
ESDL Language Reference
Boca Raton Documentation Team



ESDL Language Reference

ESDL Language Reference
Boca Raton Documentation Team
Copyright © 2026 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2026 Version 10.0.22-1

© 2026 HPCC Systems®. All rights reserved
2



ESDL Language Reference

ESDL Language Overview ................................................................................................................  4
ESDL Structures ............................................................................................................................... 5

ESPstruct .................................................................................................................................  5
ESPrequest ..............................................................................................................................  6
ESPresponse ...........................................................................................................................  7
ESParray .................................................................................................................................. 8
ESPenum .................................................................................................................................  9
ESPinclude .............................................................................................................................  10
ESPservice .............................................................................................................................  11
ESPmethod ............................................................................................................................  12

ESDL Datatypes .............................................................................................................................  13
boolean / bool ......................................................................................................................... 13
string ......................................................................................................................................  14
int ..........................................................................................................................................  15
int64 .......................................................................................................................................  16
float ........................................................................................................................................ 17
double ....................................................................................................................................  18
binary .....................................................................................................................................  19
ESDL, XSD, and ECL Type Mapping ......................................................................................  20

ESDL Attributes ..............................................................................................................................  21
max_len (n) ............................................................................................................................  22
ecl_max_len (n) ......................................................................................................................  23
ecl_name ("name") .................................................................................................................  24
counter and count_val ............................................................................................................  25
max_count .............................................................................................................................. 26
max_count_var .......................................................................................................................  27
ecl_null (n | string) .................................................................................................................. 28
leading_zero(n) .......................................................................................................................  29
ecl_hide .................................................................................................................................. 30
ecl_type ("type") .....................................................................................................................  31
ecl_keep ................................................................................................................................. 32
min_ver ..................................................................................................................................  33
max_ver .................................................................................................................................  34
ping_min_ver ..........................................................................................................................  35
depr_ver .................................................................................................................................  36
get_data_from ........................................................................................................................  37
optional ..................................................................................................................................  38
help ........................................................................................................................................ 39
description ..............................................................................................................................  40
version and default_client_version ...........................................................................................  41
auth_feature ...........................................................................................................................  42

© 2026 HPCC Systems®. All rights reserved
3



ESDL Language Reference
ESDL Language Overview

ESDL Language Overview
ESDL (Enterprise Service Description Language) is a methodology that helps you develop and manage
web-based query interfaces quickly and consistently.

Dynamic ESDL takes an interface-first development approach. It leverages the ESDL Language to create
a common interface "contract" that both Roxie Query and Web interface developers will adhere to. It is
intended to allow developers to create production web services, with clean interfaces that can evolve and
grow over time without breaking existing applications.

ESDL's built-in versioning support helps ensure compiled and deployed applications continue to operate
while changes are made to the deployed service's interface for new functionality.

ESDL's ability to define and reuse common structures helps maintain consistent interfaces across methods.

The Dynamic ESDL service is built to scale horizontally, and hooks are provided to add custom logging and
security to help create fully "productionalized" web services.

Once a service is deployed, application developers and end-users can consume the service using REST,
JSON, XML, SOAP, or form encoded posts. Dynamic ESDL provides quick and easy access to a WSDL,
live forms, sample requests and responses, and testing interfaces to allow developers to test logic changes,
data changes, or new features, as well as to interact with the service directly using SOAP, XML, or JSON.

© 2026 HPCC Systems®. All rights reserved
4



ESDL Language Reference
ESDL Structures

ESDL Structures

ESPstruct
ESPstruct is a set of elements grouped together under one name. These elements, known as members,
can have different types and different lengths. Structures can be nested and support inheritance.

Example:

ESPstruct NameBlock

{
    string FirstName;
    string MiddleName;
    string LastName;
    int Age;
};

ESPstruct NameBlockExtended:NameBlock

{
    string SSN;
    string partyAffilition;
};

© 2026 HPCC Systems®. All rights reserved
5



ESDL Language Reference
ESDL Structures

ESPrequest
The request structure for a method. ESPrequests can be nested and support inheritance.

