, (cast)value is folded at generate time.

foldFilter Default: true If true, filters are constant folded.

foldAssign Default: true If true, TRANSFORMs are constant folded.

foldSQL Default: true If true, SQL is constant folded.

optimizeDiskRead Default: true If true, include project and filter in the transform for
a disk read.

optimizeSQL Default: false If true, optimize SQL.

optimizeThorCounts Default: true If true, convert COUNT(diskfile) into optimized ver-
sion.

peephole Default: true If true, peephole optimize memcpy/memsets, etc.

spotCSE Default: true If true, look for common sub-expressions in
TRANSFORMs/filters.

spotTopN Default: true If true, convert CHOOSEN(SORT()) into a topN
activity.

spotLocalMerge Default: false If true, if local JOIN and both sides are sorted, gen-
erate a light-weight merge.

countIndex Default: false If true, optimize COUNT(index) into optimized ver-
sion (also requires optimizeThorCounts).

allowThroughSpill Default: true If true, allow through spills.

optimizeBoolReturn Default: true If true, improve code when returning BOOLEAN
from a function.

optimizeSubString Default: true If true, don't allocate memory when doing a sub-
string.

thorKeys Default: true If true, allow INDEX operations in thor.

regexVersion Default: 0 If set to 1, specifies use of the previous regular ex-
pression implementation, which may be faster but
also may exceed stack limits.

compileOptions Default: none Specify override compiler options (such as /
Zm1000 to double the compiler heap size to
workaround a heap overflow error).

linkOptions Default: none Specify override linker options.

optimizeProjects Default: true If false, disables automatic field projection/distrib-
ution optimization.

notifyOptimizedProjects Default: 0 If set to 1, reports optimizations to named attribut-
es. If set to 2, reports all optimizations.

optimizeProjectsPreservePersists Default: false If true, disables automatic field projection/distribu-
tion optimization around reading PERSISTed files.
If a PERSISTed file is read on a different size clus-
ter than it was created on, optimizing the project-
ed fields can mean that the distribution/sort order
cannot be recreated.

aggressiveOptimizeProjects Default: false If true, enables attempted minimization of network
traffic for sorts/distributes. This option doesn't usu-

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

441

ECL Language Reference
Template Language

ally result in significant benefits, but may do so in
some specific cases.

percolateConstants Default: true If false, disables attempted aggressive constant
value optimizations.

exportDependencies Default: false Generate information about inter-definition depen-
dencies

maxCompileThreads Default 4
for eclccserv-
er and 1 for
eclcc

Number of compiler instances to compile the C++

reportCppWarnings Default: false Report warnings from C++ compilation

saveCppTempFiles Default: false Retain the generated C++ files

spanMultipleCpp Default: true Generate a work unit in multiple C++ files

activitiesPerCpp Default 500
for Linux or
800 for Win-
dows

Number of activities in each C++ file (requires
spanMultipleCpp)

obfuscateOutput Default false If true, details are removed from the generated
workunit, including ECL code, estimates of record
size, and number of records.

The following options are for the Cost Optimizer:

analyzeWorkunit Default: true If set to FALSE, disables analysis of the worku-
nit

analyzer_minInterestingTime Default: 1000 Analyze activities that exceed this minimum
time to execute (milliseconds)

analyzer_minInterestingCost Default: 30000 Report issues where the time penalty exceeds
this value (milliseconds)

analyzer_skewThreshold Default: 20 Report skew related issues that exceed this
threshold

analyzer_minRowsPerNode Default: 1000 Ignore activities that have this average number
of rows per node

Examples:

#OPTION('traceRowXml', TRUE);
#OPTION('_Probe', TRUE);

my_rec := RECORD
 STRING20 lname;
 STRING20 fname;
 STRING2 age;
END;

d := DATASET([{ 'PORTLY', 'STUART' , '39'},
 { 'PORTLY', 'STACIE' , '36'},
 { 'PORTLY', 'DARA' , ' 1'},
 { 'PORTLY', 'GARRETT', ' 4'}], my_rec);

OUTPUT(d(d.age > ' 1'), {lname, fname, age});

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

442

ECL Language Reference
Template Language

//************************************
//This example demonstrates Logical Graphs and
// Javadoc-style comment blocks
#OPTION('generateLogicalGraphOnly',TRUE);
#OPTION('logicalGraphDisplayJavadocParameters',TRUE);
/**
 * Defines a record that contains information about a person
*/
namesRecord := RECORD
 string20 surname;
 string10 forename;
 integer2 age := 25;
END;

/**
Defines a table that can be used to read the information from the file
and then do something with it.
*/
namesTable := DATASET('x',namesRecord,FLAT);

/**
 Allows the name table to be filtered.
 @param ages The ages that are allowed to be processed.
 @param badForename Forname to avoid.
 @return the filtered dataset.
*/
namesTable filtered(SET OF INTEGER2 ages, STRING badForename) :=
 namesTable(age in ages, forename != badForename);
OUTPUT(filtered([10,20,33], ''));

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

443

ECL Language Reference
Template Language

#SET
#SET(symbol, expression);

symbol The name of a previously declared user-defined symbol.

expression The expression whose value to assign to the symbol.

The #SET statement assigns the value of the expression to the symbol, overwriting any previous value the
symbol had contained.

Example:

#DECLARE(MySymbol); //declare a symbol named "MySymbol"
#SET(MySymbol,11); //initialize MySymbol to 11
OUTPUT(%'MySymbol'%)

See Also: #DECLARE, #APPEND

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

444

ECL Language Reference
Template Language

#STORED
#STORED(storedname , value);

storedname A string constant containing the name of the stored attribute
result.

value An expression for the new value to assign to the stored at-
tribute.

The #STORED statement assigns the value to the storedname, overwriting any previous value the stored
attribute had contained. This statement may be used outside an XML scope and does not require a previous
LOADXML to instantiate an XML scope.

Example:

PersonCount := 0 : STORED('myCount');
#STORED('myCount',100);
 //change stored PersonCount attribute value to 100
OUTPUT(PersonCount);

See Also: STORED, #CONSTANT

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

445

ECL Language Reference
Template Language

#TEXT
#TEXT(argument);

argument The MACRO parameter whose text to supply.

The #TEXT statement returns the text of the specified argument to the MACRO. This statement may be
used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

extractFields(ds, outDs, f1, f2='?') := MACRO

 #UNIQUENAME(r);

 %r% := RECORD
 f1 := ds.f1;
 #IF (#TEXT(f2)<>'?')
 #TEXT(f2)+':';
 f2 := ds.f2;
 #END
 END;
 outDs := TABLE(ds, %r%);
ENDMACRO;

extractFields(people, justSurname, lastname);
OUTPUT(justSurname);
extractFields(people, justName, lastname, firstname);
OUTPUT(justName);

See Also: MACRO

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

446

ECL Language Reference
Template Language

#UNIQUENAME
#UNIQUENAME(namevar [,pattern]);

namevar The label of the template variable (without the percent signs) to use in subsequent state-
ments (with the percent signs) that need the generated unique name.

pattern Optional. A template for unique name construction. It should contain a dollar sign ($) to
indicate the position at which a unique number is generated, and may contain a pound
sign (#) to include the namevar. This is useful for situations where #UNIQUENAME is
being used to generate field names and the result is meant to be viewed in the ECL IDE
program, since by default #UNIQUENAME generates identifiers that begin with a double
underscore (__) and the ECL IDE treats them as hidden fields. If omitted, the default
pattern is __#__$__.

The #UNIQUENAME statement creates a valid unique ECL identifier within the context of the current scope
limit. This is particularly useful in MACRO structures as it allows the macro to be used multiple times in
the same scope without creating duplicate attribute name errors from the attribute definitions within the
macro. This statement may be used outside an XML scope and does not require a previous LOADXML to
instantiate an XML scope.

