
Containerized HPCC Systems®
Platform
Boca Raton Documentation Team

Containerized HPCC Systems® Platform

Containerized HPCC Systems® Platform
Boca Raton Documentation Team
Copyright © 2026 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2026 Version 10.2.0-1

© 2026 HPCC Systems®. All rights reserved
2

Containerized HPCC Systems® Platform

Containerized HPCC Overview ... 4
Bare-metal vs Containers ... 5

Local Deployment (Development and Testing) ... 7
Prerequisites .. 7
Add a Repository ... 7
Start a Default System ... 8
Access the Default System ... 10
Terminate (Decommission) the System .. 11
Persistent Storage for a Local Deployment .. 12
Import: Storage Planes and How To Use Them ... 16

Azure Deployment (Development, Testing, and Production) .. 17
Using Azure ... 17

Deploying HPCC Systems® with Terraform .. 26
Interactive Terraform Deployment ... 26

Customizing Configurations ... 33
Customization Techniques .. 33
Container Cost Tracking ... 43
Cost Optimizer .. 48
Securing Credentials ... 49

Configuration Values ... 52
The Container Environment ... 52
HPCC Systems Components and the values.yaml File ... 53
The HPCC Systems values.yaml file ... 59
Pods and Nodes ... 76
Helm and Yaml Basics ... 82

Containerized Logging .. 86
Logging Background ... 86
Managed Elastic Stack Solution .. 88
Azure Log Analytics Solution ... 92
Controlling HPCC Systems Logging Output ... 96

Troubleshooting Containerized Deployments .. 98
Introduction ... 99
Useful Helm Commands ... 100
Check the Status of Pods ... 101
Describe a Pod ... 103
Check the Status of Services .. 104
Describe a Service ... 105
Viewing Pod Logs ... 106
Viewing Service Logs .. 107
Effective Log Analysis ... 108
Additional Troubleshooting Tips ... 109

© 2026 HPCC Systems®. All rights reserved
3

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Containerized HPCC Overview
Since version 8.0, the HPCC Systems® Platform started focusing significantly on containerized deploy-
ments. This is useful for cloud-based deployments (large or small) or local testing/development deploy-
ments.

Docker containers managed by Kubernetes (K8s) is a new target operating environment, alongside contin-
ued support for traditional “bare-metal” installations using .deb or .rpm installer files. Support for traditional
installers continues and that type of deployment is viable for bare-metal deployments or manual setups in
the Cloud.

This is not a lift and shift type change, where the platform runs its legacy structure unchanged and treat
the containers as just a way of providing virtual machines on which to run, but a significant change in how
components are configured, how and when they start up, and where they store their data.

This book focuses on these containerized deployments. The first section is about using Docker containers
and Helm charts locally. Docker and Helm do a lot of the work for you. The second part uses the same
techniques in the cloud.

For local small deployments (for development and testing), we suggest using Docker Desktop and Helm.
This is useful for learning, development, and testing.

For Cloud deployments, you can use any flavor of Cloud services, if it supports Docker, Kubernetes, and
Helm. This book, however, will focus on Microsoft Azure for Cloud Services.

If you want to manually manage your local or Cloud deployment, you can still use the traditional installers
and Configuration Manager, but that removes many of the benefits that Docker, Kubernetes, and Helm
provide, such as, instrumentation, monitoring, scaling, and cost control.

HPCC Systems adheres to standard conventions regarding how Kubernetes deployments are normally
configured and managed, so it should be easy for someone familiar with Kubernetes and Helm to install
and manage the HPCC Systems platform.

© 2026 HPCC Systems®. All rights reserved
4

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Bare-metal vs Containers
If you are familiar with the traditional bare-metal HPCC Systems platform deployments, there are a few
fundamental changes to note.

Processes and Pods, not Machines

Anyone familiar with the existing configuration system will know that part of the configuration involves cre-
ating instances of each process and specifying on which physical machines they should run.

In a Kubernetes world, this is managed dynamically by the K8s system itself (and can be changed dynam-
ically as the system runs).

Additionally, a containerized system is much simpler to manage if you stick to a one process per container
paradigm, where the decisions about which containers need grouping into a pod and which pods can run
on which physical nodes, can be made automatically.

Helm Charts

In the containerized world, the information that the operator needs to supply to configure an HPCC Systems
environment is greatly reduced. There is no need to specify any information about what machines are in
use by what process, as mentioned above, and there is also no need to change a lot of options that might
be dependent on the operating environment, since much of that was standardized at the time the container
images were built.

Therefore, in most cases, most settings should be left to use the default. As such, the new configuration
paradigm requires only the bare minimum of information be specified and any parameters not specified use
the appropriate defaults.

The default environment.xml that we include in our bare-metal packages to describe the default sin-
gle-node system contains approximately 1300 lines and it is complex enough that we recommend using
a special tool for editing it.

The values.yaml from the default Helm chart is relatively small and can be opened in any editor, and/or
modified via command-line overrides. It also is self-documented with extensive comments.

Static vs On-Demand Services

In order to realize the potential cost savings of a cloud environment while at the same time taking advan-
tage of the ability to scale up when needed, some services which are always-on in traditional bare-metal
installations are launched on-demand in containerized installations.

For example, an eclccserver component launches a stub requiring minimal resources, where the sole task
is to watch for workunits submitted for compilation and launch an independent K8s job to perform the actual
compile.

Similarly, the eclagent component is also a stub that launches a K8s job when a workunit is submitted and
the Thor stub starts up a Thor cluster only when required. Using this design, not only does the capacity of
the system automatically scale up to use as many pods as needed to handle the submitted load, it scales
down to use minimal resources (as little as a fraction of a single node) during idle times when waiting for
jobs to be submitted.

© 2026 HPCC Systems®. All rights reserved
5

Containerized HPCC Systems® Platform
Containerized HPCC Overview

ESP and Dali components are always-on as long as the K8s cluster is started--it isn’t feasible to start and
stop them on demand without excessive latency. However, ESP can be scaled up and down dynamically
to run as many instances needed to handle the current load.

Topology Settings – Clusters vs Queues
In bare-metal deployments, there is a section called Topology where the various queues that workunits
can be submitted to are set up. It is the responsibility of the person editing the environment to ensure that
each named target has the appropriate eclccserver, hThor (or ROXIE) and Thor (if desired) instances set
up, to handle workunits submitted to that target queue.

This setup has been greatly simplified when using Helm charts to set up a containerized system. Each
named Thor or eclagent component creates a corresponding queue (with the same name) and each eclcc-
server listens on all queues by default (but you can restrict to certain queues only if you really want to).
Defining a Thor component automatically ensures that the required agent components are provisioned.

© 2026 HPCC Systems®. All rights reserved
6

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Local Deployment (Development and
Testing)

While there are many ways to install a local single node HPCC Systems Platform, this section focuses on
using Docker Desktop locally.

Prerequisites

All third-party tools should be 64-bit versions.

Note: When you install Docker Desktop, it installs Kubernetes and the kubectl command line interface. You
merely need to enable it in Docker Desktop settings.

Add a Repository
To use the HPCC Systems Helm chart, you must add it to the Helm repository list, as shown below:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Expected response:

"hpcc" has been added to your repositories

To update to the latest charts:

helm repo update

You should update your local repo before any deployment to ensure you have the latest code available.

Expected response:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "hpcc" chart repository
Update Complete. Happy Helming!

© 2026 HPCC Systems®. All rights reserved
7

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Start a Default System
The default Helm chart starts a simple test system with Dali, ESP, ECL CC Server, two ECL Agent queues
(ROXIE and hThor mode), and one Thor queue.

To start this simple system:

helm install mycluster hpcc/hpcc --version=8.6.14

Note: The --version argument is optional, but recommended. It ensures that you know which version you
are installing. If omitted, the latest non-development version is installed. This example uses 8.6.14,
but you should use the version you want.

Expected response:

NAME: mycluster
LAST DEPLOYED: Tue Apr 5 14:45:08 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing the HPCC chart version 8.6.14 using image "hpccsystems/platform-core:8.6.14"
**** WARNING: The configuration contains ephemeral planes: [dali sasha dll data mydropzone debug] ****
This chart has defined the following HPCC components:
dali.mydali
dfuserver.dfuserver
eclagent.hthor
eclagent.roxie-workunit
eclccserver.myeclccserver
eclscheduler.eclscheduler
esp.eclwatch
esp.eclservices
esp.eclqueries
esp.esdl-sandbox
esp.sql2ecl
esp.dfs
roxie.roxie
thor.thor
dali.sasha.coalescer
sasha.dfurecovery-archiver
sasha.dfuwu-archiver
sasha.file-expiry
sasha.wu-archiver

Notice the warning about ephemeral planes. This is because this deployment has created temporary,
ephemeral storage to use. When the cluster is uninstalled, the storage will no longer exist. This is useful
for a quick test, but for more involved work, you will want more persistent storage. This is covered in a
later section.

To check status:

kubectl get pods

Expected response:

NAME READY STATUS RESTARTS AGE
eclqueries-7fd94d77cb-m7lmb 1/1 Running 0 2m6s
eclservices-b57f9b7cc-bhwtm 1/1 Running 0 2m6s
eclwatch-599fb7845-2hq54 1/1 Running 0 2m6s

© 2026 HPCC Systems®. All rights reserved
8

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

esdl-sandbox-848b865d46-9bv9r 1/1 Running 0 2m6s
hthor-745f598795-ql9dl 1/1 Running 0 2m6s
mydali-6b844bfcfb-jv7f6 2/2 Running 0 2m6s
myeclccserver-75bcc4d4d-gflfs 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-tl7bb 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-xzrtf 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-m22wl 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-xmlmk 1/1 Running 0 2m6s
roxie-toposerver-695fb9c5c7-9lnp5 1/1 Running 0 2m6s
roxie-workunit-d7446699f-rvf2z 1/1 Running 0 2m6s
sasha-dfurecovery-archiver-78c47c4db7-k9mdz 1/1 Running 0 2m6s
sasha-dfuwu-archiver-576b978cc7-b47v7 1/1 Running 0 2m6s
sasha-file-expiry-8496d87879-xct7f 1/1 Running 0 2m6s
sasha-wu-archiver-5f64594948-xjblh 1/1 Running 0 2m6s
sql2ecl-5c8c94d55-tj4td 1/1 Running 0 2m6s
dfs-4a9f12621-jabc1 1/1 Running 0 2m6s
thor-eclagent-6b8f564f9c-qnczz 1/1 Running 0 2m6s
thor-thoragent-56d788869f-7trxk 1/1 Running 0 2m6s

Note: It may take a while before all components are running, especially the first time as the container
images need to be downloaded from Docker Hub.

© 2026 HPCC Systems®. All rights reserved
9

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Access the Default System
Your system is now ready to use. The usual first step is to open ECL Watch.

Note: Some pages in ECL Watch, such as those displaying topology information, are not yet fully func-
tional in containerized mode.

Use this command to get a list running services and IP addresses:

kubectl get svc

Expected response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclqueries LoadBalancer 10.108.171.35 localhost 8002:31615/TCP 2m6s
eclservices ClusterIP 10.107.121.158 <none> 8010/TCP 2m6s
eclwatch LoadBalancer 10.100.81.69 localhost 8010:30173/TCP 2m6s
esdl-sandbox LoadBalancer 10.100.194.33 localhost 8899:30705/TCP 2m6s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2m6s
mydali ClusterIP 10.102.80.158 <none> 7070/TCP 2m6s
roxie LoadBalancer 10.100.134.125 localhost 9876:30480/TCP 2m6s
roxie-toposerver ClusterIP None <none> 9004/TCP 2m6s
sasha-dfuwu-archiver ClusterIP 10.110.200.110 <none> 8877/TCP 2m6s
sasha-wu-archiver ClusterIP 10.111.34.240 <none> 8877/TCP 2m6s
sql2ecl LoadBalancer 10.107.177.180 localhost 8510:30054/TCP 2m6s
dfs LoadBalancer 10.100.52.9 localhost 8520:30184/TCP 2m6s

Locate the ECL Watch service and identify the EXTERNAL-IP and PORT(S) for eclwatch. In this case, it
is localhost:8010.

Open a browser and access ECLWatch, press the ECL button, and select the Playground tab.

From here you can use the example ECL or enter other test queries and pick from the available clusters
available to submit your workunits.

© 2026 HPCC Systems®. All rights reserved
10

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Terminate (Decommission) the System
To check which Helm charts are currently installed, run this command:

helm list

This displays the installed charts and their names. In this example, mycluster.

To stop the HPCC Systems pods, use Helm to uninstall:

helm uninstall mycluster

This stops the cluster, deletes the pods, and with the default settings and persistent volumes, it also deletes
the storage used.

© 2026 HPCC Systems®. All rights reserved
11

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Persistent Storage for a Local Deploy-
ment
When running on a single-node test system such as Docker Desktop, the default storage class normally
means that all persistent volume claims (PVCs) map to temporary local directories on the host machine.
These are typically removed when the cluster is stopped. This is fine for simple testing but for any real
application, you want persistent storage.

To persist data with a Docker Desktop deployment, the first step is to make sure the relevant directories
exist:

1. Create data directories using a terminal interface:

For Windows, use this command:

mkdir c:\hpccdata
mkdir c:\hpccdata\dalistorage
mkdir c:\hpccdata\hpcc-data
mkdir c:\hpccdata\debug
mkdir c:\hpccdata\queries
mkdir c:\hpccdata\sasha
mkdir c:\hpccdata\dropzone

For macOS, use this command:

mkdir -p /Users/myUser/hpccdata/{dalistorage,hpcc-data,debug,queries,sasha,dropzone}

For Linux, use this command:

mkdir -p ~/hpccdata/{dalistorage,hpcc-data,debug,queries,sasha,dropzone}

Note: If all of these directories do not exist, your pods may not start.

2. Install the hpcc-localfile Helm chart.

This chart creates persistent volumes based on host directories you created earlier.

for a WSL2 deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/run/desktop/mnt/host/c/hpccdata

for a Hyper-V deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/c/hpccdata

for a macOS deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/Users/myUser/hpccdata

for a Linux deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=~/hpccdata

The --set common.hostpath= option specifies the base directory:

The path /run/desktop/mnt/host/c/hpccdata provides access to the host file system for WSL2.

The path /c/hpccdata provides access to the host file system for Hyper-V.

The path /Users/myUser/hpccdata provides access to the host file system for Mac OSX.

The path ~/hpccdata provides access to the host file system for Linux.

© 2026 HPCC Systems®. All rights reserved
12

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Note: The value passed to --set common.hostpath is case sensitive.

3. Copy the output from the helm install command in the previous step from the word storage: to the end,
and save it to a text file.