Example:

ESPrequest  MyQueryRequest

{
    string FirstName;
    string MiddleName;
    string LastName;
    string Sortby;
    bool Descending(false);

};

ESPrequest MyQueryRequestExtended:MyQueryRequest

{
    string SSN;

};

   

© 2026 HPCC Systems®. All rights reserved
6



ESDL Language Reference
ESDL Structures

ESPresponse
The response structure for a method. ESPresponses can be nested and support inheritance.

Example:

ESPresponse  MyQueryResponse
 
{
    string FirstName;
    string MiddleName;
    string LastName;
 
};  

ESPresponse MyQueryResponseExtended:MyQueryResponse

{
    string SSN;
    string partyAffilition;
};

© 2026 HPCC Systems®. All rights reserved
7



ESDL Language Reference
ESDL Structures

ESParray
A structure for unbounded arrays. Arrays support inheritance and can be nested.

Either [max_count_var(k)] or [max_count_var(k)] is required for an ESPArray when k>1.

Example:

 ESPstruct NameBlock
   
 {
     string FirstName;
     string MiddleName;
     string LastName;
  
     int Age;
 };
  
 [max_count(20)] ESParray <ESPstruct NameBlock, Name> Names;

   

This results in something like:

<Names>
  <Name>
    <FirstName>James</FirstName>
    <MiddleName>Joseph</MiddleName>
    <LastName>Deerfield</LastName>
    <Age>42</Age>
  </Name>
  <Name>
    <FirstName>Emily</FirstName>
    <MiddleName>Kate</MiddleName>
    <LastName>Constance</LastName>
    <Age>33</Age>
  </Name>
</Names>

See Also: max_count_var, max_count

© 2026 HPCC Systems®. All rights reserved
8



ESDL Language Reference
ESDL Structures

ESPenum
A structure containing an enumerated value.

Example:

ESPenum EyeColors : string
  
{
  Brn("Brown"),
  Blu("Blue"),
  Grn("Green"),
};
 

ESPstruct Person

{
  string FirstName;
  string MiddleName;
  string LastName;

  ESPenum EyeColors EyeColor("Brown"); //provides a default value
};
   

© 2026 HPCC Systems®. All rights reserved
9



ESDL Language Reference
ESDL Structures

ESPinclude
ESPinclude allows you to include an external ESDL file. This is similar to the #include statement.

Example:

 ESPinclude(commonStructures);
   

© 2026 HPCC Systems®. All rights reserved
10



ESDL Language Reference
ESDL Structures

ESPservice
This defines an ESP web service interface. Once defined, this interface definition can be assigned (bound)
to a Dynamic ESDL-based ESP Service.

An ESPservice should contain one or more method definitions.

Example:

ESPservice [auth_feature("AllowMyService")] MyService
{
  ESPmethod MyMethod1(MyMethod1Request, MyMethod1Response);
  ESPmethod MyMethod2(MyMethod2Request, MyMethod2Response);
};

© 2026 HPCC Systems®. All rights reserved
11



ESDL Language Reference
ESDL Structures

ESPmethod
This defines a method definition you can reference in an ESPservice structure. The method definition should
contain references to a previously defined ESPrequest and ESPresponse.

Example:

 ESPservice MyService
  {
   ESPmethod MyMethod1(MyMethod1Request, MyMethod1Response);
   ESPmethod 
    [
     auth_feature("AllowMyMethod2"),
     description("MyMethod Two"),
     help("This method does everything MyMethod1 does plus a few extra features"),
     min_ver("1.2")
    ]
   MyMethod2(MyMethod2Request, MyMethod2Response);
 };
 
    

© 2026 HPCC Systems®. All rights reserved
12



ESDL Language Reference
ESDL Datatypes

ESDL Datatypes

boolean / bool
A boolean or logical data type having one of two possible values: true (1) or false (0).