Example:

IMPORT Training_Compare;
EXPORT MAC_Compare_Result(module_name, attribute_name) := MACRO
 #UNIQUENAME(compare_file);
 %compare_file% := Training_Compare.File_Compare_Master;
 #UNIQUENAME(layout_per_attr);
 #UNIQUENAME(compare_attr, _MyField_$_);
 //the compare_attr fieldname is generated like: _MyField_1_
 %layout_per_attr% := RECORD
 person.per_cid;
 %compare_attr% := module_name.attribute_name;
 END;

 #UNIQUENAME(person_attr_out);
 %person_attr_out% := TABLE(person, %layout_per_attr%);

 #UNIQUENAME(person_attr_out_dist);
 %person_attr_out_dist% := DISTRIBUTE(%person_attr_out%,HASH(per_cid));

 #UNIQUENAME(layout_match_out);
 %layout_match_out% := RECORD
 data9 per_cid;
 boolean ValuesMatchFlag;
 TYPEOF(module_name.attribute_name) MyValue;
 TYPEOF(%compare_file%.attribute_name) CompareValue;
 END;

 #UNIQUENAME(layout_compare);
 %layout_compare% := RECORD
 %compare_file%.per_cid;
 %compare_file%.attribute_name;
 END;

 #UNIQUENAME(compare_table);
 %compare_table% := TABLE(%compare_file%, %layout_compare%);
 #UNIQUENAME(compare_table_dist);
 %compare_table_dist% := DISTRIBUTE(%compare_table%, HASH(per_cid));
 #UNIQUENAME(compare_attr_to_field);

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

447

ECL Language Reference
Template Language

 %layout_match_out% %compare_attr_to_field%(%person_attr_out% L,
 %compare_table% R) := TRANSFORM
 SELF.ValuesMatchFlag := (L.%compare_attr% = R.attribute_name);
 SELF.MyValue := L.%compare_attr%;
 SELF.CompareValue := R.attribute_name;
 SELF := L;
 END;

 #UNIQUENAME(compare_out);
 %compare_out% := JOIN(%person_attr_out_dist%,
 %compare_table_dist%,
 LEFT.per_cid = RIGHT.per_cid,
 %compare_attr_to_field%(LEFT, RIGHT),LOCAL);

 #UNIQUENAME(match_out);
 #UNIQUENAME(nomatch_out);
 %match_out% := %compare_out%(ValuesMatchFlag);
 %nomatch_out% := %compare_out%(~ValuesMatchFlag);

 COUNT(%match_out%);
 OUTPUT(CHOOSEN(%match_out%, 50));
 COUNT(%nomatch_out%);
 OUTPUT(CHOOSEN(%nomatch_out%, 50));
ENDMACRO;

See Also: MACRO

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

448

ECL Language Reference
Template Language

#WARNING
#WARNING(message);

message A string expression containing the warning message to dis-
play.

The #WARNING statement displays the message in the workunit and/or syntax check. This statement may
be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

a := TRUE; // pick one of these
//a := FALSE;
#IF(a)
 #ERROR('broken');
 OUTPUT('broken');
#ELSE
 #WARNING('maybe broken');
 OUTPUT('maybe broken');
#END;

See Also: #ERROR

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

449

ECL Language Reference
Template Language

#WEBSERVICE
#WEBSERVICE([FIELDS(fieldlist),][HELP(helptext),][DESCRIPTION(descriptiontext),]);

FIELDS The FIELDS parameter specifies field sequence in WsECL Web forms. This is an exclu-
sive list. If the FIELDS attribute is present, only the fields in the fieldslist are displayed
on the Web form in WsECL.

fieldlist A comma-separated list of field names in the order in which they should appear on the
form. Use an asterisk (*) to include unspecified fields.

HELP The HELP Parameter specifies to add help text to the WsECL Web form.

helptext The help text to display.

DESCRIPTION The DESCRIPTION Parameter specifies to add descriptive text to the WsECL Web form.

descriptiontext The description text to display.

The #WEBSERVICEstatement sets options for the input parameters on a WsECL Web form for a published
query.

Example:

#WEBSERVICE(FIELDS('Field1','AddThem','Field2'),
 HELP('Enter Integer Values'),
 DESCRIPTION('If AddThem is TRUE, this adds the two integers'));
Field1 := 1 : Stored('Field1');
Field2 := 2 :Stored('Field2');
AddThem := TRUE :STORED ('AddThem');
HiddenValue := 12 :STORED ('HiddenValue'); //not in fieldlist, won't display on WsECl form
IF(AddThem,OUTPUT(Field1+Field2),OUTPUT('Not Added'));

#WEBSERVICE(FIELDS('field1','field2','*'));//includes unspecified fields on the WsECL form

See Also: STORED

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

450

ECL Language Reference
Template Language

#WORKUNIT
#WORKUNIT(option, value);

option A string constant specifying the name of the option to set.

value The value to set for the option.

The #WORKUNIT statement sets the option to the specified value for the current workunit. This statement
may be used outside an XML scope and does not require a previous call to the LOADXML function to
instantiate an XML scope.

Valid option settings are:

cluster The value parameter is a string constant containing the name of the target cluster on
which the workunit executes.

protect The value parameter specifies true to indicate the workunit is protected from deletion,
or false if not.

name The value parameter is a string constant specifying the workunit's jobname.

priority The value parameter is a string constant containing low, normal, or high to indicate the
workunit's execution priority level, or an integer constant value (not a string) to specify
how far above high the priority should be ("super-high").

scope The value parameter is a string constant containing the scope value to use to override
the workunit's default scope (the user ID of the submitting person). This is a Workunit
Security feature and requires a system which is LDAP-enabled.

Example:

#WORKUNIT('cluster','400way'); //run the job on the 400-way target cluster
#WORKUNIT('protect',true); //disallow deletion or archiving by Sasha
#WORKUNIT('name','My Job'); //name it "My Job"
#WORKUNIT('priority','high'); //run before other lower-priority jobs
#WORKUNIT('priority',10); //run before other high-priority jobs
#WORKUNIT('scope','NewVal'); //override the default scope (on an LDAP enabled system)

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

451

ECL Language Reference
External Services

External Services

SERVICE Structure
servicename := SERVICE [: defaultkeywords [,TIME[(label)]]]

prototype : keywordlist;

END;

servicename The name of the service the SERVICE structure provides.

defaultkeywords Optional. A comma-delimited list of default keywords and their values shared by all
prototypes in the external service.

TIME Tracks timing of all function calls in the SERVICE structure and reports them back as
metrics to the user.

label Optional. A string constant containing the name to associate with the timer. If omitted,
the default is used.

prototype The ECL name and prototype of a specific function.

keywordlist A comma-delimited list of keywords and their values that tell the ECL compiler how to
access the external service.

The SERVICE structure makes it possible to create external services to extend the capabilities of ECL to
perform any desired functionality. These external system services are implemented as exported functions
in a .SO (Shared Object). An ECL system service .SO can contain one or more services and (possibly) a
single .SO initialization routine.

Example:

 email := SERVICE :TIME('MyTime')
 simpleSend(STRING address,
 STRING template,
 STRING subject) : LIBRARY='ecl2cw',
 INITFUNCTION='initEcl2Cw';
 END;

 MyAttr := COUNT(Trades): FAILURE(email.simpleSend('help@example.com',
 'FailTemplate',
 'COUNT failure'));
 //An example of a SERVICE function returning a structured record
 NameRecord := RECORD
 STRING5 title;
 STRING20 fname;
 STRING20 mname;
 STRING20 lname;
 STRING5 name_suffix;
 STRING3 name_score;
 END;

 LocalAddrCleanLib := SERVICE
 NameRecord dt(CONST STRING name, CONST STRING server = 'x')
 : c,entrypoint='aclCleanPerson73',pure;
 END;

 MyRecord := RECORD
 UNSIGNED id;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

452

ECL Language Reference
External Services

 STRING uncleanedName;
 NameRecord Name;
 END;
 x := DATASET('x', MyRecord, THOR);

 myRecord t(myRecord L) := TRANSFORM
 SELF.Name := LocalAddrCleanLib.dt(L.uncleanedName);
 SELF := L;
 END;
 y := PROJECT(x, t(LEFT));
 OUTPUT(y);

 //The following two examples define the same functions:
 TestServices1 := SERVICE
 member(CONST STRING src)
 : holertl,library='test',entrypoint='member',ctxmethod;
 takesContext1(CONST STRING src)
 : holertl,library='test',entrypoint='takesContext1',context;
 takesContext2()
 : holertl,library='test',entrypoint='takesContext2',context;
 STRING takesContext3()
 : holertl,library='test',entrypoint='takesContext3',context;
 END;

 //this form demonstrates the use of default keywords
 TestServices2 := SERVICE : holert,library='test'
 member(CONST STRING src) : entrypoint='member',ctxmethod;
 takesContext1(CONST STRING src) : entrypoint='takesContext1',context;
 takesContext2() : entrypoint='takesContext2',context;
 STRING takesContext3() : entrypoint='takesContext3',context;
 END;

See Also: External Service Implementation, CONST

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

453

ECL Language Reference
External Services

CONST
CONST

The CONST keyword specifies that the value passed as a parameter will always be treated as a constant.
This is essentially a flag that allows the compiler to properly optimize its code when declaring external
functions.