In this example, we will call the file mystorage.yaml. The file should look similar to this:

storage:
 planes:
 - name: dali
 pvc: dali-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali
 - name: dll
 pvc: dll-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/queries"
 category: dll
 - name: sasha
 pvc: sasha-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/sasha"
 category: sasha
 - name: debug
 pvc: debug-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/debug"
 category: debug
 - name: data
 pvc: data-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/hpcc-data"
 category: data
 - name: mydropzone
 pvc: mydropzone-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/dropzone"
 category: lz

sasha:
 wu-archiver:
 plane: sasha
 dfuwu-archiver:
 plane: sasha

4. If you are using Docker Desktop with Hyper-V, add the shared data folder (in this example, C:\hpccdata)
in Docker Desktop's settings by pressing the Add button and typing c:\hpccdata.

This is not needed in a MacOS or WSL 2 environment.

© 2026 HPCC Systems®. All rights reserved
13

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

5. Finally, install the hpcc Helm chart, and provide a yaml file that provides the storage information created
by the previous step.

helm install mycluster hpcc/hpcc --version=8.6.14 -f mystorage.yaml

Note: The --version argument is optional, but recommended. It ensures that you know which version
you are installing. If omitted, the latest non-development version is installed. This example uses
8.6.14, but you should use the version you want.

6. To test, open a browser and access ECLWatch, press the ECL button, and select the Playground tab,
then create some data files and workunits by submitting to Thor some ECL code like the following:

LayoutPerson := RECORD
 UNSIGNED1 ID;
 STRING15 FirstName;
 STRING25 LastName;
END;
allPeople := DATASET([{1,'Fred','Smith'},
 {2,'Joe','Jones'},
 {3,'Jane','Smith'}],LayoutPerson);
OUTPUT(allPeople,,'MyData::allPeople',THOR,OVERWRITE);

7. Use the helm uninstall command to terminate your cluster, then restart your deployment.

8. Open ECL Watch and notice your workunits and logical files are still there.

Using Minikube
To use Minikube make sure the relevant directories exist. These directories are dalistorage, hpcc-data,
debug, queries, sasha, dropzone, and the parent directory hpccdata. If any directory is missing, pods may
fail to start.

1. Start the Minikube engine, this example is using Hyper-V as the virtual machine manager.

minikube start --vm-driver=hyperv --cpus=4 --memory=1200

2. Mount the Windows directory.

To mount a local Windows directory (e.g., C:\hpccdata) to a directory inside the Minikube VM (/mnt/
hpccdata), use the following command:

minikube mount --ip 192.168.56.1 "C:\hpccdata:/mnt/hpccdata" --gid=10001 --uid=10000

Use the IP address to bind the mount server (typically your Hyper-V default switch IP).

The minikube mount process must remain running for the directories to stay accessible. Run the com-
mand in a separate terminal window, or start it as a background process. If the terminal window running
the mount process is closed, the mount will be lost, and your containers will no longer have access to
the mounted directory.

3. Install the localfile Helm chart

helm install localfile examples/localfile/hpcc-localfile --set common.hostpath=/mnt/hpccdata

Copy the output from the 'helm install' command in this step as detailed in step 3 of the preceding section,
and save it to a text file such as mystorage.yaml.

4. Finally, install the hpcc Helm chart, and provide the yaml file that provides the storage information created
in the previous step such as mystorage.yaml.

© 2026 HPCC Systems®. All rights reserved
14

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

helm install mycluster hpcc/hpcc --version=9.14.2 -f mystorage.yaml

Note: The --version argument is optional, but recommended. It ensures that you know which version
you are installing. If omitted, the latest non-development version is installed.

© 2026 HPCC Systems®. All rights reserved
15

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Import: Storage Planes and How To Use
Them
Storage planes provide the flexibility to configure where the data is stored within a deployed HPCC Systems
platform, but it doesn't directly address the question of how to get data onto the platform in the first place.

Containerized platforms support importing data in two ways:

• Upload a file to a Landing Zone and Import (Spray)

• Copy a file to a Storage Plane and access it directly

Beginning with version 7.12.0, new ECL syntax was added to access files directly from a storage plane. This
is similar to the file:: syntax used to directly read files from a physical machine, typically a landing zone.

The new syntax is:

~plane::<storage-plane-name>::<path>::<filename>

Where the syntax of the path and filename are the same as used with the file:: syntax. This includes requiring
uppercase letters to be quoted with a ^ symbol. For more details, see the Landing Zone Files section of
the ECL Language Reference.

If you have storage planes configured as in the previous section, and you copy the originalperson file to
C:\hpccdata\hpcc-data\tutorial, you can then reference the file using this syntax:

'~plane::hpcc-data::tutorial::originalperson'

Note: The originalperson file is available from the HPCC Systems Web site:

(https://cdn.hpccsystems.com/install/docs/3_8_0_8rc_CE/OriginalPerson).

© 2026 HPCC Systems®. All rights reserved
16

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Azure Deployment (Development,
Testing, and Production)

This section should apply for most Azure subscriptions. You may need to adjust some commands or in-
structions according to your subscription's requirements.

Using Azure
Though there are many ways to interact with Azure, this section will use the Azure cloud shell command
line interface.

The major advantage to using the cloud shell is that it will also have the other prerequisites installed for you.

Azure Prerequisites
To deploy an HPCC Systems containerized platform instance to Azure, you should have:

• A working computer that supports Linux, MacOS, or Windows OS.

• A web browser, such as Chrome or Firefox.

• An Azure account with sufficient permissions, rights, and credentials. To obtain this, please go to
www.azure.com or talk to your manager if you believe that your employer might have a corporate account.

• A text editor. You can use one of the editors available in the Azure cloud shell (code, vi, or nano) or any
other text editor of your preference.

• At minimum using the 64-bit Helm 3.5 or higher - even if using the Azure cloud shell.

Assuming you have an Azure account with adequate credits, you can make use of Azure's browser-based
shell, known as the Azure cloud shell, to deploy and manage your resources. The Azure cloud shell comes
with pre-installed tools, such as Helm, Kubectl, Python, Terraform, etc.

https://portal.azure.com/

If this is your first time accessing the cloud shell, Azure will likely notify you about the need for storage in
order to save your virtual machine settings and files.

• Click through the prompts to create your account storage.

You should now be presented with an Azure cloud shell which is ready to use. You can now proceed to
the next section.

Third Party Tools

Should you decide not to use the Azure cloud shell, you will need to install and configure the Azure CLI on
your host machine in order to deploy and manage Azure resources. In addition, you will also need to install
Helm and Kubectl to manage your Kubernetes packages and clusters respectively.

• Azure Client Interface (CLI)

• Kubectl

• Helm 3.5 or greater

© 2026 HPCC Systems®. All rights reserved
17

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

All third-party tools listed above should use the 64-bit architecture.

The documentation and instructions for how to install and set up the third party tools are available from the
respective vendors on their websites.

Azure Resource Group
An Azure resource group is similar to a folder where a group of related resources are stored. Generally,
you should only use one resource group per deployment. For instance, deploying two Kubernetes clusters
in one resource group can cause confusion and difficulties to manage. Unless you or someone in your
organization has already created a resource group and specified to work in that pre-existing resource group,
you will need to create one.

To create a new resource group, you must choose a name and an Azure location. Additionally, you may
choose to use tags for ease of management of your resource groups. Some of the details around this may
be subject to you or your organization's subscriptions, quotas, restrictions or policies. Please ensure that
you have a properly configured Azure subscription with a sufficient access level and credits for a successful
deployment.

Run the following command to create a new resource group called rg-hpcc in Azure location eastus:

az group create --name rg-hpcc --location eastus

The following message indicates that the resource group has been successfully created.

{
 "id": "/subscriptions/<my_subscription_id>/resourceGroups/rsg-hpcc",
 "location": "eastus",
 "managedBy": null,
 "name": "rg-hpcc",
 "properties": {
 "provisioningState": "Succeeded"
 },

 "tags": null,
 "type": "Microsoft.Resources/resourceGroups"
 }

Please note that the list of regions available to you might vary based on your company's policies and/or
location.

Azure Kubernetes Service Cluster

Next we will create an Azure Kubernetes Service (AKS) cluster. AKS stands for Azure Kubernetes Service. It
is a service provided by Azure that offers serverless Kubernetes, which promotes rapid delivery, scaling, etc.

You can choose any name for your Kubernetes cluster, we will use aks-hpcc. To create a Kubernetes
cluster, run the following command:

az aks create --resource-group rg-hpcc --name aks-hpcc --location <location>

NOTE There are some optional parameters including --node-vm-size and --node-count. Node size
refers to the specs of your VM of choice while node count refers to the number of VMs you wish to
use. In Azure the names VM and node are used interchangeably. For more on node sizes, please
visit https://docs.microsoft.com/en-us/azure/virtual-machines/sizes

This step can take a few minutes. The time it takes for Azure to create and provision the requested resources
can vary. While you wait, for your deployment to complete, you can view the progress in the Azure portal.
To view the progress, open another browser tab to:

https://portal.azure.com/#blade/HubsExtension/BrowseAll

© 2026 HPCC Systems®. All rights reserved
18

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Azure Node Pools

The Azure Kubernetes Service (AKS) automatically creates one node pool. It is a system node pool, by
default. There are two node pool types: system node pools and user node pools. The system node pool
is reserved for core Kubernetes services and workloads, such as kubelets, kube-proxies, etc. A user node
pool should be used to host your application services and workloads. Additional node pools can be added
after the deployment of the AKS cluster.

To follow the recommendations for reserving the system node pool only for the core AKS services and
workloads. You will need to use a node taint on the newly created system node pool. Since you can't add
taints to any pre-existing node pool, swap the default system node pool for the newly created one.

In order to do this, enter the following command (all on one line, if possible, and remove the connectors "\"
as they are only included here for the code to fit on a single page):

az aks nodepool add \
--name sysnodepool \
--cluster-name aks-hpcc \
--resource-group rg-hpcc \
--mode System \
--enable-cluster-autoscaler \
--node-count=2 \
--min-count=1 \
--max-count=2 \
--node-vm-size \
--node-taints CriticalAddonsOnly=true:NoSchedule

Delete the automatically created default pool, which we called "nodepool1" as an example, the actual name
may vary.

Once again enter the following command on one line, (without connectors "\" if possible).

az aks nodepool delete \
--name nodepool1 \
--cluster-name aks-hpcc \
--resource-group rg-hpcc

Having at least one user node pool is recommended.

Next add a user node pool which will schedule the HPCC Systems pods. Also remember to do so on a
single line without the connectors, if possible:

az aks nodepool add \
--name usrnodepool1 \
--cluster-name aks-hpcc \
--resource-group rg-hpcc \
--enable-cluster-autoscaler \
--node-count=2 \
--min-count=1 \
--max-count=2 \
--mode User

For more information about Azure virtual machine pricing and types, please visit https://azure.mi-
crosoft.com/en-us/pricing/details/virtual-machines/linux/

Configure Credentials

To manage your AKS cluster from your host machine and use kubectl, you need to authenticate against the
cluster. In addition, this will also allow you to deploy your HPCC Systems instance using Helm. To configure
the Kubernetes client credentials enter the following command:

az aks get-credentials --resource-group rg-hpcc --name aks-hpcc --admin

© 2026 HPCC Systems®. All rights reserved
19

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Installing the Helm Charts
This section will demonstrate how to fetch, modify, and deploy the HPCC Systems charts. First we will need
to access the HPCC Systems repository.

Add, or update if already installed, the HPCC Systems Helm chart repository:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

To update the repository:

helm repo update

You should always update the repository before deploying. That allows you to get the latest versions of
the chart dependencies.

Installing the HPCC Systems Components

In order for a even a basic installation to succeed, it must have some type of storage enabled. The following
steps will create ephemeral storage using the azstorage utility that will allow the HPCC Systems to start and
run but will not persist. To do this we will deploy the hpcc-azurefile chart which will set up Azure's ephemeral
storage for the HPCC Systems deployment.

To Install the hpcc-azurefile chart:

helm install azstorage hpcc/hpcc-azurefile

The goal here is to get the default values from this azstorage chart and create a customization file that will
pass in the appropriate values to the HPCC Systems instance.

Copy the output from the helm install command that you issued in the previous step, from the storage:
parameter through the end of the file and save the file as mystorage.yaml. The mystorage.yaml file should
look very similar to the following:

storage:
 planes:
 - name: dali
 pvc: dali-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali
 - name: dll
 pvc: dll-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/queries"
 category: dll
 - name: sasha
 pvc: sasha-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/sasha"
 category: sasha
 - name: data
 pvc: data-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/hpcc-data"
 category: data
 - name: mydropzone
 pvc: mydropzone-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/dropzone"
 category: lz

sasha:
 wu-archiver:
 plane: sasha
 dfuwu-archiver:
 plane: sasha

© 2026 HPCC Systems®. All rights reserved
20

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Note: The indentation, syntax, and characters are very critical, please be sure those are an exact match
to the above sample. A single extra space in this file can cause unnecessary headaches.

We can now use this mystorage.yaml file to pass in these values when we start up our HPCC Systems
cluster.

Enable Access the ESP Services

To access your HPCC Systems cloud instance you must enable the visibility of the ESP services. As de-
livered the ESP services are private with only local visibility. In order to enable global visibility, we will be
installing the HPCC Systems cluster using a customization file to override the ESP dictionary. There is more
information about customizing your deployment in the Containerized HPCC Systems documentation.

The goal here is to get the values from this delivered chart and create a customization file that will pass in
the values you want to the HPCC Systems instance. To get the values from that chart, enter the following
command:

helm show values hpcc/hpcc > defaultvalues.yaml

IMPORTANT: The indentation, syntax, characters, as well as every single key-value pair are
very critical. Please be sure these are an exact match to the sample below. A single extra
space, or missing character in this file can cause unnecessary headaches.