Example:

boolean includeFlag; 
bool includeMore;

© 2026 HPCC Systems®. All rights reserved
13



ESDL Language Reference
ESDL Datatypes

string
A data type consisting of sequence of alphanumeric characters.

Example:

string FirstName;
  

© 2026 HPCC Systems®. All rights reserved
14



ESDL Language Reference
ESDL Datatypes

int
An integer value.

Example:

int Age;   

© 2026 HPCC Systems®. All rights reserved
15



ESDL Language Reference
ESDL Datatypes

int64
A 64-bit integer value

Example:

int64 Iterations;

© 2026 HPCC Systems®. All rights reserved
16



ESDL Language Reference
ESDL Datatypes

float
A 4-byte floating point or real number.

Example:

float Temperature;

© 2026 HPCC Systems®. All rights reserved
17



ESDL Language Reference
ESDL Datatypes

double
An 8-byte floating point or real number.

Example:

double Temperature;   

© 2026 HPCC Systems®. All rights reserved
18



ESDL Language Reference
ESDL Datatypes

binary
A data type containing binary data, similar to a BLOB .

Example:

binary RetinaScanSample;   

© 2026 HPCC Systems®. All rights reserved
19



ESDL Language Reference
ESDL Datatypes

ESDL, XSD, and ECL Type Mapping
ESDL XSD ECL

Bool boolean bool boolean

Binary Base64Binary String (base64 encoded)

Float float REAL4

Double double REAL8

Int int INTEGER

Int64 long INTEGER8

String string String

© 2026 HPCC Systems®. All rights reserved
20



ESDL Language Reference
ESDL Attributes

ESDL Attributes
You can use ESDL attributes to extend and override the default behavior of an ESDL definition. For example,
adding a max_len(n) to a string defines the string will only need to store a certain number of characters.

Many attributes are treated as hints that may have more effect on some implementations than others. For
example, max_len(n) will affect generated ECL code, but is ignored when generating C++.

© 2026 HPCC Systems®. All rights reserved
21



ESDL Language Reference
ESDL Attributes

max_len (n)
The max_len attribute specifies the field length for ECL string field.

Example:

[max_len(20)] string City;   

It means that in ECL, City field is a fixed length of 20 chars. For integer type, the max_len means the
maximum size in bytes for the integer (8*max_len bits integer).

Example:

[max_len(3)] int Age;   

This generates ECL code:

integer3 Age{xpath('Age')};   

This attribute works for ESPenum type, too. The ECL type is also string.

[max_len(2)] ESPenum StateCode State;   

Here the StateCode is 2-char state code enumeration.

This attribute can also be used for ESPstruct, ESPrequest, ESPresponse:

ESPstruct [max_len(1867)] IdentitySlim : Identity
  {
     ...
  };   
  

This generates ECL code:

export t_MyQuery := record (share.t_Name), MAXLENGTH(1867)
  {
  }; 

The ECL option MAXLENGTH helps ECL engine better manage memory.

This does not affect the type in the XSD/WSDL. ESP ignores this attribute when generating the schema.
The type for a string is xsd:string which has no length limit. Therefore, the schema stays the same if the
field length changes in the Roxie query.

© 2026 HPCC Systems®. All rights reserved
22



ESDL Language Reference
ESDL Attributes

ecl_max_len (n)
This ecl_max_len attribute tells the ECL generator to use ECL maxlength instead of the regular field length.

Example:

[ecl_max_len(50)] string CompanyName;
[max_len(6)] string Gender;   

The generated ECL code is:

string CompanyName { xpath("CompanyName"),maxlength(50) };
   string6 Gender { xpath("Gender") };   

Note: when both max_len and ecl_max_len are specified, ecl_max_len is used and max_len is ignored.

© 2026 HPCC Systems®. All rights reserved
23



ESDL Language Reference
ESDL Attributes

ecl_name ("name")
The ecl_name attribute specifies the field name in generated ECL code. By default, the field name in ECL
is the same as the name defined in ECM. However, in some cases, the name could causes issues in ECL.
For example keywords in ECL cannot be used as a field name.