Example:

STRING CatStrings(CONST STRING S1, CONST STRING S2) := S1 + S2;

See Also: Functions (Parameters Passing), SERVICE Structure

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

454

ECL Language Reference
External Services

External Service Implementation
ECL external system services are implemented as exported functions in a .SO (Shared Object). An ECL
system service .SO can contain one or more services and (possibly) a single .SO initialization routine. All
system service libraries must be thread safe.

All exported functions in the .SO (hereafter referred to as "entry points") must adhere to certain calling
and naming conventions. First, entry points must use the "C" naming convention. That is, function name
decoration (like that used by C++) is not allowed.

Second, the storage class of __declspec(dllexport) and declaration type _cdecl need to be declared for
Windows/Microsoft C++ applications. Typically, SERVICE_CALL is defined as _declspec(dllexport) and
SERVICE_API is defined as _cdecl for Windows, and left as nulls for Linux. For example:

Extern "C" _declspec(dllexport) unsigned _cdecl Countchars(const unsigned len, const char *string)

Note: The use of an external SERVICE may be restricted to signed modules. See Code Signing in the ECL
Programmer's Guide.

.SO Initialization
The following is an example prototype for an ECL (.SO) system service initialization routine:

extern "C" void stdcall <functionName> (IEclWorkUnit *w);

The IEclWorkUnit is transparent to the application, and can be declared as Struct IEclWorkUnit; or simply
referred to as a void *.

In addition, an initialization routine should retain a reference to its "Work Unit." Typically, a global variable
is used to retain this value. For example:

IEclWorkUnit *workUnit;
 // global variable to hold the Work Unit reference

 extern "C" void SERVICE_API myInitFunction (IEclWorkUnit *w)
 {
 workUnit = w; // retain reference to "Work Unit"
 }

Entry Points
Entry points have the same definition requirements as initialization routines. However, unlike initialization
routines, entry points can return a value. Valid return types are listed below. The following is an example
of an entry point:

extern "C" __int64 SERVICE_API PrnLog(unsigned long len, const char *val)
 {
 }

SERVICE Structure - external
For each system service defined, a corresponding ECL function prototype must be declared (see SERVICE
Structure).

 servicename := SERVICE
 functionname(parameter list) [: keyword = value];

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

455

ECL Language Reference
External Services

 END;

 For example:
 email := SERVICE
 simpleSend(STRING address, STRING template, STRING subject)
 : LIBRARY='ecl2cw', INITFUNCTION='initEcl2Cw';
 END;

Keywords
This is the list of valid keywords for use in service function prototypes:

LIBRARY Indicates the name of the .SO module an entry point is defined in.

ENTRYPOINT Specifies a name for the entry point. By default, the name of the entry point is
the function name.

INITFUNCTION Specifies the name of the initialization routine defined in the module containing
the entry point. Currently, the initialization function is called once.

INCLUDE Indicates the function prototype is in the specified include file, so the generated
CPP must #include that file. If INCLUDE is not specified, the C++ prototype is
generated from the ECL function definition.

C Indicates the generated C++ prototype is enclosed within an extern "C" rather
than just extern.

PURE Indicates the function returns the same result every time you call it with the same
parameters and has no side effects. This allows the optimizer to make more
efficient calls to the function in some cases.

ONCE Indicates the function has no side effects and is evaluated at query execution
time, even if the parameters are constant. This allows the optimizer to make
more efficient calls to the function in some cases.

FOLD Specifies that the function is evaluated at compile time if all parameters are
constants. Specifying FOLD to the SERVICE applys it to all function definitions
in the service - in such cases NOFOLD may be useful to override this default for
individual functions that are not suitable for constant folding.

NOFOLD Specifies that the service is not suitable for constant folding.

ACTION Indicates the function has side effects and requires the optimizer to not remove
calls to the function.

CONTEXT Internal use, only. Indicates an extra internal context parameter (ICodeContext
*) is passed to the function. This must be the first function parameter.

GLOBALCONTEXT Internal use, only. Same as CONTEXT, but there are restrictions on where the
function can be used (for example, not in a TRANSFORM).

CTXMETHOD Internal use, only. Indicates the function is actually a method of the internal code
context.

TIME Tracks timing of the external function call and reports them back as metrics to
the user.

label Optional. A string constant containing the name to associate with the timer. If
omitted, the default is used.

Data Types
Please see ECL to C++ Mapping documentation for data type mapping.

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

456

ECL Language Reference
External Services

Passing Set Parameters to a Service
Three types of set parameters are supported: INTEGER, REAL, and STRINGn.

INTEGER

If you want to sum up all the elements in a set of integers with an external function, to declare the function
in the SERVICE structure:

 SetFuncLib := SERVICE
 INTEGER SumInt(SET OF INTEGER ss) :
 holertl,library='dab',entrypoint='rtlSumInt';
 END;
 x:= 3+4.5;
 SetFuncLib.SumInt([x, 11.79]); //passed two REAL numbers - it works

To define the external function, in the header (.h) file:

__int64 rtlSumInt(unsigned len, __int64 * a);

In the source code (.cpp) file:

 __int64 rtlSumInt(unsigned len, __int64 * a) {
 __int64 sum = 0;
 for(unsigned i = 0; i < len; i++) {
 sum += a[i];
 }
 return sum;
 }

The first parameter contains the length of the set, and the second parameter is an int array that holds the
elements of the set. Note: In declaring the function in ECL, you can also have sets of INTEGER4, INTEGER2
and INTEGER1, but you need to change the type of the C function parameter, too. The relationship is:

 INTEGER8 -- __int64
 INTEGER4 -- int
 INTEGER2 -- short
 INTEGER1 -- char

REAL

If you want to sum up all the elements in a set of real numbers:

To declare the function in the SERVICE structure:

 SetFuncLib := SERVICE
 REAL8 SumReal(SET OF REAL8 ss) :
 holertl,library='dab',entrypoint='rtlSumReal';
 END;

 INTEGER r1 := 10;
 r2 := 20.345;
 SetFuncLib.SumReal([r1, r2]);
 // intentionally passed an integer to the real set, it works too.

To define the external function, in the header (.h) file:

double rtlSumReal(unsigned len, double * a);

In the source code (.cpp) file:

 double rtlSumReal(unsigned len, double * a) {
 double sum = 0;

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

457

ECL Language Reference
External Services

 for(unsigned i = 0; i < len; i++) {
 sum += a[i];
 }
 return sum;
 }

The first parameter contains the length of the set, and the second parameter is an array that holds the
elements of the set.

Note: You can also declare the function in ECL as set of REAL4, but you need to change the parameter
of the C function to float.

STRINGn

If you want to calculate the sum of the lengths of all the strings in a set, with the trailing blanks trimmed off:

To declare the function in the SERVICE structure:

 SetFuncLib := SERVICE
 INTEGER SumCharLen(SET OF STRING20 ss) :
 holertl,library='dab',entrypoint='rtlSumCharLen';
 END;
 str1 := '1234567890'+'xxxx ';
 str2 := 'abc';
 SetFuncLib.SumCharLen([str1, str2]);

To define the external function, in the header (.h) file:

__int64 rtlSumCharLen(unsigned len, char a[][20]);

In the source code (.cpp) file:

__int64 rtlSumCharLen(unsigned len, char a[][20]) {
 __int64 sumtrimedlen = 0;
 for(unsigned i = 0; i < len; i++) {
 for(int j = 20-1; j >= 0; j--) {
 if(a[i][j] != ' ') {
 break;
 }
 a[i][j] = 0;
 }
 sumtrimedlen += j + 1;
 }
 return sumtrimedlen;
 }

Note: In declaring the C function, we have two parameters for the set. The first parameter is the length of the
set, the second parameter is char[][n] where n is the SAME as that in stringn. Eg., if the service is declared
as "integer SumCharLen(set of string20)", then in the C function the parameter type must be char a[][20].