Using the text editor, open the defaultvalues.yaml file and copy the esp: portion from that file, as illustrated
below:

esp:
- name: eclwatch
 ## Pre-configured esp applications include eclwatch, eclservices, and eclqueries
 application: eclwatch
 auth: none
 replicas: 1
Add remote clients to generated client certificates and make the ESP require that one of
r to connect
When setting up remote clients make sure that certificates.issuers.remote.enabled is set
remoteClients:
- name: myclient
organization: mycompany
 service:
 ## port can be used to change the local port used by the pod. If omitted, the default por
 port: 8888
 ## servicePort controls the port that this service will be exposed on, either internally
 servicePort: 8010
 ## Specify visibility: local (or global) if you want the service available from outside
externally, while eclservices is designed for internal use.
 visibility: local
 ## Annotations can be specified on a service - for example to specify provider-specific i
-balancer-internal-subnet
 #annotations:
 # service.beta.kubernetes.io/azure-load-balancer-internal-subnet: "mysubnet"
 # The service.annotations prefixed with hpcc.eclwatch.io should not be declared here. T
 # in other services in order to be exposed in the ECLWatch interface. Similar function c
 # applications. For other applications, the "eclwatch" inside the service.annotations sh
 # their application names.
 # hpcc.eclwatch.io/enabled: "true"
 # hpcc.eclwatch.io/description: "some description"
 ## You can also specify labels on a service
 #labels:
 # mylabel: "3"
 ## Links specify the web links for a service. The web links may be shown on ECLWatch.
 #links:
 #- name: linkname

© 2026 HPCC Systems®. All rights reserved
21

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

 # description: "some description"
 # url: "http://abc.com/def?g=1"
 ## CIDRS allowed to access this service.
 #loadBalancerSourceRanges: [1.2.3.4/32, 5.6.7.8/32]
 #resources:
 # cpu: "1"
 # memory: "2G"
- name: eclservices
 application: eclservices
 auth: none
 replicas: 1
 service:
 servicePort: 8010
 visibility: cluster
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: eclqueries
 application: eclqueries
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8002
 #annotations:
 # hpcc.eclwatch.io/enabled: "true"
 # hpcc.eclwatch.io/description: "Roxie Test page"
 # hpcc.eclwatch.io/port: "8002"
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: esdl-sandbox
 application: esdl-sandbox
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8899
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: sql2ecl
 application: sql2ecl
 auth: none
 replicas: 1
remoteClients:
- name: sqlclient111
 service:
 visibility: local
 servicePort: 8510
 #domain: hpccsql.com
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: dfs
 application: dfs
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8520
 #resources:
 # cpu: "250m"
 # memory: "1G"

© 2026 HPCC Systems®. All rights reserved
22

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Save that ESP portion off into a new file called myesp.yaml. You need to modify that file then use it to
override those default values into your deployment.

In order to access the HPCC Systems services you must override these default settings to make them
visible. We will now set the visibility for eclwatch and eclqueries from local to global as in the below example.

Edit the myesp.yaml file and change the two sections highlighted in the code examples below:

esp:
- name: eclwatch
 ## Pre-configured esp applications include eclwatch, eclservices, and eclqueries
 application: eclwatch
 auth: none
 replicas: 1
 service:
 ## port can be used to change the local port used by the pod. If omitted, the default por
 port: 8888
 ## servicePort controls the port that thi cesps service will be exposed on, either intern
 servicePort: 8010
 ## Specify visibility: local (or global) if you want the service available from outside t
externally, while eclservices is designed for internal use.
 visibility: global
 ## Annotations can be specified on a service - for example to specify provider-specific i

- name: eclqueries
 application: eclqueries
 auth: none
 replicas: 1
 service:
 visibility: global
 servicePort: 8002

Save that modified myesp.yaml customization file.

We can now use this myesp.yaml file to pass in these values when we start up our HPCC Systems cluster.

Install the Customized HPCC Systems Chart

This section will install the delivered HPCC Systems chart where we supply the myesp.yaml and mystor-
age.yaml customization files created in the previous section. You should create or add your own additional
customizations in one of these or even another customization yaml file specific to your requirements. Cre-
ating and using customized versions of the HPCC Systems values.yaml file are described in the Customiz-
ing Configurations section of the Containerized HPCC Systems docs. To install your customized HPCC
Systems charts:

helm install myhpcccluster hpcc/hpcc -f myesp.yaml -f mystorage.yaml

Where the -f option forces the system to merge in the values set in the myesp.yaml and mystorage.yaml files.

Note: You can also use the --values option as a substitute for -f

If successful, your output will be similar to this:

NAME: myhpcccluster
LAST DEPLOYED: Wed Dec 15 09:41:38 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

© 2026 HPCC Systems®. All rights reserved
23

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

At this point, Kubernetes should start provisioning the HPCC Systems pods. To check their status run:

kubectl get pods

Note: If this is the first time helm install has been run, it will take some time for the pods to get to a
Running state, since Azure will need to pull the container images from Docker. Once all the pods
are running, the HPCC Systems Cluster is ready to be used.

Accessing ECLWatch
To access ECLWatch, an external IP to the ESP service running ECLWatch is required. If you successfully
deployed your cluster with the proper visibility settings, then this will be listed as the eclwatch service. The
IP address can be obtained by running the following command:

kubectl get svc

Your output should be similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclservices ClusterIP 10.0.44.11 <none> 8010/TCP 11m
eclwatch LoadBalancer 10.0.21.16 12.87.156.228 8010:30190/TCP 11m
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4h28m
mydali ClusterIP 10.0.195.229 <none> 7070/TCP 11m

Use the EXTERNAL-IP address listed for the ECLWatch service. Open a browser and go to http://<exter-
nal-ip>:8010/. For example in this case, go to http://12.87.156.228:8010. If everything is working as expect-
ed, the ECLWatch landing page will be displayed.

Uninstall Your Cluster
When you are done using your HPCC Systems cluster, you may destroy it to avoid incurring charges for
unused resources. A storage account is recommended to save your HPCC Systems data outside of the
Azure Kubernetes Service. That allows you to destroy the service without losing your data.

The various storage options and strategies are discussed elsewhere in addition to the HPCC Systems
documentation.

Stopping Your HPCC Systems Cluster

This will simply stop your HPCC Systems instance. If you are deleting the resource group, as detailed in the
following section, that will destroy everything in it, including your HPCC Systems cluster. Uninstalling the
HPCC Systems deployment in that case, is redundant. You will still be charged for the AKS. If, for whatever
reason, you can't destroy the resource group, then you may follow the steps in this section to shut down
your HPCC Systems cluster.

To shut down your HPCC Systems cluster, you would issue the helm uninstall command.

Using the Azure cloud shell, enter:

helm list

Enter the helm uninstall command using your clusters name as the argument, for example:

helm uninstall myhpcccluster

This will remove the HPCC Systems cluster named <myhpcccluster> you had previously deployed.

© 2026 HPCC Systems®. All rights reserved
24

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Removing the Resource Group

Removing the resource group will irreversibly destroy any pods, clusters, contents, or any other work stored
on there. Please carefully consider these actions, before removing the resource group. Once removed it
can not be undone.

To remove the entire resource group rg-hpcc which we created earlier, and all the entirety of its contents,
issue the following command:

az group delete --name rg-hpcc

It will prompt you if you are sure you want to do this, and if you confirm it will delete the entire resource group.

© 2026 HPCC Systems®. All rights reserved
25

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Deploying HPCC Systems® with
Terraform

Manual deployments can be error-prone and inconsistent. As your deployments become more customized
and your need for additional resources grows it can become exponentially more difficult and time consuming.

Fortunately, there are multiple IaC (infrastructure as code) orchestration tools available that can simplify the
deployment process. One of those orchestration tools is Terraform. This chapter provides instructions on
using Terraform modules to deploy an HPCC Systems instance specifically on the Azure Cloud.

These modules were developed by the HPCC Systems platform team for general open-source community
usage. You may require specific customizations for your particular needs. For example, your organization
may require opinionated modules for production systems. You can develop your own customized modules,
per your requirements and utilize them in the same manner outlined here.

Interactive Terraform Deployment
This section details deploying the containerized HPCC Systems platform onto Azure using Terraform. Using
the open source and additional modules from the HPCC Systems Terraform open-source repository. No
previous knowledge of Terraform, Kubernetes, or Azure is required.

The steps to deploy an HPCC Systems instance using our provided Terraform modules are detailed in the
subsequent sections. A short summary of these steps is as follows.

1. Clone the HPCC Systems Terraform module repository

2. Copy the configuration files (admin.tfvars) from the /examples directory to the corresponding module
directory

3. Modify the configuration files for each module

4. Initialize the modules

5. Apply the initialized modules

The strength of using Terraform modules to deploy your system, you only need to set them up once. After
they are in place and configured, you can reuse them to stand up an identical instance of your system. You
can do so by initializing and then applying them.

Requirements
What you will need in order to deploy an HPCC Systems instance with Terraform:

• A Linux, MacOS, or Windows OS computer system.

• A browser. Such as Chrome or Firefox.

• Git and a Github account that you can access and clone the repository.

• An Azure account with sufficient permissions, rights, credits, and credentials. To obtain one, go to
www.azure.com or talk to your manager if you believe that your employer might have a corporate account.

© 2026 HPCC Systems®. All rights reserved
26

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

• A code editor of your choice. There are a few editors integrated with Azure such as VS Code, vi the Visual
Editor, Nano, or you can choose to use any another.

The easiest option which also ensures you have all the tools required is to use Azure is the command
portal. Assuming you have an Azure account with all the appropriate credentials you can just go to the
Azure command portal

https://portal.azure.com/

If this is the first time you have accessed the cloud shell, Azure will prompt you that storage is required for
the cloud shell to persist account settings and files. Click through the prompts to create the storage. You
should be presented with a shell. At this point, the cloud shell should already be logged into to your Azure
account. The major advantage to using the cloud shell is that It will also have other prerequisites installed
for you, namely, git, kubectl, helm, and even an editor. Otherwise in addition to installing the Azure CLI you
would also need to install the other prerequisites.

Terraform Repository
The HPCC Systems Terraform Repository, terraform-azurerm-hpcc is a code repository where the HPCC
Systems Terraform modules are stored. The Terraform repository contains three independent modules re-
quired to instantiate an HPCC Systems cluster. These are the network, storage, and AKS (Azure Kuber-
netes Service) modules. The network module must be deployed first, followed by the storage module. Only
then can the AKS or root module, be deployed. These modules automatically call other dependent modules
upon initialization. There are dependencies which must be in place in order for all the modules to work
appropriately.

Cloning the Terraform Repository

Clone the Terraform Repository, terraform-azurerm-hpcc hosted on the HPCC Systems GitHub account.

https://github.com/hpcc-systems/terraform-azurerm-hpcc.git

To clone the repository:

1. Open your command line or terminal

2. Determine where to store the repository. Choose a location that is easy to find and remember. This will
become the Terraform root directory.

3. Change directory to your chosen location.

4. Run the following command :

git clone https://github.com/hpcc-systems/terraform-azurerm-hpcc.git

Once the repository is cloned, you will traverse into each module's directory, and configure/modify the
admin.tfvars file there, and then apply it.

The Modules to Modify
Once in place these modules can be reused to stand up an exact copy of the instance.

The order of deployment for these Terraform modules is in fact important.

The order of deployment that you must follow is:

© 2026 HPCC Systems®. All rights reserved
27

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

1. Virtual network

2. Storage accounts

3. Root module (AKS)

Modules Location

Virtual network terraform-azurerm-hpcc/modules/virtual_network

Storage accounts terraform-azurerm-hpcc/modules/storage_ac-
counts

AKS terraform-azurerm-hpcc

These modules must be applied in that order since they build on the resources raised by the previous
module.

After you clone the terraform-azurerm-hpcc repository you have access to the modules in that repository.

Modify the Modules
First you will copy the configuration file, admin.tfvars from the examples subdirectory into that modules
directory. Then you will modify that file you just copied. You must repeat this step for each module.

1. Change directory to the virtual network directory first.

cd terraform-azurerm-hpcc/modules/virtual_network

2. Copy the admin.tfvars files from ./examples to ./virtual_network.

cp examples/admin.tfvars ./admin.tfvars

To modify the module you can enter the following command (Note using the code editor in the example, if
you prefer you can use nano, vi, or any text editor):

code terraform-azurerm-hpcc/modules/virtual_network/examples/admin.tfvars

With the admin.tfvars file open, you can go through each object block or argument and set it to your preferred
values.

More information about the module files is available in the README.md in the HPCC Systems ter-
raform-azurerm-hpcc repository:

https://github.com/hpcc-systems/terraform-azurerm-hpcc#readme

admin = {
 name = "YourName"

 email = "YourEmail@example.com"
 }

 metadata = {
 project = "hpccdemo"
 product_name = "vnet"
 business_unit = "commercial"
 environment = "sandbox"
 market = "us"
 product_group = "contoso"
 resource_group_type = "app"
 sre_team = "hpccplatform"

© 2026 HPCC Systems®. All rights reserved
28

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

 subscription_type = "dev"
 }

 tags = { "justification" = "testing" }

 resource_group = {
 unique_name = true
 location = "eastus2"
 }

1. Modify this file and replace the values for the name and email fields with your user name and your email
address.

2. Save the File as admin.tfvars in the module's directory.

Modifying the AKS Module

The AKS Module is a little different from the other modules. It is not in the modules subdirectory, it is in
the base root directory where you previously cloned the Terraform repository. You still need to copy the
admin.tfvars file from the examples directory into that root directory, just as you did for the other modules.
However, there are a few additional modifications you need to make to this file.

1. Copy the admin.tfvars files from ./examples to the AKS directory.

cp examples/admin.tfvars ./admin.tfvars

2. Modify the admin.tfvars file, once again add your user name and your email.

3. If you are using the Azure Cloud Shell, find the setting for auto_launch_eclwatch and set it to false
as follows:

auto_launch_eclwatch = false

4. Additionally there is a setting for version which by default is commented out. Optionally, uncomment the
version setting and set to a specific version.

5. Make any other configuration changes and save the admin.tfvars file.

Note: You can create multiple configuration files for different deployments. Such as the multiple ver-
sions which we just described. In that case you may want to save each configuration with a
different name.

© 2026 HPCC Systems®. All rights reserved
29

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Initializing the Terraform Modules
After configuring the modules, the next step is to initialize. The Terraform init command declares the current
working directory as the root or the calling module. During this operation, Terraform downloads all the child
modules from their sources and place them in the appropriate relative directories.

Once again, the order is important. Initialize the modules in the same order of precedence, virtual network
first, the storage account second, and then the AKS, or root.

Note: Whilst the order the files are applied is important, you can perform the initialization and apply steps
after you modify the files while already in the respective directory.

To Initialize the Modules

1. Change directory to the modules directory.

2. Run terraform init in that directory:

terraform init

3. Confirm the module has been successfully initialized.

4. Apply the Module

Applying the Terraform Modules
This step generates a Terraform Plan to confirm your configuration choices. A Terraform plan displays
exactly what it is going to do so you can review it before applying it. You can review and either approve to
implement the plan or abort the plan and review your configuration modules for further changes.

When you issue the Terraform apply command it will validate the Terraform code and generate the plan,
which you will then accept or reject to proceed. As with the previous steps, the order the modules are applied
is important. You must apply the virtual network first, then the storage, and finally the root.

Note: Whilst the order the files are applied is important, you can perform the initialization and apply steps
after you modify the files while already in the respective directory.

To Generate a Plan and Apply the Modules:

1. Change directory to that modules directory.

2. Run Terraform apply, specifying to use the admin.tfvars file you configured previously.

terraform apply –var-file=admin.tfvars

Note: If you created multiple configuration files as described in the previous section (for the AKS
module) you can specify to use that specific var-file.