Example:

[ecl_name("_export")] string Export;
 [ecl_name("_type")] string Type;   

Here, both EXPORT and TYPE are ECL keywords and cannot be used as ECL field names. We use
ecl_name to tell the esdl2ecl process to generate acceptable names.

© 2026 HPCC Systems®. All rights reserved
24



ESDL Language Reference
ESDL Attributes

counter and count_val
These two attributes are used to help ESP calculate the record count of the response.

counter counts the number of children of the nodes. When the node is an array, it is the same as the number
of items in the array.

count_val will use the value of the node as record count. Field RecordCount is implicitly marked as coun-
t_val.

When an response has multiple counter, count_val, the sum of the values is returned as record-count.

Example:

[counter] ESParray<MyRecord, Record> Records;
[count_val] int TotalFound;   

© 2026 HPCC Systems®. All rights reserved
25



ESDL Language Reference
ESDL Attributes

max_count
The max_count attribute is used to specify the expected max items in a dataset (ESParray).

Example:

[max_count(20)] ESParray <ESPstruct MYRecord, Record> Records;   

See Also: ESParray, max_count_var

© 2026 HPCC Systems®. All rights reserved
26



ESDL Language Reference
ESDL Attributes

max_count_var
The max_count_var attribute is used to specify a variable (an ECL Attribute) containing the value of the
expected max items in a dataset (ESParray).

Example:

[max_count_var("iesp.Constants.JD.MaxRecords")] ESParray <ESPstruct MYRecord, Record> Records;   

The ECL developer defines the constant iesp.Constants.JD.MaxRecords rather than hard coding the max
count value in the ESDL.

See Also: ESParray, max_count

© 2026 HPCC Systems®. All rights reserved
27



ESDL Language Reference
ESDL Attributes

ecl_null (n | string)
The ecl_null attribute tells ESP to remove the field altogether if the field's value is n or string. This provides
a means to remove a field completely when there is no data for it.

Example:

[ecl_null(0)] int Age;
[ecl_null("false")] bool IsMatch;   

Age 0 means there is no Age data for this person. So, if Age is 0, the <Age> tag is not returned.

Without this attribute, <Age>0</Age> would be returned.

For the second example, a bool value of false, returned as a string, is treated as null and therefore the
tag is not returned.

© 2026 HPCC Systems®. All rights reserved
28



ESDL Language Reference
ESDL Attributes

leading_zero(n)
The leading_zero attribute adds zero(s) to the field value to so that the total length is n.

Example:

ESPstruct Date
 {
    [leading_zero(4)] Year;
    [leading_zero(2)] Month;
    [leading_zero(2)] Day;
 };  

So the Date will always have a 4-digit Year and a 2-digit Month and a 2-digit Day.

© 2026 HPCC Systems®. All rights reserved
29



ESDL Language Reference
ESDL Attributes

ecl_hide
The ecl_hide attribute hides the field from ECL (that is, the field is removed when generating the ECL code).
This is used for some special cases.

Example:

ESPstruct Relative
 {
    [ecl_hide] ESParray<ESPstruct Relative, Relative> Relatives;
    "
 };   

In this case, the Relative structure is defined in a recursive manner, and ECL does not support such a
construct. Therefore, we use ecl_hide to avoid the recursive definition in ECL.

Sometimes a field is hidden from ECL for other reasons. In these cases, ecl_hide is not needed.

© 2026 HPCC Systems®. All rights reserved
30



ESDL Language Reference
ESDL Attributes

ecl_type ("type")
The ecl_type attribute defines the field type in ECL.

Example:

 [ecl_type("Decimal10_2")] double RetailPrice;   

ESDL does not have a monetary type, so we use ecl_type to define it.

© 2026 HPCC Systems®. All rights reserved
31



ESDL Language Reference
ESDL Attributes

ecl_keep
The ecl_keep attribute keeps the field in the generated ECL even though this field would have been hidden
without this attribute.