Plugin Requirements
Plugins require an exported function with the following signature under Windows:

Extern "C" _declspec(dllexport) bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb)

The function must fill the passed structure with correct information for the features of the plugin. The structure
is defined as follows:

Warning: This function may be called without the plugin being loaded fully. It should not make any library
calls or assume that dependent modules have been loaded or that it has been initialised. Specifically: "The

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

458

ECL Language Reference
External Services

system does not call DllMain for process and thread initialization and termination. Also, the system does
not load additional executable modules that are referenced by the specified module."

Struct ECLPluginDefinitionBlock
 {
 Size_t size;
 //size of passed structure - filled in by the calling function
 Unsigned magicVersion ;
 // Filled in by .SO - must be PLUGIN_VERSION (1)
 Const char *moduleName;
 // Name of the module
 Const char *ECL;
 // ECL Service definition for non-HOLE applications
 Unsigned flags;
 // Type of plugin - for user plugin use 1
 Const char *version ;
 // Text describing version of plugin - used in debugging
 Const char *description;
 // Text describing plugin
 }

To initialize information in a plugin, use a global variable or class and it will be appropriately constructed/de-
structed when the plugin is loaded and unloaded.

Deployment
External .SOs must be deployed to the /opt/HPCCSystems/plugins directory on each node of the target
environment. If external data files are required, they should be either manually deployed to each node, or
referenced from a network node (the latter requires hard-coding the address in the code for the .SO). Note
that manually deployed files are not backed up with the standard SDS backup utilities.

Constraints
The full set of data types is supported on the Data Refinery and Data Delivery Engines (Thor/Roxie/Doxie).

An Example Service
The following code example depicts an ECL system service (.SO) called examplelib that contains one entry
point (stringfind). This is a slightly modified version of the Find function found in the Str standard library.
This version is designed to work in the Data Refinery supercomputer.

ECL definitions
 EXPORT ExampleLib := SERVICE
 UNSIGNED4 StringFind(CONST STRING src,
 CONST STRING tofind,
 UNSIGNED4 instance)
 : c, pure,entrypoint='elStringFind';
 END;

.SO code module:
//**
 // hqlplugins.hpp : Defines standard values included
 in
 // the plugin header file.
 //**

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

459

ECL Language Reference
External Services

 #ifndef __HQLPLUGIN_INCL
 #define __HQLPLUGIN_INCL

 #define PLUGIN_VERSION 1

 #define PLUGIN_IMPLICIT_MODULE 1
 #define PLUGIN_MODEL_MODULE 2
 #define PLUGIN_.SO_MODULE 4

 struct ECLPluginDefinitionBlock
 {
 size_t size;
 unsigned magicVersion;
 const char *moduleName;
 const char *ECL;
 const char *Hole;
 unsigned flags;
 const char *version;
 const char *description;
 };

 typedef bool (*EclPluginDefinition) (ECLPluginDefinitionBlock *);

 #endif //__HQLPLUGIN_INCL

//**
 // examplelib.hpp : Defines standard values included in
 // the plugin code file.
 //**
 #ifndef EXAMPLELIB_INCL
 #define EXAMPLELIB_INCL

 #ifdef _WIN32
 #define EXAMPLELIB_CALL __cdecl
 #ifdef EXAMPLELIB_EXPORTS
 #define EXAMPLELIB_API __declspec(dllexport)
 #else
 #define EXAMPLELIB_API __declspec(dllimport)
 #endif
 #else
 #define EXAMPLELIB_CALL
 #define EXAMPLELIB_API
 #endif

 #include "hqlplugins.hpp"

 extern "C" {
 EXAMPLELIB_API bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb);
 EXAMPLELIB_API void setPluginContext(IPluginContext * _ctx);
 EXAMPLELIB_API unsigned EXAMPLELIB_CALL elStringFind(unsigned srcLen,
 const char * src, unsigned hitLen, const char * hit,
 unsigned instance);
 }

 #endif //EXAMPLELIB_INCL

//**
// examplelib.cpp : Defines the plugin code.
//**
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

460

ECL Language Reference
External Services

#include "examplelib.hpp"

#define EXAMPLELIB_VERSION "EXAMPLELIB 1.0.00"

static const char * HoleDefinition = NULL;

static const char * EclDefinition =
"export ExampleLib := SERVICE\n"
" string EchoString(const string src) : c, pure,fold,entrypoint='elEchoString'; \n"
"END;";

EXAMPLELIB_API bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb)
{
 // Warning: This function may be called without the plugin being loaded fully.
 // It should not make any library calls or assume that dependent modules
 // have been loaded or that it has been initialised.
 //
 // Specifically: "The system does not call DllMain for process and thread
 // initialization and termination. Also, the system does not load
 // additional executable modules that are referenced by the specified module."

 if (pb->size != sizeof(ECLPluginDefinitionBlock))
 return false;

 pb->magicVersion = PLUGIN_VERSION;
 pb->version = EXAMPLELIB_VERSION " $Revision: 62376 $";
 pb->moduleName = "lib_examplelib";
 pb->ECL = EclDefinition;
 pb->Hole = HoleDefinition;
 pb->flags = PLUGIN_IMPLICIT_MODULE;
 pb->description = "ExampleLib example services library";
 return true;
}

namespace nsExamplelib {
 IPluginContext * parentCtx = NULL;
}
using namespace nsExamplelib;

EXAMPLELIB_API void setPluginContext(IPluginContext * _ctx) { parentCtx = _ctx; }

//---

EXAMPLELIB_API unsigned EXAMPLELIB_CALL elStringFind(unsigned srcLen,
 const char * src, unsigned hitLen, const char * hit,
 unsigned instance)
{
 tgt = (char *)CTXMALLOC(parentCtx, srcLen);
 memcpy(tgt,src,srcLen);
 tgtLen = srcLen;
}

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

461

ECL Language Reference
Index

Index
Symbols
#APPEND, 414
#BREAK, 431
#CONSTANT, 415
#DECLARE, 416
#DEMANGLE, 417
#ELSE, 427
#ELSEIF, 427
#END, 431
#ERROR, 418
#EXPAND, 419
#EXPORT, 420
#EXPORTXML, 423
#FOR, 425
#GETDATATYPE, 426
#IF, 427
#IFDEFINED, 428
#INMODULE, 430
#ISDEFINED, 429
#LOOP, 431
#MANGLE, 432
#ONWARNING, 433
#OPTION, 434
#SET, 444
#STORED, 445
#TEXT, 446
#UNIQUENAME, 447
#WARNING, 449
#WEBSERVICE, 450
#WORKUNIT, 172, 451
.ECL files, 28
.SO, 455
__COMPRESSED__, 72
__CONTAINERIZED__, 14
__ECL_LEGACY_MODE__, 14
__ECL_VERSION_MAJOR__, 14
__ECL_VERSION_MINOR__, 14
__ECL_VERSION__, 14
__OS__, 14
__PLATFORM__, 15
__STAND_ALONE__, 14
__TARGET_PLATFORM__, 14

A
ABS, 152
ABS function, 152
ACOS, 153
ACOS function, 153
Actions as Definitions, 32
Addition, 33

AFTER, 158
AGGREGATE, 154
AGGREGATE function, 154
ALL, 109, 195, 232, 250, 293, 301, 305, 395
ALL keyword, 109
ALLNODES, 157
ALLNODES function, 157
AND, 41, 62
AND NOT, 62
ANY, 25
APPLY, 158
APPLY function, 158
arguments, 23
arithmetic operators, 33
AS, 113
ASCII, 73, 159, 297
ASCII function, 159
ASIN, 160
ASIN function, 160
ASSERT, 161
ASSERT function, 161
ASSTRING, 163
ASSTRING function, 163
ATAN, 164
ATAN function, 164, 165
ATAN2, 165
ATAN2 function, 165
ATMOST, 250, 305
AVE, 166
AVE function, 166