3. The Terraform plan displays, review the plan and if it aligns with what you expected, approve the plan
and enter yes.

Note: If something does not look correct, do not enter yes. Anything other than yes will abort the appli-
cation. You can then go and re-examine the admin.tfvars files from the previous steps and make any
necessary changes.

4. Terraform initializes all the declared resources until they are all in a ready state. This can take a little
time, as it is initializing several resources.

© 2026 HPCC Systems®. All rights reserved
30

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Successful completion displays a message similar to the following:

Apply complete! Resources: 11 added, 0 changed, 0 destroyed.

Note: The number of resources added, changed, or destroyed should match what the plan indicated in
the previous step.

5. Repeat these steps for the storage_accounts directory and then for the root module directory.

Once Terraform successfully applies all the modules in the correct sequence, and they all initialize and enter
a ready state, your HPCC Systems cluster is up and running.

Verify the Installation

With your successful Terraform deployment Kubernetes has provisioned all the required HPCC Systems
pods. To check their status run:

kubectl get pods

Note: If this is the first time helm install has been run, it may take some time for the pods to all get into a
Running state. Azure needs to pull container images from Docker, bring each component online, etc.

Once all the pods STATUS is Running, the HPCC Systems cluster is ready to be use.

Accessing ECLWatch
To access ECLWatch, an external IP for the ESP running ECLWatch is required. This will be listed as the
eclwatch service, and can be obtained by running the following command:

kubectl get svc

Your output should be similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclservices ClusterIP 10.0.44.11 <none> 8010/TCP 11m
eclwatch LoadBalancer 10.0.21.16 12.87.156.228 8010:30190/TCP 11m
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4h28m
mydali ClusterIP 10.0.195.229 <none> 7070/TCP 11m

Use the EXTERNAL-IP listed for the ECLWatch service. Open a browser and go to http://<exter-
nal-ip>:8010/, for example in this case, http://12.87.156.228:8010. If everything is working as expected, the
ECLWatch landing page displays.

Taking Down The AKS Cluster
Destroying the AKS Cluster will do just that - completely destroy it. That is the Terraform term for taking
down and removing all resources and processes Terraform deployed.

© 2026 HPCC Systems®. All rights reserved
31

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Just as with the installation, the order that modules are destroyed is also important. Keep in mind that the
AKS module must be destroyed before the Virtual network module. Attempting to destroy resources
in the wrong order could leave your deployment in an odd state and may incur unnecessary costs. To help
reduce your total costs, always destroy your AKS when you do not intend on using it further.

Once configured the persisting Terraform modules can easily bring your deployment back up. An exact
copy of the instance, can be raised simply by issuing the Terraform apply step you did earlier. This is the
real beauty of the Terraform modules, once created they can be reused to generate an exact copy of your
deployment. You could also have other configuration options readily available for deployment.

To destroy the Modules

1. Change directory to the root AKS directory: terraform-azurerm-hpcc

2. Run Terraform destroy

terraform destroy –var-file=admin.tfvars

3. The Terraform plan displays, review the plan and if it looks correct approve the plan by entering yes.

Entering anything other than yes aborts.

4. Repeat as necessary for the other modules. However ensure that the virtual network module is the last
one to destroy, if you even choose to destroy it. (Apparently the cost for leaving the virtual network running
is minimal, but check with your provider or manager for confirmation)

Terraform, much like the apply step, may take a few minutes to complete the destruction of all the resources.
It will confirm the results once competed.

© 2026 HPCC Systems®. All rights reserved
32

Containerized HPCC Systems® Platform
Customizing Configurations

Customizing Configurations

Customization Techniques
This section walks through creating a customized configuration YAML file and deploying an HPCC Systems®

platform using the default configuration plus the customizations. Once you understand the concepts in this
chapter, you can refer to the next chapter for a reference to all configuration value settings.

There are several ways to customize a platform deployment. We recommend using methods that allow you
to best take advantage of the configuration as code (CaC) practices. Configuration as code is the standard
of managing configuration files in a version control system or repository.

The following is a list of common customization techniques:

• The first way to override a setting in the default configuration is via the command line using the --set
parameter.

This is the easiest, but the least compliant with CaC guidelines. It is also harder to keep track of overrides
this way.

• The second way is to modify the default values saved using a command like:

helm show values hpcc/hpcc > myvalues.yaml

This could comply with CaC guidelines if you place that file under version control, but it makes it harder
to utilize a newer default configuration when one becomes available.

• The third way, is the one we typically use. Use the default configuration plus a customization YAML file
and use the -f parameter (or --values parameter) to the helm command. This uses the default configuration
and only overrides the settings specified in the customization YAML. In addition, you can pass multiple
YAML files in the same command, if desired.

You can also use the -f option to pass a YAML file using a URL. For example:

helm install mycluster hpcc/hpcc -f https://raw.githubusercontent.com/JD/MyHelm/main/noroxie.yaml

For this tutorial, we will use the third method to stand up a platform with all the default settings but add
some customizations. In the first example, instead of one Roxie, it will have two. In the second example,
it will add a second 10-way Thor.

© 2026 HPCC Systems®. All rights reserved
33

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for Two Roxies
1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it tworoxies.yaml and open it in a text editor.

You can use any text editor.

3. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

4. Open the saved file (myvalues.yaml) in a text editor.

5. Copy the entire roxie: section and paste it into the new tworoxies.yaml file.

6. Copy the entire contents of the new tworoxies.yaml file, except the first line (roxie:), and paste it at the
end of the file.

7. In the second block, edit the value for name: and change it to roxie2.

8. In the second block, edit the value for prefix: and change it to roxie2.

9. In the second block, edit the value for name: under services: and change it to roxie2.

10.Save the file and close the text editor.

The resulting tworoxies.yaml file should look like this

Note: The comments have been removed to simplify the example:

roxie:
- name: roxie
 disabled: false
 prefix: roxie
 services:
 - name: roxie
 servicePort: 9876
 listenQueue: 200
 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

- name: roxie2
 disabled: false
 prefix: roxie2
 services:
 - name: roxie2
 servicePort: 9876

© 2026 HPCC Systems®. All rights reserved
34

Containerized HPCC Systems® Platform
Customizing Configurations

 listenQueue: 200
 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the tworoxies.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f tworoxies.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Roxie clusters available as Targets -- roxie and roxie2.

Create a Custom Configuration Chart for Two Thors
You can specify more than one custom configuration by repeating the -f parameter.

For example:

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

In this section, we will add a second 10-way Thor.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it twothors.yaml and open it in a text editor.

You can use any text editor.

3. Open the default values file that you saved earlier (myvalues.yaml) in a text editor.

4. Copy the entire thor: section and paste it into the new twothors.yaml file.

5. Copy the entire contents of the new twothors.yaml file, except the first line (thor:), and paste it at the
end of the file.

6. In the second block, edit the value for name: and change it to thor10.

7. In the second block, edit the value for prefix: and change it to thor10.

8. In the second block, edit the value for numWorkers: and change it to 10.

9. Save the file and close the text editor.

© 2026 HPCC Systems®. All rights reserved
35

Containerized HPCC Systems® Platform
Customizing Configurations

The resulting twothors.yaml file should look like this

Note: The comments have been removed to simplify the example:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
- name: thor10
 prefix: thor10
 numWorkers: 10
 maxJobs: 4
 maxGraphs: 2

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the twothors.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Thor clusters available as Targets -- thor and thor10.

Create a Custom Configuration Chart to AllowPipePro-
grams
You can specify more than one custom configuration by repeating the -f parameter.

For example:

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f thorWithPipe.yaml

In this section, we will modify the Thor to allow some Pipe Programs. In version 9.2.0 and greater, commands
used in PIPE are restricted by default in containerized deployments unless explicitly allowed in the Helm
chart.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it thorWithPipe.yaml and open it in a text editor.

You can use any text editor.

© 2026 HPCC Systems®. All rights reserved
36

Containerized HPCC Systems® Platform
Customizing Configurations

3. Open the default values file that you saved earlier (myvalues.yaml) in a text editor.

4. Copy the entire thor: section and paste it into the new thorWithPipe.yaml file.

5. Add a block at the end:

 allowedPipePrograms:
 - sort
 - grep
 - echo

This example enables three common programs. You can use the ones you want instead.

6. Save the file and close the text editor.

The resulting thorWithPipe.yaml file should look like this

Note: The comments have been removed to simplify the example:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 allowedPipePrograms:
 - sort
 - grep
 - echo

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the thorWithPipe.yaml file file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f thorWithPipe.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f thorWithPipe.yaml

3. After you confirm that your deployment is running, submit a job that uses a PIPE action and specifies
one of the programs you specified.

Note: If the job is too simple, it will execute on hThor instead of Thor and this example doesn't enable
Pipe programs on hThor.

You can create another yaml file to allow Pipe Programs on ECL Agent or you can use:

#OPTION('pickBestEngine',FALSE);

to force the job to run on Thor.

Create a Custom Configuration Chart for No Thor
In this section, we will create a YAML file to specify a platform deployment with no Thor.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

© 2026 HPCC Systems®. All rights reserved
37

Containerized HPCC Systems® Platform
Customizing Configurations

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it nothor.yaml and open it in a text editor.

You can use any text editor.

3. Edit the file so it disables Thor as follows:

thor: []

4. Save the file and close the text editor.

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the nothor.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f nothor.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f nothor.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should not see any Thor cluster available as a Target.

© 2026 HPCC Systems®. All rights reserved
38

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for No Roxie
In this section, we will create a YAML file to specify a platform deployment with no Roxie. While the outcome
is similar to what we did in the previous section for no Thor, the technique is different.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it noroxie.yaml and open it in a text editor.

You can use any text editor.

3. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

4. Open the saved file (myvalues.yaml) in a text editor.

5. Copy the entire roxie: section and paste it into the new noroxie.yaml file.

6. Copy the entire eclagent: section and paste it into the new noroxie.yaml file.

7. In the roxie block, edit the value for disabled: and change it to true

You can remove everything else from the roxie: block except name.

8. In the eclagent block, delete the entire name: roxie-workunit block.

This removes the instance of a Roxie acting as an ECL Agent.

9. Save the file and close the text editor.

The resulting noroxie.yaml file should look like this:

Note: The comments have been removed to simplify the example:

roxie:
- name: roxie
 disabled: true

eclagent:
- name: hthor
 replicas: 1
 maxActive: 4
 prefix: hthor
 useChildProcesses: false
 type: hthor

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the noroxie.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f noroxie.yaml

© 2026 HPCC Systems®. All rights reserved
39

Containerized HPCC Systems® Platform
Customizing Configurations

3. After you confirm that your deployment is running, open ECL Watch.

You should not see any Roxie cluster available as a Target.

Create a Custom Configuration Chart for Multiple Thors
Listening to a Common Queue
In this section, we will create three Thors that listen to a common queue (in addition to their own queue).
This provides the ability to define distinct Thor cluster configurations but allow them to form a single target
behind a single queue. These clusters can be bound to certain node pools in different availability zones, if
desired. You can use this example as a starting point and adjust the number of Thor clusters you want.

This is accomplished by defining additional auxiliary target queues for each Thor definition and using a
common name as an auxiliary queue.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it threethorsonequeue.yaml and open it in a text editor.

You can use any text editor.

3. Open the default values file that you saved earlier (myvalues.yaml) in a text editor.

4. Copy the entire thor: section and paste it into the new threethorsonequeue.yaml file.

5. Copy the entire contents of the new yaml file, except the first line (thor:), and paste it at the end of the
file twice.

This creates three - name: sections.

6. Edit the file in the following manner:

a. Give each Thor a unique value for name:.

In this example, we use thor1, thor2, and thor3.

b. Add an auxQueues: entry to each Thor block using a common name

In this example, we are using

auxQueues: [thorQ]

c. Make sure the prefix: is the same in each Thor block.

7. Save the file and close the text editor.

The resulting threethorsonequeue.yaml file should look like this:

Note: The comments have been removed to simplify the example:

thor:

© 2026 HPCC Systems®. All rights reserved
40

Containerized HPCC Systems® Platform
Customizing Configurations

- name: thor1
 auxQueues: [thorQ]
 maxGraphs: 2
 maxJobs: 2
 numWorkers: 4
 numWorkersPerPod: 2
 prefix: thor
- name: thor2
 maxGraphs: 2
 maxJobs: 2
 numWorkers: 4
 numWorkersPerPod: 2
 prefix: thor
 auxQueues: [thorQ]
- name: thor3
 maxGraphs: 2
 maxJobs: 2
 numWorkers: 4
 numWorkersPerPod: 2
 prefix: thor
 auxQueues: [thorQ]

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the threethorsonequeue.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f threethorsonequeue.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f threethorsonequeue.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see four Thor clusters available as Targets -- thor1, thor2, thor3, and a fourth queue that all
three Thors listen to-- thorQ.

Create a Custom Configuration Chart for a Landing Zone
only
In this section, we will create a custom configuration that deploys a "platform" containing only a Landing
Zone. This can be useful if all you need is a landing zone server with dafilesrv running.

Note: This can only be deployed to a different namespace than any other platform instance.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it lz.yaml and open it in a text editor.

You can use any text editor.

© 2026 HPCC Systems®. All rights reserved
41

Containerized HPCC Systems® Platform
Customizing Configurations

3. Copy and paste this code into the file:

dafilesrv:
- name: direct-access
 application: directio
 service:
 servicePort: 7100
 visibility: local
 tls: false
 resources:
 cpu: "2"
 memory: "8G"
dali: []
dfuserver: []
eclagent: []
eclccserver: []
eclscheduler: []
esp: []
roxie: []
sasha: null
thor: []

4. Save the file and close the text editor.

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the lz.yaml file.

2. Deploy this LZ only "platform" with the the new configuration added to your command:

helm install mylz hpcc/hpcc -f lz.yaml

3. Confirm it is installed using this command:

helm list

© 2026 HPCC Systems®. All rights reserved
42

Containerized HPCC Systems® Platform
Customizing Configurations

Container Cost Tracking
With the advent of the containerized HPCC Systems platform, we have introduced cost tracking information.
This is particularly useful when using cloud native HPCC Systems platform instances in a cloud setting
where some planning and configuration can help reduce expenses.

New columns have been added to the workunits and the logical files pages in ECL Watch. These columns
can be sorted by any cost columns, just like the other columns in ECL Watch, by clicking at the top of the
column. In addition, file operation costs executed by workunits are provided in the workunit’s metrics.

As the cost tracking matures, the cost calculations also improve significantly providing more accurate cost
tracking. For example, data that was accessed from page cache doesn’t incur any file access cost. HPCC
Systems cost tracking now detects data that has been returned from the page cache and adjusts cost
calculations appropriately resulting in more accurate cost calculations.

Types of Costs
There are several types of costs that are tracked.