© 2026 HPCC Systems®. All rights reserved
32



ESDL Language Reference
ESDL Attributes

min_ver
The min_ver attribute allows you to define the minimum (earliest) version where a field is visible. Requests
using a prior version will not have access to the field.

Example:

 [min_ver("1.03")] bool IsValid;   

© 2026 HPCC Systems®. All rights reserved
33



ESDL Language Reference
ESDL Attributes

max_ver
The max_ver attribute allows you to define the maximum (latest) version where a field is visible. Requests
using a later version will not have access to the field.

Example:

 [max_ver("1.04")] bool IsValid;   

© 2026 HPCC Systems®. All rights reserved
34



ESDL Language Reference
ESDL Attributes

ping_min_ver
Dynamic ESDL services automatically add a ping method to your service for monitoring connectivity to the
service.

The ping_min_ver attribute on a service allows you to define the minimum (earliest) version where the ping
method is visible. The ping method is not visible to versions lower than the ping_min_ver

Example:

 [ping_min_ver("1.03")] ;   

© 2026 HPCC Systems®. All rights reserved
35



ESDL Language Reference
ESDL Attributes

depr_ver
The depr_ver attribute allows you to declare a field's end of life version. The field is deprecated at the
specified version number. Requests using that version or any subsequent version will not have access to
the field.

Example:

[depr_ver("1.04")] bool IsValid;

© 2026 HPCC Systems®. All rights reserved
36



ESDL Language Reference
ESDL Attributes

get_data_from
The get_data_from attribute allows you to specify that a field gets its data from another variable. This sup-
ports code reuse when complex versioning changes are made.

Example:

ESPresponse RoxieEchoPersonInfoResponse
{
  ESPstruct NameInfo Name;
  string Var1;
  [get_data_from("Var1")] string Var2;
};

In the example above, the query returns the data in Var1 then the service puts the data into the Var2 field
and sends that in the response to the client.

In this example both Var1 and Var2 are in the response to the client. Typically, Var1 and Var2 are in non-
overlapping versions so only one will be in the response depending on the version specified.

Since the get_data_from attribute supports complex data types, such as an ESPstruct, the fields do not
have to be limited to string types.

© 2026 HPCC Systems®. All rights reserved
37



ESDL Language Reference
ESDL Attributes

optional
The optional attribute allows you to specify that a field is optional and is hidden or not depending on the
absence or presence of a URL decoration.

When a field has an optional attribute, the field is visible only when the option appears on the URL. But
when the option starts with an exclamation point (!), then the field is hidden only if the option is in the URL.

Example:

ESPrequest RoxieEchoPersonInfoRequest
{
     ESPstruct NameInfo Name;
                            string First;
                            string Middle;
                            string Last;
     [optional("dev")]      string NickName;
     [optional("!_NonUS_")] string SSN;
};

Assuming the service is running on a server with the hostname of example.com and the service binding
is set to 8003:

If the URL is

http://example.com:8003/ 

then SSN is visible and NickName is hidden;

If the URL is

http://example.com:8003/?dev 

then SSN and NickName are both visible

If the URL is

http://example.com:8003/?dev&_NonUS_ 

then NickName is visible and SSN is hidden.

If the URL is

http://example.com:8003/?_NonUS_

then both NickName and SSN are hidden.

© 2026 HPCC Systems®. All rights reserved
38



ESDL Language Reference
ESDL Attributes

help
The help attribute (valid only for an ESPMethod) allows you to specify some additional text to display on
the form that is automatically generated to execute a method.

Example:

ESPservice MyService

 {
   ESPmethod MyMethod1(MyMethod1Request, MyMethod1Response);
   ESPmethod 
    [
     description("MyMethod Two"),
     help("This method does everything MyMethod1 does plus a few extra features"),
     min_ver("1.2")
    ]
   MyMethod2(MyMethod2Request, MyMethod2Response);
 };

© 2026 HPCC Systems®. All rights reserved
39



ESDL Language Reference
ESDL Attributes

description
The description attribute (valid only for an ESPMethod) allows you to specify some additional text to display
on the form that is automatically generated to execute a method.