B
BEFORE, 158
BEGINC++, 125
BEGINC++ Structure, 125
BEST, 195, 305, 377
BETWEEN, 41
Between Operator, 41
BIG_ENDIAN, 43
Binary values, 13
Bitshift Left, 34
Bitshift operators, 34
Bitshift Right, 34
Bitwise AND, 33
Bitwise Exclusive OR, 33
Bitwise NOT, 33
Bitwise operators, 33
Bitwise OR, 33
BLOB in INDEX, 63
Boolean, 19
BOOLEAN, 42, 98
Boolean AND, 35
Boolean Definition, 19, 22

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

462

ECL Language Reference
Index

Boolean NOT, 35, 35
Boolean OR, 35
BOOLEAN value type, 42
BUILD, 167
BUILD action, 87, 89

C
CASE, 176, 305
CASE function, 176
casting operator, 57
Casting Rules, 58
CATCH, 177
CATCH Function, 177
Character Sets, 20
CHECKPOINT, 398
CHECKPOINT workflow service, 398
Child Dataset, 80
child dataset records, 80
CHOOSE, 179
CHOOSE function, 179
CHOOSEN, 70, 80, 180
CHOOSEN function, 180
CHOOSESETS, 181
CHOOSESETS function, 181
CLUSTER, 168, 295, 296, 298, 299
CLUSTERSIZE, 182
COMBINE, 183
COMBINE function, 183
comparison operator, 34, 386
COMPRESSED, 72, 87, 295
COMPRESSION, 168
Concatenation, 39, 80
CONST, 23, 161, 454
CONST Function, 454
Constant set, 19
constant values, 19, 77
constants, 12, 14
CORRELATION, 186
CORRELATION function, 186
COS, 188
COS function, 188
COSH, 189
COSH function, 189
COUNT, 70, 80, 190, 265, 265, 347, 412
COUNT function, 190
COUNTER, 81, 122, 149, 200, 230, 255, 272, 320
COVARIANCE, 192
COVARIANCE function, 192
CPU pinning, 437
CRON, 194
CRON function, 194
CSV, 73, 76, 293, 296, 301, 311
CSV Files, 73, 296

D
DATA, 50
Data string, 12
DATA value type, 50
Dataset, 20
DATASET, 70, 70, 73, 82, 94, 168, 356
DATASET declaration, 93, 94
DATASET parameter, 24
DATASET parameters, 72
DECIMAL, 45
DECIMAL value type, 45
Decimal values, 13
DEDUP, 168, 195, 278, 280
DEDUP function, 195, 197, 337
DEFAULT, 63
DEFINE, 198
DEFINE function, 198
Definition Name, 17
Definition Operator, 17
Definition Types, 19
Definition Visibility, 28, 144
Definitions as Actions, 32
DENORMALIZE, 199
DENORMALIZE function, 199
DEPRECATED, 399
DEPRECATED workflow service, 399
DESCEND, 325, 326
DICTIONARY, 85
DICTIONARY parameter, 24
DISTINCT statement in SQL, 196
DISTRIBUTE, 168, 202
DISTRIBUTE function, 202
DISTRIBUTED, 87, 168, 205
DISTRIBUTED function, 205
DISTRIBUTION, 206
DISTRIBUTION action, 393
DISTRIBUTION function, 206
Division, 33
Division by zero, 33
dot syntax, 30
Dynamic Files, 94

E
EBCDIC, 73, 208, 297
EBCDIC function, 208
ECL, 11
ECL definition, 17
ECL IDE, 12
ECL keywords, 17
EMBED, 132
EMBED Structure, 132
ENCODING, 358
ENCRYPT, 72, 73, 74, 75, 295, 296, 298, 299

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

463

ECL Language Reference
Index

ENDC++, 125
ENDEMBED, 132
ENDMACRO, 142
ENTH, 181, 209
ENTH function, 209
ENUM, 56
ENUM datatype, 56
Equivalence, 34, 103
Equivalence Comparison, 34
ERROR, 210
ERROR function, 210, 219
ESCAPE, 73
EVALUATE, 211
EVALUATE action, 211
EVALUATE function, 212
EVENT, 213
EVENT function, 213
EVENTEXTRA, 215
EVENTEXTRA function, 215
EVENTNAME, 214
EXCEPT, 110
EXCEPT keyword, 110
EXCLUSIVE, 181
EXISTS, 216
EXISTS function, 216
EXP, 218
EXP function, 218, 267
EXPIRE, 168, 258, 259, 295, 296, 298, 299, 405
Explicit Casting, 57
EXPORT, 28, 98, 111
EXPORTed, 30
EXPORTed Definitions, 30
Expression, 17
Expressions, 33
Expressions and Operators, 33
Expressions as Actions, 32
EXTEND, 293, 301
Extended PARSE, 307
Extended PARSE Examples, 307
External Service, 455
external system services, 455

F
FAIL, 161, 177, 219
FAIL action, 210, 219
FAILCODE, 220
FAILCODE function, 220
FAILMESSAGE, 177, 221, 240, 357
FAILMESSAGE function, 221
FAILURE, 400
FAILURE workflow service, 220, 400
FALSE, 42, 123
FALSE keyword, 123

FETCH, 222
FETCH function, 222
FEW, 154, 168, 180, 229, 250, 360, 371, 401, 409
field sequence, 450
File Scope, 93
FILEPOSITION, 168
Filters, 22
FIRST, 87, 168, 305
FLAT, 72
Flat Files, 295
floating point, 44
FOLD, 456
Foreign files, 93
FORMAT, 297
FORWARD, 144
forward reference, 11, 103, 198
FROM, 113
FROMJSON, 224
FROMJSON function, 224
FROMUNICODE, 225
FROMUNICODE function, 225
FROMXML, 226
FROMXML function, 226
FULL ONLY, 254
FULL OUTER, 254
FUNCTION, 134
FUNCTION Structure, 134
FUNCTIONMACRO, 137
FUNCTIONMACRO Structure, 137
Functions, 23

G
GETENV, 227
GETENV function, 227
GETISVALID, 98
GETSECRET, 228
GETSECRET function, 228
GLOBAL, 229, 401
GLOBAL function, 229
GLOBAL workflow service, 229, 401
GRAPH, 230
GRAPH function, 230
Greater or Equal, 34
Greater Than, 34
GROUP, 112, 183, 199, 311, 337
Group, 232
GROUP function, 232, 385
GROUP keyword, 112, 388
GROUPED, 70, 82, 250

H
HASH, 195, 234, 250
HASH function, 234

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

464

ECL Language Reference
Index

HASH32 function, 235
HASH64, 235, 236
HASH64 function, 236
HASHCRC, 237
HASHCRC function, 237
HASHMD5, 238
HASHMD5 function, 238
HAVING, 239
HAVING function, 239
HEADING, 73, 297, 298, 300, 357
heapsort, 361
Hexadecimal, 12, 13
HPCC, 11
hthor, 361
HTTPCALL, 240
HTTPCALL Function, 240
HTTPCALL Options, 240
HTTPHEADER, 240, 358

I
IF, 242
IF function, 242
IFBLOCK, 60
IFF, 243
IFF function, 243
Implicit Casting, 57
Implicit Dataset, 96
Implicit Dataset Relationality, 96
IMPORT, 113
IMPORT AS, 113
IMPORT FROM, 113
IMPORTed, 30
IN, 40
In Line Dataset, 77
IN Operator, 40
in-line a set of data, 77
In-Line Dataset, 77
INCLUDE, 456
INDEPENDENT, 402
INDEPENDENT workflow service, 402
INDEX, 87
INDEX declaration, 87
Indexing, 20
Inline TRANSFORMs, 149, 149
INNER, 281
insertionsort, 361
INTEGER, 13, 43, 98, 457
Integer Division, 33
INTEGER value type, 43
INTERFACE, 139
interface, 368
INTERFACE Structure, 139
INTERNAL, 263