• Execution Cost

• Compile Cost

• File Access Cost

• File Cost at Rest

NOTE: While reporting accuracy has significantly improved, all cost values calculated and displayed re-
main approximate. There are many variables that can result in inaccuracies. These cost values
are only intended to be used as a guide.

Execution Cost

Execution Cost is the cost of executing the workunit, graph, and subgraphs on the Thor cluster. It includes
the cost of all the nodes directly required to execute the job and includes the cost of:

• Worker nodes

• Compiler nodes

• Agent nodes and the manager node

A workunit's execution cost value is displayed in ECL Watch on its summary page and is broken down at
the graph, subgraph, and activity level. The graph and subgraph cost values are available in the metrics
and graph viewer.

Note: The execution cost of ROXIE workunits is not currently implemented.

Job Guillotine

The risk of runaway costs is a concern for potentially uncapped usage-based charging. Thus the job guillo-
tine feature is provided to manage this risk by setting limits on the costs using the limit and hardlimit values.
When a jobs cost reaches a set amount, the job can be terminated and limit the costs that job may incur.

Note: This feature is only supported for Thor jobs currently.

© 2026 HPCC Systems®. All rights reserved
43

Containerized HPCC Systems® Platform
Customizing Configurations

Compile Cost

Compile costs are the costs of compiling the ECL code. The cost of compiling the ECL code is included as
a column in the workunit list. In the workunit summary page there is a compile cost field.

Storage Costs

This is the cost of hosting the data in the storage plane or the File Cost At Rest value and the cost of
reading/writing to the storage, is the File Access Cost value.

Note: Costs are not recorded for temporary or spill files, because the local storage is included in the price
of the VM used to calculate the execution costs.

For logical files, the costs calculated are based on two types of file access.

• File Access Cost

• File Cost at Rest

File Access Cost

File access costs are the costs of reading and writing to the files. Many storage planes do have a separate
charge for data operations. The cost of reading and writing to the file is included in the file access cost value.
Any other cost associated with file operations (such as delete or copy) will not be tracked or included as
part of file access cost at this time.

The costs incurred by a workunit for accessing logical files is also recorded in the workunit’s statistics and
attributes. The read/write cost is recorded at the activity record and cumulated at the graph, the subgraph,

© 2026 HPCC Systems®. All rights reserved
44

Containerized HPCC Systems® Platform
Customizing Configurations

and the workflow scope level. Cost Tracking detects data that has been returned from the page cache and
adjusts cost calculations appropriately to produce more accurate cost calculations. These file access costs
for a workunit are recorded with the workunit and displayed in the summary page and in the workunit’s
metrics.

File Cost at Rest

The File Cost at Rest field is shown in the Logical File summary page. It is the cost of storing the file without
accessing the data. This includes only the storage costs associated with housing the file in the cloud. This
value has been added to better differentiate between file storage costs.

Spill Files

Spill planes typically do not incur costs, as they are generally located on local storage. Starting with version
9.12, spill planes no longer inherit the global cost configuration. If a spill plane does not have its own storage
cost configuration, any files stored on that spill plane will have their costs calculated as zero.

Costs Configuration
This section details setting the job costs configuration parameters. Job costs configuration on a cloud native
HPCC Systems instance is done using the helm chart. By default the delivered values.yaml file contains
a section for configuring costs. The costs are calculated using the default delivered values. Any desired
changes can be done as a custom configuration similar to the customizations in the previous sections.

For example:

1. Create a new text file and name it mycosts.yaml and open it in a text editor.

You can use any text editor.

2. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

3. Open the saved file (myvalues.yaml) in a text editor.

4. Copy the entire cost: section and paste it into the new mycosts.yaml file.

5. Change any desired cost related values as appropriate.

6. Save the file and close the text editor.

7. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f mycosts.yaml

The configuration values provide the pricing information and currency formatting information. The following
cost configuration parameters are supported:

currencyCode Used for currency formatting of cost values.

perCpu Cost per hour of a single cpu.

storageAtRest Storage cost per gigabyte per month.

storageReads Cost per 10,000 read operations.

storageWrites Cost per 10,000 write operations.

© 2026 HPCC Systems®. All rights reserved
45

Containerized HPCC Systems® Platform
Customizing Configurations

Configuring Cloud Costs

The default values.yaml configuration file is configured with the following cost parameters in the global/cost
section:

 cost:
 currencyCode: USD
 perCpu: 0.126
 storageAtRest: 0.0135
 storageReads: 0.0485
 storageWrites: 0.0038

The currencyCode attribute should be configured with the ISO 4217 country code. (HPCC Systems plat-
form defaults to USD if the currency code is missing).

The perCpu from the global/cost section applies to every component that has not been configured with its
own perCpu value.

A perCpu value specific to a component may be set by adding a cost/perCPU attribute under that component
section.

For example Dali:

 dali:
 - name: mydali
 cost:
 perCpu: 0.24

Thor Cost Configurations

The Thor components support additional cost parameters which are used for the job guillotine feature:

limit Sets the “soft” cost limit that a workunit may incur. The limit is “soft” in that it
may be overridden by the maxCost ECL option. A node will be terminated if it
exceeds its maxCost value (if set) or the limit attribute value (if the maxCost
not set).

hardlimit Sets the absolute maximum cost limit, a limit that may not be overridden by
setting the ECL option. The maxCost value exceeding the hardlimit will be
ignored.

The following example sets the jobs cost limits, by adding the attributes to the Thor section of the config-
uration yaml.

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 cost:
 limit: 10.00 # maximum cost is $10, overridable with maxCost option
 hardlimit: 20.00 # maximum cost is $20, cannot be overridden

Storage Cost Parameters

The storage cost parameters (storageAtRest, storageReads and storageWrites) may be added under
the storage plane cost section to set cost parameters specific to the storage plane.

For example:

© 2026 HPCC Systems®. All rights reserved
46

Containerized HPCC Systems® Platform
Customizing Configurations

storage:
 planes:
 - name: dali
 storageClass: ""
 storageSize: 1Gi
 prefix: "/var/lib/HPCCSystems/dalistorage"
 pvc: mycluster-hpcc-dalistorage-pvc
 category: dali
 cost:
 storageAtRest: 0.01
 storageReads: 0.001
 storageWrites: 0.04

The storage cost parameters under the global section are only used if no cost parameters are specified
on the storage plane.

© 2026 HPCC Systems®. All rights reserved
47

Containerized HPCC Systems® Platform
Customizing Configurations

Cost Optimizer
The Cost Optimizer is a tool that analyzes Thor jobs to identify potential issues that could cause unnecessary
costs. The optimizer is enabled by default and the cost optimizer analysis is generated automatically for
all Thor jobs.

Cost Optimizer Functionality
The Cost Optimizer functions by examining the workunit’s graph and metrics to highlight issues such as
skews, spills, and other suboptimal operations. Addressing these issues can improve performance and/or
reduce costs.

For example, the Cost Optimizer may detect among the following noteworthy issues:

Skews: Imbalanced data distribution causing some nodes to process more data than others.

Spills: Excessive data spilling to disk due to insufficient memory allocation.

Inefficient Joins: Suboptimal join operations leading to increased processing time.

These issues result in longer execution times for the cluster, thereby incurring additional costs.

Cost Estimation
If your HPCC Systems deployment is configured to use the cost tracking settings, the Cost Optimizer pro-
vides an estimated monetary value for each identified issue.

All identified issues are reported on the workunit’s summary page in ECL Watch.

Review the reported issues to determine their validity and impact to your work and consider making changes
to improve efficiency and reduce unnecessary costs.

© 2026 HPCC Systems®. All rights reserved
48

Containerized HPCC Systems® Platform
Customizing Configurations

Securing Credentials
Utilizing HPCC Systems in a containerized environment has some unique security concerns by externalizing
typically internalized components, such as the LDAP administrators credentials.

Securing the LDAP administrators credentials is accomplished by using either Kubernetes or Hashicorp
Vault secrets. As a prerequisite you should be familiar with setting up Kubernetes and/or Hashicorp Vault
secrets.

The LDAP administrators account must have administrator rights to all of the Base DNs used by the HPCC
Systems platform. In a cloud deployment these credentials can be exposed. A good practice then, for these
administrator credentials is to be secured either using Kubernetes secrets or the Hashicorp Vault.

Securing Credentials in Kubernetes

To create a secret in Kubernetes to store the LDAP administrators user account credentials, use a command
line interface to Kubernetes, and execute a command similar to the following example:

kubectl create secret generic admincredssecretname --from-literal=username=hpcc_admin \
 --from-literal=password=t0pS3cr3tP@ssw0rd

In the above example, the Kubernetes secret name, is "admincredssecretname" and it contains the LDAP
administrators account "username" and "password" key/values. This stores the LDAP administrators user-
name and password as a Kubernetes secret. Any additional properties are ignored.

You can verify the secret you just created by executing the following Kubernetes command.

kubectl get secret admincredssecretname

For more information about Kubernetes see the appropriate Kubernetes documentation for your implemen-
tation.

Using the Kubernetes Secret

To deploy the Kubernetes secrets override the "secrets:" section in HPCC-Platform/helm/hpcc/values.yaml,
or deploy with your own customized chart. For more information about customizing your HPCC Systems
containerized deployment see the above sections on customization techniques.

In your chart, create a unique key name used to reference the secret, and set it to the name of secret that
you created in the previous step. In the above example it was "admincredssecretname".

You can optionally define additional secrets as required by your platform security configuration. Each of
these secrets would be created as described above and given unique names. The example below indicates
how you can add any additional credentials or secrets to your Helm chart(s) if necessary.

The "admincredsmountname" key/value pair already exists by default in the delivered HPCC Systems val-
ues.yaml file. The key is referenced in the component's ldap.yaml file. You may override these and add
additional key/values as needed. The following example illustrates adding "additionalsecretname" and that
name must match the name of the additional secret created using the steps above.

 secrets:
 authn:
 admincredsmountname: "admincredssecretname" #exernalize HPCC Admin creds

© 2026 HPCC Systems®. All rights reserved
49

Containerized HPCC Systems® Platform
Customizing Configurations

 additionalmountname: "additionalsecretname" #alternate HPCC Admin creds

Enable LDAP Authentication

In the delivered HPCC-Platform/esp/applications/common/ldap/ldap.yaml file, the "ldapAdminSecretKey" is
already set to the key mount name illustrated in the example above. To enable LDAP authentication and
to modify this value, you or your systems administrator can override the ESP/ECLWatch Helm component
located in values.yaml chart as illustrated in the following example:

esp:
- name: eclwatch
 application: eclwatch
 auth: ldap
 ldap:
 ldapAddress: "myldapserver"
 ldapAdminSecretKey: "additionaltmountname" # use alternate secrets creds

Securing credentials in HashiCorp Vault
To create and store secrets in the HashiCorp Vault, from the command command line interface, execute
the following Vault commands. The secret name used in the example below is "myvaultadmincreds" and
must be prefixed with "secret/authn/" as illustrated. The LDAP administrator "username" and "password"
key/values are required. Additional properties are ignored.

vault kv put secret/authn/myvaultadmincreds username=hpcc_admin password=t0pS3cr3tP@ssw0rd

Where the "secret/authn/myvaultadmincreds" is the name of the secret containing the LDAP administrator
username and password.

To verify and confirm the secret values, execute the following command:

vault kv get secret/authn/myvaultadmincreds

For more information about creating secrets for HashiCorp Vault see the appropriate HashiCorp documen-
tation for your implementation.

Deploy the HashiCorp Vault

Deploy the HashiCorp Vault secrets when you override the "secrets:" section in HPCC-Platform/helm/hpcc/
values.yaml, or in your customized configuration chart. For more information about customizing your HPCC
Systems containerized deployment see the above sections on customization techniques.

The Vault name value is defined for this example in the values-secrets.yaml configuration chart. You can
find an example of this chart in the HPCC-Platform repository under /helm/examples/secrets/values-secret-
s.yaml.

 vaults:
 authn:
 - name: my-authn-vault
 #The data node in the URL is there for use by the REST API
 #The path inside the vault starts after /data
 url: http://${env.VAULT_SERVICE_HOST}:${env.VAULT_SERVICE_PORT}/v1/secret/data/authn/${secret}
 kind: kv-v2

You could put this into your own customization chart where you supply your deployment with the name of
the vault containing the credentials.

© 2026 HPCC Systems®. All rights reserved
50

Containerized HPCC Systems® Platform
Customizing Configurations

Referencing Vault Stored Authentication

The key names "ldapAdminSecretKey" and "ldapAdminVaultId" are used by the HPCC Systems security
manager to resolve the secrets, and must match exactly when using the Vault name set up in the previous
steps.

esp:
- name: eclwatch
 application: eclwatch
 auth: ldap
 ldap:
 ldapAddress: "myldapserver"
 ldapAdminSecretKey: "myvaultadmincreds"
 ldapAdminVaultId: "my-authn-vault"

© 2026 HPCC Systems®. All rights reserved
51

Containerized HPCC Systems® Platform
Configuration Values

Configuration Values
This chapter describes the configuration of HPCC Systems for a Kubernetes Containerized deployment.
The following sections detail how configurations are supplied to helm charts, how to find out what options
are available and some details of the configuration file structure. Subsequent sections will also provide a
brief walk through of some of the contents of the default values.yaml file used in configuring the HPCC
Systems for a containerized deployment.

The Container Environment
One of the ideas behind our move to the cloud was to try and simplify the system configuration while also
delivering a solution flexible enough to meet the demands of our community while taking advantage of
container features without sacrificing performance.

The entire HPCC Systems configuration in the container space, is governed by a single file, a values.yaml
file, and its associated schema (values.schema.json) file.

The values.yaml and how it is used
The supplied stock values.yaml file provided in the HPCC Systems repository is the delivered configuration
values for the "hpcc" Helm chart. The values.yaml file is used by the Helm chart to control how HPCC
Systems is deployed to the cloud. This values.yaml file is a single file used to configure and get an HPCC
Systems instance up and running on Kubernetes. The values.yaml file defines everything that happens to
configure and/or define your system for a containerized deployment. You should use the values file provided
as a basis for modeling customizations for your deployment specific to your requirements.

The HPCC Systems values.yaml file can be found in the HPCC Systems github repository. To use the
HPCC Systems Helm chart, first add the hpcc chart repository using Helm, then access the Helm chart
values from the charts in that repository.

For example, when you add the "hpcc" repository, as recommended prior to installing the Helm chart with
the following command:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart

You can now view the HPCC Systems delivered charts and see the values there by issuing:

helm show values hpcc/hpcc

You can capture the output of this command, look at how the defaults are configured and use it as a basis
for your customization.

© 2026 HPCC Systems®. All rights reserved
52

Containerized HPCC Systems® Platform
Configuration Values

The values-schema.json

The values-schema.json is a JSON file that declares what is valid and what is not within the sum total of the
merged values that are passed into Helm at install time. It defines what values are allowed, and validates the
values file against them. All the core items are declared in the schema file, which contains comments and
descriptions. While the default values.yaml file also contains comments on the most important elements.