Example:

 ESPservice MyService
 {
   ESPmethod MyMethod1(MyMethod1Request, MyMethod1Response);
   ESPmethod 
    [
     description("MyMethod Two"),
     help("This method does everything MyMethod1 does plus a few extra features"),
     min_ver("1.2")
    ]
   MyMethod2(MyMethod2Request, MyMethod2Response);
 };

© 2026 HPCC Systems®. All rights reserved
40



ESDL Language Reference
ESDL Attributes

version and default_client_version
The version and default_client_version attributes (valid only for an ESPService) allow you to specify the
version to use when a version is not explicitly specified in the request.

The default_client_version is used for API requests in SOAP format if the client doesn't specify the version.
The version is used for requests coming from a web browser without a version decoration in the URL.

These attributes provide better API backward compatibility while allowing API developers to see the latest
interface using a browser.

If default_client_version is higher than version, the service uses default_client_version for all requests
that don't specify a version.

Even though defaults can be specified for a service, you should still encourage API developers to specify a
version in requests to ensure compatibility between their application and the service.

Example:

 ESPservice [version("0.02"), default_client_version("0.01")] EsdlExample
{
    ESPmethod EchoPersonInfo(EchoPersonInfoRequest, EchoPersonInfoResponse);
    ESPmethod RoxieEchoPersonInfo(RoxieEchoPersonInfoRequest, RoxieEchoPersonInfoResponse);
};

© 2026 HPCC Systems®. All rights reserved
41



ESDL Language Reference
ESDL Attributes

auth_feature
The auth_feature attribute (valid only for an ESPService or ESPMethod) allows you to specify a means to
verify a user's permission to execute a method.

In order to enable this feature, your system must be configured to use a form of security that supports
feature level authentication, such as LDAP security included in the Community edition of the platform. Once
LDAP is configured, you would add the tag name provided as the value for the authFeature attribute to
the feature level authentication list in the Security section of ECL Watch. Then you would set permissions
for users and/or groups.

If you are using a third-party Security Manager plugin, consult their documentation for details on adding the
tag name to their security configuration.

The auth_feature attribute is required for every method, but can be specified at the ESPService level to
apply to all methods within a service. You can override for an individual method by setting the attribute at
a method level.

Setting auth_feature("NONE") means no authentication is needed. Setting auth_feature("DEFERRED") de-
fers the authentication to the business logic in the ESP developer's method implementation logic.

Example:

 ESPservice MyService [auth_feature("NONE")]
 {
   ESPmethod MyMethod1(MyMethod1Request, MyMethod1Response);
   ESPmethod 
    [
     description("MyMethod Two"),
     auth_feature("AllowMyMethod2"),
     help("This method does everything MyMethod1 does plus a few extra features"),
     min_ver("1.2")
    ]
   MyMethod2(MyMethod2Request, MyMethod2Response);
 };

© 2026 HPCC Systems®. All rights reserved
42


	ESDL Language Reference
	Table of Contents
	ESDL Language Overview
	ESDL Structures
	ESPstruct
	ESPrequest
	ESPresponse
	ESParray
	ESPenum
	ESPinclude
	ESPservice
	ESPmethod

	ESDL Datatypes
	boolean / bool
	string
	int
	int64
	float
	double
	binary
	ESDL, XSD, and ECL Type Mapping

	ESDL Attributes
	max_len (n)
	ecl_max_len (n)
	ecl_name ("name")
	counter and count_val
	max_count
	max_count_var
	ecl_null (n | string)
	leading_zero(n)
	ecl_hide
	ecl_type ("type")
	ecl_keep
	min_ver
	max_ver
	ping_min_ver
	depr_ver
	get_data_from
	optional
	help
	description
	version and default_client_version
	auth_feature