INTFORMAT, 245
INTFORMAT function, 245
ISVALID, 246
ISVALID function, 246
ITERATE, 247
ITERATE function, 247

J
JOIN, 249, 256
JOIN function, 249, 256
JOIN Set, 256
JOIN setofdatasets, 256
Join Types, 281
joincondition, 115, 250
JOINED, 360
joinflags, 250
JOINS FULL OUTER, 254
JSON, 75, 293, 299
JSON Files, 299

K
KEEP, 195, 250, 305
KEYDIFF, 258
KEYDIFF function, 258
KEYED, 115, 166, 186, 190, 192, 216, 250, 265,
265, 282, 318, 369, 371, 388
Keyed JOIN, 253
KEYED Keyword, 115
KEYPATCH, 259
KEYPATCH action, 258
KEYPATCH function, 259
KEYUNICODE, 261
KEYUNICODE function, 261

L
Landing Zone files, 94
LAST, 181
LEFT, 117, 200, 286
LEFT ONLY, 254, 281
LEFT OUTER, 254, 281
LENGTH, 70, 80, 262
LENGTH function, 262
Less or Equal, 34
Less Than, 34
LIBRARY, 144, 263
LIBRARY function, 172, 263
LIKELY, 118
LIMIT, 250, 265
LIMIT function, 265
LINKCOUNTED, 70, 82
LITERAL, 357
LITTLE_ENDIAN, 43
LN, 267

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

465

ECL Language Reference
Index

LN function, 218, 267
LOAD, 98
LOADXML, 268
LOADXML function, 268
LOCAL, 29, 154, 168, 183, 195, 199, 209, 222, 232,
247, 250, 270, 278, 315, 318, 337, 360, 371, 377
LOCAL function, 87, 270
LOCALE, 60
LOG, 271, 358
LOG function, 271
LOGICAL Filenames, 93
Logical graphs, 438
logical operators, 35, 62
LOOKUP, 250
LOOP, 272
LOOP function, 230, 272
loopbody, 272
loopcondition, 272
loopcount, 272
loopfilter, 272
LZW, 87, 168

M
MACRO, 142
MACRO Structure, 142
MANY, 154, 229, 250, 305, 371
MAP, 275
MAP function, 275
MATCHED, 105, 305
MATCHED ALL, 305
MATCHLENGTH, 105
MATCHPOSITION, 105
MATCHROW, 105
MATCHTEXT, 105
MATCHUNICODE, 105
MAX, 305, 355
MAX function, 276
MAXCOUNT, 63
MAXLENGTH, 60, 63, 73, 87, 87, 87, 98, 168, 304
memory exhausted, 253
MERGE, 168, 278, 357, 371
MERGE function, 278
MERGEJOIN, 280
MERGEJOIN function, 256, 280
MIN, 282, 305
MIN function, 282
MODULE, 144
MODULE Structure, 144
Modulus Division, 33
MOFN, 281
MULTIPLE, 405
Multiplication, 33

N
N-ary merge/join, 230
Name, 17
NAMED, 26, 206, 293, 301, 302
NAMED OUTPUT, 301
Named Output Dataset, 77
NAMESPACE, 357
Natural Language Parsing, 100
Nested child datasets, 96
NOCASE, 305, 328, 331, 332, 333
NOFOLD, 289, 456
NOFOLD function, 289
NOLOCAL, 284
NOLOCAL function, 284
non-procedural language, 11
NONEMPTY, 285
NONEMPTY function, 285
NORMALIZE, 286
NORMALIZE function, 286
NOROOT, 74, 75, 168
NOSCAN, 305
NOSORT, 199, 250
Not Equal, 34
NOT MATCHED, 305
NOT MATCHED ONLY, 305
NOTHOR, 290
NOTHOR action, 290
NOTIFY, 291
NOTIFY function, 291
NOTRIM, 73, 357
NOXPATH, 293

O
ONCE, 403, 456
ONCE workflow service, 403
ONFAIL, 177, 240, 265, 357
ONWARNING, 404
ONWARNING workflow service, 404
Operators, 33
OPT, 72, 87, 115, 298, 300, 320
OR, 62
ORDERED, 292
ORDERED action, 292
OUTPUT, 293, 295, 296, 298, 299, 301, 302, 311
OUTPUT - CSV Files, 296
OUTPUT - JSON Files, 299
OUTPUT - NAMED Files, 301
OUTPUT - XML Files, 298
OUTPUT action, 293
OUTPUT Pipe Files, 301
OUTPUT Scalar Values, 302
OUTPUT Thor/Flat Files, 295
OUTPUT Workunit Files, 302

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

466

ECL Language Reference
Index

OVERWRITE, 168, 258, 259, 295, 296, 298, 299

P
PACKED, 60
packed decimal, 45, 45, 45
packed hexadecimal, 50
PARALLEL, 303, 318, 357
PARALLEL action, 302
PARALLEL function, 303
Parameter Passing, 23
parameters, 17
PARSE, 304, 305
PARSE Examples, 307
PARSE function, 105, 304
PARSE Text, 304
PARSE XML, 306
PARTITION LEFT, 250
PARTITION RIGHT, 250
Passing a DATASET parameter, 82
Passing Set Parameters, 457
PATTERN, 101
Perl regular expression, 328, 331, 332, 333
PERSIST, 356, 405
PERSIST workflow service, 405
PHYSICALLENGTH, 98
Pipe, 76
PIPE, 293, 301, 311
PIPE Files, 76
PIPE function, 77, 311
PLANE, 168, 295, 296, 298, 299, 405
Pool memory exhausted, 253
POWER, 313
POWER function, 313
PREFETCH, 318, 318
PRELOAD, 72, 314
PRELOAD function, 314
PRIORITY, 407
PRIORITY workflow service, 407
PROCESS, 315
PROCESS function, 315
processor affinity, 437
PROJECT, 318, 320
PROJECT function, 318
PULL, 322
PULL function, 322
PURE, 456

Q
QSTRING, 47
QSTRING string constants, 12
QSTRING value type, 47
query library, 144, 168
quicksort, 361

QUOTE, 73, 297

R
RANDOM, 323
RANDOM function, 323
RANGE, 324
RANGE function, 324
RANK, 325
RANK function, 325
RANKED, 326
RANKED function, 326
REAL, 44, 457
REAL data type, 44
REALFORMAT, 327
REALFORMAT Function, 327
RECORD, 60
record matching, 280
Record Matching Logic, 280
Record Set, 19, 20, 22, 36
Record Set Definition, 20
Record Set Operators, 36
RECORD structure, 36, 60, 75, 76, 77, 97, 105, 107,
120, 148, 305, 305, 318, 371, 372, 388
RECORD Structure, 60
RECORDOF, 55
RECORDOF datatype, 55
RECOVERY, 408
RECOVERY workflow service, 408
recstruct, 343
REFRESH, 405
regex, 328, 331, 332, 333
REGEXEXTRACT, 328
REGEXEXTRACT function, 328
REGEXFIND, 331
REGEXFIND function, 331
REGEXFINDSET, 332
REGEXFINDSET function, 332
REGEXREPLACE, 333
REGEXREPLACE function, 333
REGROUP, 334
REGROUP function, 334
regular expression, 101
REJECTED, 336
REJECTED function, 336, 392
Relationality, 96
REPEAT, 301, 311
Reserved Words, 17
resultrec, 343
RETRY, 240, 357
RETURN, 31, 134, 137
RIGHT, 117, 200
RIGHT ONLY, 254
RIGHT OUTER, 254

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

467

ECL Language Reference
Index

RIGHT1, 154
RIGHT2, 154
ROLLUP, 337
ROLLUP function, 337, 361
ROUND, 341
ROUND function, 341
ROUNDUP, 342
ROUNDUP function, 342
ROW, 87, 168, 343
ROW function, 146, 343
ROWDIFF, 347
ROWDIFF function, 347
ROWS(LEFT), 119
ROWS(RIGHT), 119
ROWSET, 230
ROWSET(LEFT), 230
Roxie, 270, 361
Roxie CPU pinning, 437
Roxie processor affinity, 437
RULE, 101
runtime constants, 15
runtime expressions, 15