If you wanted to know what options are available for any particular component then the schema is a good
place to start. If the value exists and is allowed per the schema it can then be added when you install.

The schema file typically contains (for a property) a name and a description. It will often include details of
the type, and items it can contain, or if it is a list or dictionary. For instance:

 "roxie": {
 "description": "roxie process",
 "type": "array"
 "items": { "$ref": "#/definitions/roxie" }
 },

Each plane, in the schema file has a list of properties generally containing a prefix (path), a subpath (sub-
path), and additional properties. For example, for a storage plane the schema file has a list of properties
including the prefix. The "planes" in this case are a reference ($ref) to another section. The schema file is
complete, and contains everything required including descriptions which should be relatively self-explana-
tory.

 "storage": {
 "type": "object",
 "properties": {
 "hostGroups": {
 "$ref": "#/definitions/hostGroups"
 },
 "planes": {
 "$ref": "#/definitions/storagePlanes"
 }
 },
 "additionalProperties": false

Note the additionalProperties value typically at the end of each section in the schema. It specifies whether
the values allow for additional properties or not. If that additionalProperties value is present and set to false,
then no other properties are allowed and the property list is complete.

In working with the HPCC Systems values.yaml, the values file must validate against this schema. If there
is a value that is not allowed as defined in the schema file it will not start and instead generate an ERROR.

HPCC Systems Components and the
values.yaml File
The HPCC Systems Helm charts all ship with stock/default values. These Helm charts have a set of default
values ideally to be used as a guide in configuring your deployment. Generally, every HPCC Systems
component is a list. That list defines the properties for each instance of the component.

This section will provide additional details and any noteworthy insight for the HPCC Systems components
defined in the values.yaml file.

© 2026 HPCC Systems®. All rights reserved
53

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems Components
One of the key differences between the bare-metal and container/cloud is that in bare-metal storage is
directly tied to the Thor or the Thor worker nodes, and the Roxie worker nodes, or even in the case of the
ECLCC Server the DLLs. In containers these are completely separate and anything having to do with files
is defined in the values.yaml.

In containers component instances run dynamically. For instance, if you have configured your system to
use a 50-way Thor, then a 50-way Thor will be spawned when a job is queued to it. When that job is finished
that Thor instance will disappear. This is the same pattern for the other components as well.

Every component should have a resources entry, in the delivered values.yaml file the resources are present
but commented out as indicated here.

 #resources:
 # cpu: "1"
 # memory: "4G"

The stock values file will work and allow you to stand up a functional system, however you should define
the component resources in a manner that corresponds best to your operational strategy.

The Systems Services

Most of the HPCC Systems components have a service definition entry, similar to the resources entry. All
the components that have service definitions follow this same pattern.

Any service related info needs to be under a service object, for example:

 service:
 servicePort: 7200
 visibility: local

This applies to most all of the HPCC Systems components, ESP, Dali, dafilesrv, and Sasha. Roxie's spec-
ification is slightly different, in that it has its service defined under "roxieservice". Each Roxie can then have
multiple "roxieservice" definitions. (see schema).

© 2026 HPCC Systems®. All rights reserved
54

Containerized HPCC Systems® Platform
Configuration Values

Dali

When configuring Dali, which also has a resources section, it is going to want plenty of memory and a good
amount of CPU as well. It is very important to define these carefully. Otherwise Kubernetes could assign all
the pods to the same virtual machine and components fighting for memory will crush them. Therefore more
memory assigned the better. If you define these wrong and a process uses more memory than configured,
Kubernetes will kill the pod.

Components: dafilesvrs, dfuserver

The HPCC Systems components of dafilesvrs, eclccservers, dfuserver, are declared as lists in the YAML
file, as is the ECL Agent.

Consider the dfuserver which is in the delivered HPCC Systems values.yaml as:

dfuserver:
- name: dfuserver
 maxJobs: 1

If you were to add a mydfuserver as follows

dfuserver:
- name: dfuserver
 maxJobs: 1
- name: mydfuserver
 maxJobs: 1

In this scenario you would have another item here named mydfuserver and it would show up in ECLWatch
and you can submit items to that.

If you wanted to add another dfuserver, you can add that to the list similarly. You can likewise instantiate
other components by adding them to their respective lists.

ECL Agent and ECLCC Server

Values of note for the ECL Agent and ECLCC Server.

useChildProcess -- As defined in the schema, launches each workunit compile as a child process rather
than in its own container. When you submit a job or query to compile it gets queued and processed, with
this option set to true it will spawn a child process utilizing almost no additional overhead in starting. Ideal
for sending many small jobs to compile. However, because each compile job is no longer executed as an
independent pod with it's own resource specifications, but instead runs as a child process within the ECLCC
Server pod itself, the ECLCC Server pod must be defined with adequate resources for itself (minimal for
listening to the queue etc.) and all the jobs it may have to run in parallel.

For example, imagine maxJobs is set to 4, and 4 large queries are queued rapidly, that will mean 4 child
processes are launched each consuming cpu and memory within the ECLCC Server pod. With the com-
ponent configured with useChildProcesses set to true, each job will run in the same pod (up to the value
of maxJobs in parallel). Therefore with useChildProcesses enabled, the component resources must be de-
fined such that the pod has enough resources to handle the resource demands of all those jobs to be able
to run in parallel.

With useChildProcess enabled it could be rather expensive in most cloud pricing models, and rather wasteful
if there aren't any jobs running. Instead you can set this useChildprocess to false (the default) to start a pod
to compile each query with only the required memory for the job which will be disposed of when done. Now
this model also has overheard, perhaps 20 seconds to a minute to spawn the Kubernetes cluster to process

© 2026 HPCC Systems®. All rights reserved
55

Containerized HPCC Systems® Platform
Configuration Values

the job. Which may not be ideal for an environment which is sending several small jobs, but rather larger
jobs which would minimize the effect of the overhead in starting the Kubernetes cluster.

Setting useChildProcess to false better allows for the possibility of dynamic scaling. For jobs which would
take a long while to compile, the extra (start up) overhead is minimal, and that would be the ideal case to
have the useChildProcess as false. Setting useChildProcess to false only allows 1 pod per compile, though
there is an attribute for putting a time limit on that compilation.

ChildProcessTimeLimit is the time limit (in seconds) for child process compilation before aborting and
using a separate container, when the useChildProcesses is false.

maxActive -- The maximum number of jobs that can be run in parallel. Again use caution because each job
will need enough memory to run. For instance, if maxActive is set to 2000, you could submit a very big job
and in that case spawn some 2000 jobs using a considerable amount of resources, which could potentially
run up a rather expensive compilation bill, again depending on your cloud provider and your billing plan.

Sasha

The configuration for Sasha is an outlier as it is a dictionary type structure and not a list. You can't have
more than one archiver or dfuwu-archiver as that is a value limitation, you can choose to either have the
service or not (set the 'disabled' value to true).

Thor

Thor instances run dynamically, as do the other components in containers. The configuration for Thor also
consists of a list of Thor instances. Each instance dynamically spawns a collection of pods (manager + N
workers) when jobs are queued to it. When idle there are no worker (or manager) pods running.

If you wanted a 50-way Thor you set the number of workers, the numWorkers value to 50 and you would
have a 50-way Thor. As indicated in the following example:

thor:
- name: thor
 prefix: thor
 numWorkers: 50

In doing so, ideally you should rename the resource to something which clearly describes it, such as thor_50
as in the following example.

- name: thor_50

Updating the numWorkers value will restart the Thor agent listening to the queue, causing all new jobs to
use the new configuration.

maxJobs -- Controls the number of jobs, specifically maxJobs sets the maximum number of jobs.

maxGraphs -- Limits the maximum amount of graphs. It generally makes sense to keep this value below
or at the same number as maxJobs, since not all jobs submit graphs and when they do the Thor jobs are
not executing graphs all the time. If there are more than 2 submitted (Thor) graphs, the second would be
blocked until the next Thor instance becomes available.

The idea here is that jobs may spend significant amount of time outside of graphs, such as waiting on a
workflow state (outside of the Thor engine itself), blocked on a persist, or updating super files, etc. Then it
makes sense for Thor to have a higher limit of concurrent jobs (maxJobs) than graphs (maxGraphs / Thor
instances). Since Thor instances (graphs) are relatively expensive (lots of pods/higher resource use), while
workflow pods (jobs) are comparatively cheap.

© 2026 HPCC Systems®. All rights reserved
56

Containerized HPCC Systems® Platform
Configuration Values

Thus, the delivered (example) chart values defines maxJobs to be greater than maxGraphs. Jobs queued
to a Thor aren't always running graphs. Therefore it can make sense to have more of these jobs, which are
not consuming a large Thor and all its resources, but restrict the max number of Thor instances running.

Thor has 3 components (that correspond to the resource sections).

1. Workflow

2. Manager

3. Workers

The Manager and Workers are launched together and consume quite a bit of resoures (and nodes) typically.
While the Workflow is inexpensive and usually doesn't require as many resources. You might expect in a
Kubernetes world, many of them would co-exist on the same node (and therefore be inexpensive). So it
makes sense for maxJobs to be higher, and maxGraphs to be lower

In Kubernetes, jobs run independently in their own pods. While in bare-metal we can have jobs that could
affect other jobs because they are running in the same process space.

Thor and hThor Memory

The Thor and hThor memory sections allow the resource memory of the component to be refined into
different areas.

For example, the "workerMemory" for a Thor defined as:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 managerResources:
 cpu: "1"
 memory: "2G"
 workerResources:
 cpu: "4"
 memory: "4G"
 workerMemory:
 query: "3G"
 thirdParty: "500M"
 eclAgentResources:
 cpu: "1"
 memory: "2G"

The "workerResources" section will tell Kubernetes to resource 4G per worker pod. By default Thor will
reserve 90% of this memory to use for HPCC query memory (roxiemem). The remaining 10% is left for all
other non-row based (roxiemem) usage, such as general heap, OS overheads, etc. There is no allowance
for any 3rd party library, plugins, or embedded language usage within this default. In other words, if for
example embedded Python allocates 4G, the process will soon fail with an out of memory error, when it
starts to use any memory, since it was expecting 90% of that 4G to be freely available to use for itself.

These defaults can be overridden by the memory sections. In this example, workerMemory.query defines
that 3G of the available resourced memory should be assigned to query memory, and 500M to "thirdParty"
uses.

This limits the HPCC Systems memory roxiemem usage to exactly 3G, leaving 1G free other purposes.
The "thirdParty" is not actually allocated, but is used solely as part of the running total, to ensure that the

© 2026 HPCC Systems®. All rights reserved
57

Containerized HPCC Systems® Platform
Configuration Values

configuration doesn't specify a total in this section larger than the resources section, e.g., if "thirdParty"
was set to "2G" in the above section, there would be a runtime complaint when Thor ran that the definition
exceeded the resource limit.

It is also possible to override the default recommended percentage (90% by default), by setting maxMem-
Percentage. If "query" is not defined, then it is calculated to be the recommended max memory minus the
defined memory (e.g., "thirdParty").

In Thor there are 3 resource areas, eclAgent, ThorManager, and ThorWorker(s). Each has a *Resource
area that defines their Kubernetes resource needs, and a corresponding *Memory section that can be used
to override default memory allocation requirements.

These settings can also be overridden on a per query basis, via workunit options following the pattern:
<memory-section-name>.<property>. For example: #option('workerMemory.thirdParty', "1G");

Note: Currently there is only "query" (HPCC roxiemem usage) and "thirdParty" for all/any 3rd party usage.
It's possible that further categories will be added in future, like "python" or "java" - that specifically define
memory uses for those targets.

© 2026 HPCC Systems®. All rights reserved
58

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems values.yaml file
The delivered HPCC systems values.yaml file is more of an example providing a basic type configuration
which should be customized for your specific needs. One of the main ideas behind the values file is to be
able to relatively easily customize it to your specific scenario. The delivered chart is set up to be sensible
enough to understand, while also allowing for relatively easy customization to configure a system to your
specific requirements. This section will take a closer look at some aspects of the delivered values.yaml.

The delivered HPCC Systems Values file primarily consists of the following areas:

global storage visibilities

data planes certificates security

secrets components

The subsequent sections will examine some of these more closely and why each of them is there.

Storage
Containerized Storage is another key concept that differs from bare-metal. There are a few differences
between container and bare-metal storage. The Storage section is fairly well defined between the schema
file, and the values.yaml. A good approach towards storage is to clearly understand your storage needs,
and to outline them, and once you have that basic structure in mind the schema can help to fill in the details.
The schema should have a decent description for each attribute. All storage should be defined via planes.
There is a relevant comment in the values.yaml further describing storage.

storage:
##
1. If an engine component has the dataPlane property set,
then that plane will be the default data location for that component.
2. If there is a plane definition with a category of "data"
then the first matching plane will be the default data location
##
If a data plane contains the storageClass property then an implicit pvc
will be created for that data plane.
##
If plane.pvc is defined, a Persistent Volume Claim must exist with that name,
storageClass and storageSize are not used.
##
If plane.storageClass is defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic provisioning
If set to "", choosing the default provisioner.
(gp2 on AWS, standard on GKE, AWS & OpenStack)
##
plane.forcePermissions=true is required by some types of provisioned
storage, where the mounted filing system has insufficient permissions to be
read by the hpcc pods. Examples include using hostpath storage (e.g. on
minikube and docker for desktop), or using NFS mounted storage.

There are different categories of storage, for an HPCC Systems deployment you must have at a minimum
a dali category, a dll category, and at least 1 data category. These types are generally applicable for every
configuration in addition to other optional categories of data.

All storage should be in a storage plane definition. This is best described in the comment in the storage
definition in the values file.

planes:
 # name: <required>

© 2026 HPCC Systems®. All rights reserved
59

Containerized HPCC Systems® Platform
Configuration Values

 # prefix: <path> # Root directory for accessing the plane
 # (if pvc defined),
 # # or url to access plane.
 # category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?
 #
 # For dynamic pvc creation:
 # storageClass: ''
 # storageSize: 1Gi
 #
 # For persistent storage:
 # pvc: <name> # The name of the persistant volume claim
 # forcePermissions: false
 # hosts: [<host-list>] # Inline list of hosts
 # hostGroup: <name> # Name of the host group for bare-metal
 # # must match the name of the storage plane..
 #
 # Other options:
 # subPath: <relative-path> # Optional sub directory within <prefix>
 # # to use as the root directory
 # numDevices: 1 # number of devices that are part of the plane
 # secret: <secret-id> # what secret is required to access the files.
 # # This could optionally become a list if required
 # (or add secrets:).

 # defaultSprayParts: 4 # The number of partitions created when spraying
 # (default: 1)

 # cost: # The storage cost
 # storageAtRest: 0.0135 # Storage at rest cost: cost per GiB/month

Each plane has 3 required fields: The name, the category and the prefix.

When the system is installed,using the stock supplied values it will create a storage volume which has 1
GB capacity via the following properties.

For example:

- name: dali
 storageClass: ""
 storageSize: 1Gi
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali

Most commonly the prefix: defines the path within the container where the storage is mounted. The prefix
can be a URL for blob storage. All pods will use the (prefix:) path to access the storage.

For the above example, when you look at the storage list, the storageSize will create a volume with 1 GB
capacity. The prefix will be the path, the category is used to limit access to the data, and to minimize the
number of volumes accessible from each component.

The dynamic storage lists in the values.yaml file are characterized by the storageClass: and storageSize:
values.

storageClass: defines which storage provisioner should be used to allocate the storage. A blank storage
class indicates it should use the default cloud providers storage class.

storageSize: As indicated in the example, defines the capacity of the volume.

Storage Category

Storage category is used to indicate the kind of data that is being stored in that location. Different planes are
used for the different categories to isolate the different types of data from each other, but also because they

© 2026 HPCC Systems®. All rights reserved
60

Containerized HPCC Systems® Platform
Configuration Values

often require different performance characteristics. A named plane may only store one category of data. The
following sections look at the currently supported categories of data used in our containerized deployment.

 category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?

The system itself can write out to any data plane. This is how the data category can help to improve perfor-
mance. For example, if you have an index, Roxie would want rapid access to data, versus other components.

Some components may use only 1 category, some can use several. The values file can contain more than
one storage plane definition for each category. The first storage plane in the list for each category is used
as the default location to store that category of data. These categories minimize the exposure of plane data
to components that don't need them. For example the ECLCC Server component does not need to know
about landing zones, or where Dali stores its data, so it only mounts the plane categories it needs.

Storage Defaults

As of version 9.14, HPCC Systems supports a new defaults section under storage configuration that
provides fallback settings for storage planes. This feature allows administrators to define common config-
uration values that can be inherited by individual storage planes, reducing duplication and simplifying con-
figuration management.

Storage Defaults Configuration

The storage defaults section is added as a sibling to the planes section in your Helm values configuration.

How Storage Defaults Work

The defaults mechanism works as follows:

1. Priority: Individual plane settings take precedence over defaults

2. Inheritance: Storage planes automatically inherit any properties not explicitly defined at the plane level

Ephemeral Storage

Ephemeral storage is allocated when the HPCC Systems cluster is installed and deleted when the chart is
uninstalled. This is helpful in keeping cloud costs down but may not be appropriate for your data.

In your system, you would want to override the delivered stock value(s) with storage appropriate for your
specific needs. The supplied values create ephemeral or temporary persistent volumes that get automat-
ically deleted when the chart is uninstalled. You probably want the storage to be persistent. You should
customize the storage to a more suitable configuration for your needs.

Persistent Storage

Kubernetes uses persistent volume claims (pvcs) to provide access to data storage. HPCC Systems sup-
ports cloud storage through the cloud provider that can be exposed through these persistent volume claims.

Persistent Volume Claims can be created by overriding the storage values in the delivered Helm chart.
The values in the examples/local/values-localfile.yaml provided override the corresponding entries in the
original delivered stock HPCC Systems helm chart. The localfile chart creates persistent storage volumes.
You can use the values-localfile.yaml directly (as demonstrated in separate docs/tutorials) or you can use
it as a basis for creating your own override chart.

To define a storage plane that utilizes a PVC, you must decide on where that data will reside. You create the
storage directories, with the appropriate names and then you can install the localfiles Helm chart to create
the volumes to use the local storage option, such as in the following example:

© 2026 HPCC Systems®. All rights reserved
61

Containerized HPCC Systems® Platform
Configuration Values

helm install mycluster hpcc/hpcc -f examples/local/values-localfile.yaml

Note: The settings for the PVC's must be ReadWriteMany, except for Dali which can be ReadWriteOnce.

There are a number of resources, blogs, tutorials, even developer videos that provide step-by-step detail
for creating persistent storage volumes.

Bare Metal Storage

There are two aspects to using bare-metal storage in the Kubernetes system. The first is the hostGroups
entry in the storage section which provides named lists of hosts. The hostGroups entries can take one of
two forms. This is the most common form, and directly associates a list of host names with a name:

storage:
 hostGroups:
 - name: <name> "The name of the host group"
 hosts: ["a list of host names"]

The second form allows one host group to be derived from another:

storage:
 hostGroups:
 - name: "The name of the host group process"
 hostGroup: "Name of the hostgroup to create a subset of"
 count: <Number of hosts in the subset>
 offset: <the first host to include in the subset>
 delta: <Cycle offset to apply to the hosts>

Some typical examples with bare-metal clusters are smaller subsets of the host, or the same hosts, but
storing different parts on different nodes, for example:

storage:
 hostGroups:
 - name: groupABCDE # Explicit list of hosts
 hosts: [A, B, C, D, E]
 - name groupCDE # Subset of the group last 3 hosts
 hostGroup: groupABCDE
 count: 3
 offset: 2
 - name groupDEC # Same set of hosts, but different part->host mapping
 hostGroup: groupCDE
 delta: 1

The second aspect is to add a property to the storage plane definition to indicate which hosts are associated
with it. There are two options:

• hostGroup: <name> The name of the host group for bare-metal. The name of the hostGroup must match
the name of the storage plane.

• hosts: <list-of-namesname> An inline list of hosts. Primarily useful for defining one-off external landing
zones.

For Example:

storage:
 planes:
 - name: demoOne
 category: data
 prefix: "/home/demo/temp"
 hostGroup: groupABCD # The name of the hostGroup
 - name: myDropZone
 category: lz

© 2026 HPCC Systems®. All rights reserved
62

Containerized HPCC Systems® Platform
Configuration Values

 prefix: "/home/demo/mydropzone"
 hosts: ['mylandingzone.com'] # Inline reference to an external host.

© 2026 HPCC Systems®. All rights reserved
63

Containerized HPCC Systems® Platform
Configuration Values

Remote Storage

You can configure your HPCC Systems cloud deployment to access logical files from other remote envi-
ronments. You configure this remote storage by adding a "remote" section to your helm chart.

The storage.remote section is a list of named remote environments that define the remote service url and
a section that maps the remote plane names to local plane names. The local planes referenced are special
planes with the category 'remote'. They are read-only and only exposed to the engines which can read
from them.

For Example:

storage:
 planes:
...
 - name: hpcc2-stddata
 pvc: hpcc2-stddata-pv
 prefix: "/var/lib/HPCCSystems/hpcc2/hpcc-stddata"
 category: remote
 - name: hpcc2-fastdata
 pvc: hpcc2-fastdata-pv
 prefix: "/var/lib/HPCCSystems/hpcc2/hpcc-fastdata"
 category: remote
 remote:
 - name: hpcc2
 service: http://20.102.22.31:8010
 planes:
 - remote: data
 local: hpcc2-stddata
 - remote: fastdata
 local: hpcc2-fastdata

This example defines a remote target called "hpcc2" whose DFS service url is http://20.102.22.31:8010 and
whose local plane is "hpcc2data". The local plane must be defined such that it shares the same storage
as the remote environment. This is expected to be done via a PVC that has been pre-configured to use
the same storage.

To access the logical file in ECL use the following format:

ds := DATASET('~remote::hpcc2::somescope1::somelfn1', rec);

Azure Managed Identity Authentication

HPCC Systems platform supports Azure managed identities as an authentication method for API file access,
allowing the platform to authenticate with Azure storage without requiring explicit storage account keys.

Enable Azure managed identity authentication using the managed configuration property option in the val-
ues.schema.json file which implements the necessary logic to use that managed identity when enabled.

Azure's managed identities improves security by eliminating the need to store sensitive storage account
keys in configuration files, instead leveraging Azure's managed identity service for authentication.

Preferred Storage

The preferredReadPlanes option is available for each type of cluster--hThor, Thor, and Roxie.

This option is only significant for logical files which reside on multiple storage planes. When specified, the
HPCC Systems platform will seek to read files from the preferred plane(s) if a file resides on them. These
preferred planes must exist and be defined in storage.planes

© 2026 HPCC Systems®. All rights reserved
64

Containerized HPCC Systems® Platform
Configuration Values

The following is an example of a Thor cluster configured with the preferredDataReadPlanes option.

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 3
 preferredDataReadPlanes:
 - data-copy
 - indexdata-copy

In the above example, running a query that reads a file that resides on both "data" and "data-copy" (in that
order) normally would read the first copy on "data". With that preferredDataReadPlanes specified, if that file
also resides on "data-copy", Thor will read that copy.

This can be useful when there are multiple copies of files on different planes with different characteristics
that can impact performance.

© 2026 HPCC Systems®. All rights reserved
65

Containerized HPCC Systems® Platform
Configuration Values

Storage Items for HPCC Systems Components
HPCC Systems organizes its data into several specialized storage categories, each serving a distinct role
within the platform’s architecture. These categories—such as data, lz, Dali, sasha, dll, spill, and temp—
are specified in the plane definition’s category field. A plane’s category determines its intended use (for
example, “data” for logical files, “lz” for landing zones, etc.), but does not dictate the underlying storage type
or performance characteristics.

Planes can be backed by a variety of storage options—including Persistent Volume Claims (PVCs), Kuber-
netes storage classes, hosted storage (backed by daflesrv), or external services such as Azure Blob or
Azure File (via storage APIs). The underlying storage should be selected based on the requirements of each
category (e.g., fast random access for indexes, high throughput for bulk data, etc.). Using a Kubernetes
storageClass is typically reserved for ephemeral storage and is less common for persistent data.

Data Storage Categories

HPCC Systems uses several general-purpose storage categories, each tailored to specific types of data
and performance requirements:

• data (hpccdata): Primary storage location for general data files. Where the physical data of logical files
will be stored.

• lz (Landing Zone): Landing zones allow external users to read and write files, and HPCC Systems can
import from or export to these zones. Performance requirements are typically lower; object storage (e.g.,
blob/S3 bucket) or NFS mounts may be used.

• dali: Location of the Dali metadata store, which requires fast random access.

• dll: Stores compiled ECL queries. Storage must support efficient loading of shared objects.

Note: If you want Dali and dll data on the same plane, they can share the same storage prefix but must
use different subpaths.

• sasha: Stores archived workunits and similar data. Performance requirements are typically lower, allow-
ing use of lower-cost storage.

• spill: (Optional) Stores spill files. Local NVMe disks are potentially a good choice for this.

• temp: (Optional) Stores internal temporary spill files created by the engines. If it is undefined, default to
the "spill" category plane. Like the spill plane this should generally be backed by fast storage (like local
NVMe). It is also worth noting that the "spill" and "temp" planes are never read remotely, e.g. from other
nodes. Unlike the others which need to be accessible globally. This is why local NVMe storage is suitable.

Multiple Device Planes

HPCC Systems storage planes are typically backed by a single Persistent Volume Claim (PVC). If you
wanted to increase the overall bandwidth, you can do so using multiple "devices". You can configure a
storage plane to use multiple PVCs. It's also possible to achieve the same results with storageapi.containers
(see values.schema.json in the HPCC-Platform repository ~/helm/hpcc).

To configure an HPCC Storage Plane to be backed by multiple PVCs:

• Set the numDevices property to the number of PVCs you want to use.

- name: data
 pvc: data-mystorage-hpcc-localfile-pvc

© 2026 HPCC Systems®. All rights reserved
66

Containerized HPCC Systems® Platform
Configuration Values

 prefix: "/var/lib/HPCCSystems/hpcc-data"
 category: data
 numDevices: 2

The Helm chart will expect to find PVCs named using the base name with numeric suffixes indexed starting
with the number 1 (e.g., data-mystorage-hpcc-localfile-pvc-1, data-mystorage-hpcc-localfile-pvc-2). The
Helm chart will automatically create multiple mount points, one for each PVC.

• data-mystorage-hpcc-localfile-pvc-1

• data-mystorage-hpcc-localfile-pvc-2

Each PVC will be mounted as a separate device.

Note The Helm chart expects indexing to start at 1. In this example the first PVC must be named
data-mystorage-hpcc-localfile-pvc-1 and not data-mystorage-hpcc-localfile-pvc-0.

• Create the necessary storage accounts, Persistent Volumes (PVs), and Persistent Volume Claims
(PVCs).

• Define a data plane that references the base name of your PVCs. The base name refers to the com-
mon prefix shared by all PVCs in the storage plane. For example, if your PVCs are named data-mystor-
age-hpcc-localfile-pvc-1 and data-mystorage-hpcc-localfile-pvc-2, the base name would be data-mystor-
age-hpcc-localfile-pvc.

• Create the PVCs with a common prefix, typically matching the pvc field in your HPCC Systems plane
definition, followed by a numeric suffix.

For example, data-mystorage-hpcc-localfile-pvc-1, data-mystorage-hpcc-localfile-pvc-2

The Helm chart will automatically create multiple mount points, one for each PVC.

This configuration enables you to scale your HPCC storage plane by leveraging multiple PVCs, thus im-
proving both capacity and performance.

Logical Partition Striping

HPCC engines, such as Thor, will utilize multiple devices by striping logical file partitions across them. For
example, Thor workers will write partitions to different PVCs, enabling parallel data access and improved
throughput.

© 2026 HPCC Systems®. All rights reserved
67

Containerized HPCC Systems® Platform
Configuration Values

Egress
In order to allow clusters to be securely locked down but still allow access to the services they need there
is an egress mechanism. Egress provides a similar mechanism to Ingress, by being able to define which
endpoints and ports components are permitted to connect to.

Most HPCC Systems components have their own auto-generated network policies. The generated network
policies typically work to limit ingress and egress to inter-component communication, or expected external
service ingress only.

For instance, in a default deployed system with network policies enforced, a query running (on hThor, Thor,
or Roxie), will not be able to connect with a 3rd party service, such as an LDAP service or log stack.

In the default configuration, any pod with Kube API access will also have access to any external endpoint.
This is because a NetworkPolicy is generated for egress access for components that need access to the
Kube API. However, global.egress.kubeApiCidr and global.egress.kubeApiPort in the values.yaml should
be configured in a secure system to lock this egress access down so that it only exposes egress access
to the Kube API endpoint.

We have added a mechanism similar to the visibilities definitions, which allows named egress sections,
which can then be referenced per component.

For example:

global:
 egress:
 engineEgress:
 - to:
 - ipBlock:
 cidr: 201.13.21.0/24
 - ipBlock:
 cidr: 142.250.187.0/24
 ports:
 - protocol: TCP
 port: 6789
 - protocol: TCP
 port: 7890
...

thor:
...
 egress: engineEgress

Note that the name 'engineEgress' is an arbitrary name, any name can be chosen, and any number of these
named egress sections can be defined.