S
SAMPLE, 348
SAMPLE function, 348
Scalar OUTPUT, 302
SCAN, 305
SCAN ALL, 305
Scope, 17
SCOPE, 93
SELF, 120, 147
SELF keyword, 120
SEPARATOR, 73, 297
SEQUENTIAL, 350
SEQUENTIAL function, 350
Service Function Keywords, 456
SERVICE Structure, 158, 452, 455
SERVICE structure, 457, 458
Set, 19
SET, 23, 351
Set Definition, 19, 19
SET function, 19, 351
SET OF, 53
SET OF value type, 53
Set Operators, 38
Set Ordering, 20
SET parameters, 23
Set Parameters, 457
Sets can contain definitions and expressions, 19
SHARED, 28, 121
Shared Object, 455
SIN, 353

SIN function, 353
SINGLE, 297, 405
Single Row Dataset, 79
Single-Row Dataset, 79
SINH, 354
SINH function, 354
SIZEOF, 355
SIZEOF function, 355
SKEW, 168, 202, 250, 360, 371
SKIP, 122, 147, 177, 250, 265, 305
SMART, 250
SOAPACTION, 358
SOAPCALL, 65, 356, 358
SOAPCALL Action, 359
SOAPCALL Function, 356, 358
SOAPCALL Options, 357
SORT, 360
sort algorithms, 361
SORT function, 360
SORTED, 87, 168, 249, 256, 278, 280, 364
SORTED function, 364
SQRT, 365
SQRT function, 365
square brackets, 10, 19, 23, 53
STABLE, 360
STEPPED, 366
STEPPED function, 366
STORE, 98
STORED, 368, 409
STORED function, 368
STORED workflow service, 409
STREAMED, 70, 82
String, 20
STRING, 46
string constants, 12
string operator, 39
string slice, 20
STRING value type, 46
STRINGn, 458
substring, 20
Subtraction, 33
SUCCESS, 411
SUCCESS workflow service, 411
SUM, 369
SUM function, 369
SuperFile, 94
system constants, 14

T
TABLE, 30, 371
TABLE function, 31
TABLE Function, 371
TAN, 373

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

468

ECL Language Reference
Index

TAN Function, 373
TANH, 374
TANH Function, 374
Template Language, 413
Temporary SuperFile, 94
TERMINATOR, 73, 297
THISNODE, 375
THISNODE Function, 375
THOR, 72, 293, 302
Thor, 361
THRESHOLD, 168, 250, 360, 371
TIMELIMIT, 240, 357
TIMEOUT, 240, 357
TOJSON, 376
TOJSON function, 376
TOKEN, 101
Tomita parsing, 305
TOPN, 377
TOPN Function, 377
TOUNICODE, 378
TOUNICODE Function, 378
TOXML, 379
TOXML function, 379
TRACE, 380
traceEnabled, 380
traceLimit, 380
TRANSFER, 382
TRANSFER Function, 382
TRANSFORM, 147
transform function, 222, 247, 254
TRANSFORM Function, 315, 319
TRANSFORM Function Requirements, 315, 319
Transform Requirement Process, 315
Transform Requirement Project, 319
Transform Requirements, 315, 319
TRANSFORM structure, 120, 122, 147, 220, 221,
343
Treating DICTIONARY as a DATASET, 83
TRIM, 240, 298, 300, 357, 383
TRIM Function, 383
TRIM OPT, 298, 300
TRUE, 42, 123
TRUE keyword, 123
TRUNCATE, 384
TRUNCATE Function, 384
TYPE, 97
Type Casting, 57
TYPE structure, 60, 97
Type Transfer, 57
TypeDef, 19
TypeDef Definition, 21
TYPEOF, 54
TYPEOF data type, 54

U
UDECIMALn, 45
UNGROUP, 385
UNGROUP Function, 385
UNICODE, 48, 73, 297
Unicode string, 12
UNICODE value type, 48
UNICODEORDER, 386
UNICODEORDER function, 386
UNLIKELY, 118
UNORDERED, 250, 387
UNORDERED function, 387
UNSIGNED, 43, 45
UNSIGNED value type, 43
Unsigned values, 13
UNSORTED, 72, 371
UNSTABLE, 360
UPDATE, 168, 295, 296, 298, 299
USE, 305
UTF-8, 12
UTF8, 49
UTF8 string, 12
UTF8 value type, 49

V
valid identifier, 17
Value, 19
Value Definition, 19
Value Type, 17
Value Types, 23, 42
VARIANCE, 388
VARSTRING, 51
VARSTRING string constants, 12
VARSTRING value type, 51
VARUNICODE, 52
VARUNICODE value type, 52
Virtual, 63
VIRTUAL, 144
VIRTUAL EXPORT, 111
Virtual fileposition, 63
Virtual localfileposition, 63
Virtual logicalfilename, 63
VIRTUAL SHARED, 121

W
WAIT, 390
WAIT Function, 390
WHEN, 391, 412
WHEN Function, 391
WHEN workflow service, 194, 213, 412
WHICH, 392
WHICH function, 336
WHICH Function, 392

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

469

ECL Language Reference
Index

WHITESPACE, 383
WHOLE, 305
WIDTH, 168
WILD, 115
WILD index filter, 115
WILD Keyword, 115
WORKUNIT, 70, 393
Workunit, 77
WORKUNIT Function, 393
Workunit OUTPUT, 302
WUID, 393

X
XML, 74, 76, 293, 298, 301, 304, 311
XML Files, 298
XMLDECODE, 394
XMLDECODE Function, 394
XMLDEFAULT, 63
XMLENCODE, 395
XMLENCODE Function, 395
XMLPROJECT, 107
XMLTEXT, 107
XMLUNICODE, 107
XOR Operator, 35
XPATH, 63, 240, 357
XPATH support, 64

© 2026 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

470

	ECL Language Reference
	Table of Contents
	Introduction
	Documentation Structure
	Documentation Conventions
	ECL Syntax Case
	Optional Items
	Example Code

	ECL Basics
	Overview
	Definitions versus Actions
	Syntax Issues

	Constants
	String
	Multiline Strings

	Numeric
	Compile Time Constants

	Environment Variables
	HPCC_DEPLOYMENT

	Definitions
	Definition Name Rules
	Reserved Words
	Definition Naming

	Basic Definition Types
	Boolean Definitions
	Value Definitions
	Set Definitions
	Set Ordering and Indexing
	Record Set Definitions
	Record Set Ordering and Indexing
	TypeDef Definitions

	Recordset Filtering
	Function Definitions (Parameter Passing)
	Simple Value Type Parameters
	SET Parameters
	Passing DATASET Parameters
	Passing DICTIONARY Parameters
	Passing Typeless Parameters
	Passing Function Parameters
	Passing NAMED Parameters

	Definition Visibility
	"Global"
	Module
	Local

	Field and Definition Qualification
	Imported Definitions
	Fields in Datasets
	Scope Resolution Operator

	Actions and Definitions
	Expressions as Actions
	Definitions as Actions
	Actions as Definitions
	Debugging Uses

	Expressions and Operators
	Expressions and Operators
	Arithmetic Operators
	Bitwise Operators
	Bitshift Operators
	Comparison Operators

	Logical Operators
	Logical Expression Grouping
	An XOR Operator

	Record Set Operators
	Prefix Append Operator

	Set Operators
	String Operators
	IN Operator
	BETWEEN Operator

	Value Types
	BOOLEAN
	INTEGER
	INTEGER Value Ranges

	REAL
	REAL Value Ranges

	DECIMAL
	STRING
	QSTRING
	UNICODE
	UTF8
	DATA
	VARSTRING
	VARUNICODE
	SET OF
	TYPEOF
	RECORDOF
	ENUM
	Type Casting
	Explicit Casting
	Implicit Casting
	Type Transfer
	Casting Rules

	Record Structures and Files
	RECORD Structure
	In-line Record Definitions
	Field Definitions
	Field Inheritance
	Field Modifiers
	XPATH Support

	DATASET
	THOR/FLAT Files
	CSV Files
	XML Files
	JSON Files
	PIPE Files
	Named Output DATASETs
	In-line DATASETs
	Single-row DATASET Expressions
	Child DATASETs
	DATASET as a Parameter Type
	DATASET from DICTIONARY
	DATASET from TRANSFORM

	DICTIONARY
	DICTIONARY Definition
	DICTIONARY as a Value Type

	INDEX
	Keyed Access INDEX
	Payload INDEX
	Duplicate INDEX
	Indexes and Compression

	Scope and Logical Filenames
	File Scope
	Foreign Files
	Landing Zone Files
	Dynamic Files
	Temporary SuperFiles

	Implicit Dataset Relationality

	Alien Data Types
	TYPE Structure
	TYPE Structure Special Functions
	LOAD
	STORE
	PHYSICALLENGTH
	MAXLENGTH
	GETISVALID

	Parsing Support
	Parsing Support
	PARSE Pattern Value Types
	ParsePattern Definitions

	NLP RECORD and TRANSFORM Functions
	Pattern References

	XML Parsing RECORD and TRANSFORM Functions

	Reserved Keywords
	ALL
	EXCEPT
	EXPORT
	GROUP keyword
	IMPORT
	KEYED and WILD
	LEFT and RIGHT
	LIKELY and UNLIKELY
	ROWS(LEFT) and ROWS(RIGHT)
	SELF
	SHARED
	SKIP
	TRUE and FALSE

	Special Structures
	BEGINC++ Structure
	ECL to C++ Mapping
	Available Options

	EMBED Structure
	FUNCTION Structure
	FUNCTIONMACRO Structure
	INTERFACE Structure
	MACRO Structure
	MODULE Structure
	Definition Visibility Rules
	MODULE Side-Effect Actions
	Concrete vs. Abstract (VIRTUAL) Modules
	LIBRARY Modules

	TRANSFORM Structure
	Transformation Attribute Definitions
	TRANSFORM Functions
	Inline TRANSFORMs
	Shorthand Inline TRANSFORMs

	Built-in Functions and Actions
	ABS
	ACOS
	AGGREGATE
	TRANSFORM Function Requirements - AGGREGATE
	How AGGREGATE Works

	ALLNODES
	APPLY
	ASCII
	ASIN
	ASSERT
	ASSTRING
	ATAN
	ATAN2
	AVE
	BUILD
	Index BUILD Options
	BUILD an Access Index
	BUILD a Payload Index
	BUILD from an INDEX Definition
	Separating INDEX from DATASET
	BUILD a Query Library
	Indexes and Compression

	CASE
	CATCH
	CHOOSE
	CHOOSEN
	CHOOSESETS
	CLUSTERSIZE
	COMBINE
	COMBINE TRANSFORM Function Requirements
	COMBINE Form 1
	COMBINE Form 2

	CORRELATION
	COS
	COSH
	COUNT
	COVARIANCE
	CRON
	DEDUP
	Complex Record Set Conditions

	DEFINE
	DENORMALIZE
	DENORMALIZE TRANSFORM Function Requirements

	DISTRIBUTE
	"Random" DISTRIBUTE
	Expression DISTRIBUTE
	Index-based DISTRIBUTE
	Skew-based DISTRIBUTE

	DISTRIBUTED
	DISTRIBUTION
	EBCDIC
	ENTH
	ERROR
	EVALUATE
	EVALUATE action
	EVALUATE function
	Accessing Field-level Data in a Specific Record

	EVENT
	EVENTNAME
	EVENTEXTRA
	EXISTS
	EXP
	FAIL
	FAILCODE
	FAILMESSAGE
	FETCH
	FETCH TRANSFORM Function Requirements

	FROMJSON
	FROMUNICODE
	FROMXML
	GETENV
	GETSECRET
	GLOBAL
	GRAPH
	GROUP
	HASH
	HASH32
	HASH64
	HASHCRC
	HASHMD5
	HAVING
	HTTPCALL
	IF
	IFF
	IMPORT
	INTFORMAT
	ISVALID
	ITERATE
	TRANSFORM Function Requirements - ITERATE

	JOIN
	JOIN Two Datasets
	Matching Logic - JOIN
	Options
	Keyed Joins
	Join Logic
	TRANSFORM Function Requirements - JOIN
	Join Types: Two Datasets
	JOIN Set of Datasets
	Record Matching Logic
	TRANSFORM Function Requirements - JOIN setofdatasets
	Join Types: setofdatasets

	KEYDIFF
	KEYPATCH
	KEYUNICODE
	LENGTH
	LIBRARY
	LIMIT
	LN
	LOADXML
	LOCAL
	LOG
	LOOP
	MAP
	MAX
	MERGE
	MERGEJOIN
	Matching Logic
	Join Types:

	MIN
	NOLOCAL
	NONEMPTY
	NORMALIZE
	NORMALIZE Form 1
	TRANSFORM Function Requirements for Form 1
	NORMALIZE Form 2
	TRANSFORM Function Requirements for Form 2

	NOFOLD
	NOTHOR
	NOTIFY
	ORDERED
	OUTPUT
	OUTPUT Field Names
	OUTPUT Thor/Flat Files
	OUTPUT CSV Files
	OUTPUT XML Files
	OUTPUT JSON Files
	OUTPUT PIPE Files
	Named OUTPUT
	OUTPUT Scalar Values
	OUTPUT Workunit Files

	PARALLEL
	PARSE
	PARSE Text Data
	PARSE XML Data
	Extended PARSE Examples

	PIPE
	POWER
	PRELOAD
	PROCESS
	TRANSFORM Function Requirements - PROCESS

	PROJECT
	TRANSFORM Function Requirements - PROJECT
	PROJECT - Module

	PULL
	RANDOM
	RANGE
	RANK
	RANKED
	REALFORMAT
	REGEXEXTRACT
	REGEXFIND
	REGEXFINDSET
	REGEXREPLACE
	REGROUP
	REJECTED
	ROLLUP
	TRANSFORM Function Requirements - ROLLUP
	ROLLUP Form 1
	ROLLUP Form 2
	ROLLUP Form 3

	ROUND
	ROUNDUP
	ROW
	ROW Form 1
	ROW Form 2
	ROW Form 3

	ROWDIFF
	SAMPLE
	SEQUENTIAL
	SET
	SIN
	SINH
	SIZEOF
	SOAPCALL
	SOAPCALL Function
	SOAPCALL Action

	SORT
	Sorting Algorithms
	Quick Sort
	Insertion Sort
	Heap Sort
	Stable vs. Unstable
	Performance Considerations
	CPU time vs. Total time
	Spilling to disk
	How sorting affects JOINs

	SORTED
	SQRT
	STEPPED
	STORED
	SUM
	TABLE
	TAN
	TANH
	THISNODE
	TOJSON
	TOPN
	TOUNICODE
	TOXML
	TRACE
	TRACE Options

	TRANSFER
	TRIM
	TRUNCATE
	UNGROUP
	UNICODEORDER
	UNORDERED
	VARIANCE
	WAIT
	WHEN
	WHICH
	WORKUNIT
	XMLDECODE
	XMLENCODE

	Workflow Services
	Workflow Overview
	CHECKPOINT
	DEPRECATED
	FAILURE
	GLOBAL - Service
	INDEPENDENT
	ONCE
	ONWARNING
	PERSIST
	PRIORITY
	RECOVERY
	STORED - Workflow Service
	SUCCESS
	WHEN

	Template Language
	Template Language Overview
	Template Language Statements
	Template Symbols

	#APPEND
	#CONSTANT
	#DECLARE
	#DEMANGLE
	#ERROR
	#EXPAND
	#EXPORT
	#EXPORTXML
	#FOR
	#GETDATATYPE
	#IF
	#IFDEFINED
	#ISDEFINED
	#INMODULE
	#LOOP / #BREAK
	#MANGLE
	#ONWARNING
	#OPTION
	Definition of Terms
	Available options

	#SET
	#STORED
	#TEXT
	#UNIQUENAME
	#WARNING
	#WEBSERVICE
	#WORKUNIT

	External Services
	SERVICE Structure
	CONST
	External Service Implementation
	.SO Initialization
	Entry Points
	SERVICE Structure - external
	Keywords
	Data Types
	Passing Set Parameters to a Service
	Plugin Requirements
	Deployment
	Constraints
	An Example Service
	ECL definitions
	.SO code module:

	Index