For more information, please see the egress: section in the default stock/delivered HPCC Systems YAML
file. The values.yaml file can be found under the helm/hpcc/ directory on the HPCC Systems github repos-
itory:

https://github.com/hpcc-systems/HPCC-Platform

© 2026 HPCC Systems®. All rights reserved
68

Containerized HPCC Systems® Platform
Configuration Values

Security Values
This section will look at the values.yaml sections dealing with the system security components.

Secrets

The Secrets section contains a set of categories, each of which contain a list of secrets. The Secrets section
is where to get info into the system if you don't want it in the source. Such as code with embedded code,
you can have that defined in the code sign sections. If you have information that you don't want public but
need to run it you could use secrets. There is a category named "eclUser" which is where you would put
secrets that you want to be readable directly from ECL code. Other secret categories, including the "ecl"
category, are read internally by system components and not exposed directly to ECL code.

Vaults

Vaults is another way to do Secrets. The vaults section mirrors the secret section but leverages HashiCorp
Vault for the storage of secrets. There is a category for vaults named "eclUser". The intent of the eclUser
vault category is to be readable directly from ECL code. Only add vault configurations to the "eclUser"
category that you want ECL users to be able to access. Other vault categories, including the "ecl" category,
are read internally by system components and not exposed directly to ECL code.

Cross Origin Resource Handling

Cross-origin resource sharing (CORS) is a mechanism for integrating applications in different domains.
CORS defines how client web applications in one domain can interact with resources in another domain.
You can configure CORS support settings in the ESP section of the values.yaml file as illustrated below:

esp:
- name: eclwatch
 application: eclwatch
 auth: ldap
 replicas: 1
 # The following 'corsAllowed' section is used to configure CORS support
 # origin - the origin to support CORS requests from
 # headers - the headers to allow for the given origin via CORS
 # methods - the HTTP methods to allow for the given origin via CORS
 #
 corsAllowed:
 # origin starting with https will only allow https CORS
 - origin: https://*.example2.com
 headers:
 - "X-Custom-Header"
 methods:
 - "GET"
 # origin starting with http will allow http or https CORS
 - origin: http://www.example.com
 headers:
 - "*"
 methods:
 - "GET"
 - "POST"

© 2026 HPCC Systems®. All rights reserved
69

Containerized HPCC Systems® Platform
Configuration Values

Certificates

HPCC Systems containerized deployments support comprehensive certificate management through Helm
chart configuration. This includes support for multiple certificate issuers, domain management, and ad-
vanced certificate features for secure communication between components.

The certificate system integrates with cert-manager to provide automated certificate generation and renewal
for both internal (local, i.e., communication between HPCC components within the same cluster or name-
space) and external (public/remote) communications.

Enable Certificates

Use the certificates section to enable cert-manager to generate TLS certificates for each component in the
HPCC Systems deployment.

certificates:
 enabled: false
 issuers:
 local:
 name: hpcc-local-issuer

In the delivered YAML file certificates are not enabled, as illustrated above. You must first install the cert-
manager to use this feature.

Certificate Issuers Configuration

Certificate issuers are configured in the certificates.issuers section of the Helm values. The system
supports multiple issuer types:

• local: For internal component communication

• public: For external-facing services

• remote: For remote client connections

• signing: For code signing certificates

Remote Issuer Configuration

The remote issuer is specifically designed for generating certificates that can be used by remote clients to
securely connect to HPCC services. This issuer supports advanced domain configuration options.

Alternative Domains Support

The certificates.issuers.remote section supports an alternativeDomains array configuration
option. This feature allows certificates to be valid for multiple domains in addition to the primary domain
specified in the issuer configuration.

Configuration Syntax

Each entry in the alternativeDomains array represents an additional domain that will be included in the
dnsNames property of the generated Certificate resource manifest.

© 2026 HPCC Systems®. All rights reserved
70

Containerized HPCC Systems® Platform
Configuration Values

Example 1. Remote Issuer with Alternative Domains

certificates:
 enabled: true
 issuers:
 remote:
 name: remote-issuer
 kind: ClusterIssuer
 domain: example.com
 alternativeDomains:
 - subdomain1.example.com
 - subdomain2.example.com
 - api.example.org
 - secure.mycompany.net

In this configuration:

• The primary domain is example.com

• Certificates will also be valid for all domains listed in alternativeDomains

• The generated Certificate resource will include all domains in its dnsNames section

Certificate Generation Process

When the Helm chart is deployed with certificate generation enabled, the system automatically creates
Certificate resources based on the issuer configuration. For remote issuers with alternative domains:

1. Domain Collection: The system collects the primary domain and all alternative domains from the issuer
configuration

2. DNS Names Generation: Service names are combined with each domain to create comprehensive DNS
name lists

3. Certificate Creation: cert-manager generates certificates valid for all specified domain combinations

4. Secret Storage: Generated certificates are stored in Kubernetes secrets for use by HPCC components

Generated Certificate Properties

Certificates generated with alternative domains will contain:

Subject Alternative Names
(SAN)

All combinations of service names with the primary domain and alterna-
tive domains

Common Name Typically set to the service name combined with the primary domain

Validity Period Default 90-day validity with automatic renewal before expiration

Usage Configured for both server authentication and client authentication

Use Cases and Best Practices

Multi-Domain Certificate Management

The alternativeDomains feature is the preferred method for configuring certificates that need to be valid
across multiple domains and subdomains. Common use cases include:

© 2026 HPCC Systems®. All rights reserved
71

Containerized HPCC Systems® Platform
Configuration Values

• Multi-tenant Deployments: Supporting multiple customer domains from a single HPCC deployment

• Load Balancer Integration: Certificates valid for both direct service access and load balancer endpoints

• Development and Production: Single certificates valid across multiple environment domains

• Legacy Migration: Supporting both old and new domain names during migration periods

Configuration Best Practices

1. Domain Validation: Ensure all domains in alternativeDomains are properly configured in DNS be-
fore certificate generation

2. Certificate Authority Limits: Be aware of rate limits imposed by certificate authorities when using mul-
tiple domains

3. Security Considerations: Only include domains that should legitimately be covered by the same cer-
tificate

4. Renewal Planning: Monitor certificate renewal processes when using external certificate authorities

Complete Configuration Example

Below is a comprehensive example showing how to configure multiple issuers with alternative domain sup-
port:

Example 2. Complete Certificate Configuration

certificates:
 enabled: true
 issuers:
 local:
 name: local-ca-issuer
 kind: Issuer
 domain: hpcc.local

 public:
 name: letsencrypt-prod
 kind: ClusterIssuer
 domain: hpcc.example.com

 remote:
 name: remote-ca-issuer
 kind: ClusterIssuer
 domain: api.example.com
 alternativeDomains:
 - client.example.com
 - secure.example.com
 - legacy.oldcompany.net
 - backup.example.org

 signing:
 name: code-signing-issuer
 kind: Issuer
 domain: signing.internal

This configuration enables:

© 2026 HPCC Systems®. All rights reserved
72

Containerized HPCC Systems® Platform
Configuration Values

• Local inter-component communication with internal certificates

• Public-facing services with Let's Encrypt certificates

• Remote client certificates valid across multiple domains

• Code signing capabilities for ECL applications

Troubleshooting Certificates

Certificate Generation Issues

If certificates are not generating correctly with alternative domains:

1. Verify that cert-manager is properly installed and running

2. Check that all domains resolve properly via DNS

3. Examine Certificate and CertificateRequest resources for error messages

4. Validate issuer configuration and permissions

Common Error Messages

Watch for these common issues when using alternative domains:

DNS validation failures Ensure all alternative domains have proper DNS records and are acces-
sible from the certificate authority

Rate limit exceeded Some certificate authorities impose limits on the number of domains per
certificate or certificates per timeframe

Invalid domain format Verify that all domains in alternativeDomains follow proper DNS naming
conventions

Migration from Legacy Configuration

If you are currently using individual domain configurations or multiple certificate resources, consider migrat-
ing to the alternativeDomains approach for simplified management:

1. Identify all domains currently covered by separate certificates

2. Update the remote issuer configuration to include all domains in the alternativeDomains array

3. Deploy the updated configuration

4. Verify that the new certificate covers all required domains

5. Remove old certificate configurations once the new setup is validated

Note

The alternativeDomains configuration is now the preferred method for multi-domain cer-
tificate management in HPCC Systems containerized deployments. This approach simplifies
certificate management and reduces the overhead of maintaining multiple certificate resources.

© 2026 HPCC Systems®. All rights reserved
73

Containerized HPCC Systems® Platform
Configuration Values

Visibilities
The visibilities section can be used to set labels, annotations, and service types for any service with the
specified visibility.

Replicas and Resources
Other noteworthy values in the charts that have bearing on HPCC Systems set up and configuration.

Replicas

replicas: defines how many replica nodes come up, how many pods run to balance a load. To illustrate, if
you have a 1-way Roxie and set replicas to 2 you would have 2, 1-way Roxies.

Resources

Most all components have a resources section which defines how many resources are assigned to that
component. In the stock delivered values files, the resources: sections are there for illustration purposes
only, and are commented out. Any cloud deployment that will be performing any non-trivial function, these
values should be properly defined with adequate resources for each component, in the same way you would
allocate adequate physical resources in a data center. Resources should be set up in accordance with your
specific system requirements and the environment you would be running them in. Improper resource defi-
nition can result in running out of memory and/or Kubernetes eviction, since the system could use unbound
amounts of resources, such as memory, and nodes will get overwhelmed, at which point Kubernetes will
started evicting pods. Therefore if your deployment is seeing frequent evictions, you may want to adjust
your resource allocation.

 #resources:
 # cpu: "1"
 # memory: "4G"

Every component should have a resources entry, but some components such as Thor have multiple re-
sources. The manager, worker, eclagent components all have different resource requirements.

Environment Values
You can define environment variables in a YAML file. The environment values are defined under the glob-
al.env portion of the provided HPCC Systems values.yaml file. These values are specified as a list of name
value pairs as illustrated below.

global:
 env:
 - name: SMTPserver
 value: mysmtpserver

The global.env section of the supplied values.yaml file adds default environment variables for all compo-
nents. You can also specify environment variables for the individual components. Refer to the schema for
setting this value for individual components.

To add environment values you can insert them into your customization configuration YAML file when you
deploy your containerized HPCC Systems.

Environment Variables for Containerized Systems

There are several settings in environment.conf for bare-metal systems. While many environment.conf set-
tings are not valid for containers, some can be useful. In a cloud deployment, these settings are inherited

© 2026 HPCC Systems®. All rights reserved
74

Containerized HPCC Systems® Platform
Configuration Values

from environment variables. These environment variables are configurable using the values yaml either
globally, or at the component level.

Some of those variables are available for container and cloud deployments and can be set using the Helm
chart. The following bare-metal environment.conf values have these equivalent values which can be set
for containerized instances.

Environment.conf Value Helm Environment Variable

skipPythonCleanup SKIP_PYTHON_CLEANUP

jvmlibpath JAVA_LIBRARY_PATH

jvmoptions JVM_OPTIONS

classpath CLASSPATH

The following example sets the environment variable to skip Python cleanup on the Thor component:

thor:
 env:
 - name: SKIP_PYTHON_CLEANUP
 value: true

Index Build Plane
Define the indexBuildPlane value as a helm chart option to allow index files to be written by default to a
different data plane. Unlike flat files, index files have different requirements. The index files benefit from quick
random access storage. Ordinarily flat files and index files are output to the defined default data plane(s).
Using this option you can define that index files are built on a separate data plane from other common files.
This chart value can be supplied at a component or global level.

For example, adding the value to a global level under globlal.storage :

global:
 storage:
 indexBuildPlane: myindexplane

Optionally, you could add it at the component level, as follows:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 indexBuildPlane: myindexplane

When this value is set at the component level it would override the value set at the global level.

© 2026 HPCC Systems®. All rights reserved
75

Containerized HPCC Systems® Platform
Configuration Values

Pods and Nodes
One of the key features of Kubernetes is its ability to schedule pods on to nodes in the cluster. A pod is the
smallest and simplest unit in the Kubernetes environment that you can create or deploy. A node is either
a physical or virtual "worker" machine in Kubernetes.

The task of scheduling pods to specific nodes in the cluster is handled by the kube-scheduler. The default
behavior of this component is to filter nodes based on the resource requests and limits of each container
in the created pod. Feasible nodes are then scored to find the best candidate for the pod placement. The
scheduler also takes into account other factors such as pod affinity and anti-affinity, taints and tolerations,
pod topology spread constraints, and the node selector labels. The scheduler can be configured to use
these different algorithms and policies to optimize the pod placement according to your cluster’s needs.

You can deploy these values either using the values.yaml file or you can place into a file and have Kuber-
netes instead read the values from the supplied file. See the above section Customization Techniques for
more information about customizing your deployment.

Placements
Placements is a term used by HPCC Systems, which Kubernetes refers to as the scheduler or schedul-
ing/assigning. In order to avoid confusion within the HPCC Systems and ECL specific scheduler terms,
refer to Kubernetes scheduling as placements. Placements are a value in an HPCC Systems configuration
which is at a level above items, such as the nodeSelector, Toleration, Affinity and Anti-Affinity, and Topol-
ogySpreadConstraints.

The placement is responsible for finding the best node for a pod. Most often placement is handled automat-
ically by Kubernetes. You can constrain a Pod so that it can only run on particular set of Nodes.

Placements would then be used to ensure that pods or jobs that want nodes with specific characteristics
are placed on those nodes.

For instance a Thor cluster could be targeted for machine learning using nodes with a GPU. Another job
may want nodes with a good amount more memory or another for more CPU.

Using placements you can configure the Kubernetes scheduler to use a "pods" list to apply settings to pods.

For example:

 placements:
 - pods: [list]
 placement:
 <supported configurations>

Placement Scope

Use pod patterns to apply the scope for the placements.

The pods: [list] item can contain one of the following:

Type: <component> Covers all pods/jobs under this type of component. This is commonly used
for HPCC Systems components. For example, the type:thor which will apply
to any of the Thor type components; thoragent, thormanager, thoragent and
thorworker, etc.

Target: <name> The "name" field of each component, typical usage for HPCC Systems com-
ponents referrs to the cluster name. For example Roxie: -name: roxie which

© 2026 HPCC Systems®. All rights reserved
76

Containerized HPCC Systems® Platform
Configuration Values

will be the "Roxie" target (cluster). You can also define multiple targets with
each having a unique name such as "roxie", "roxie2", "roxie-web" etc.

Pod: <name> This is the "Deployment" metadata name from the name of the array item of
a type. For example, "eclwatch-", "mydali-", "thor-thoragent" using a regular
expression is preferred since Kubernetes will use the metadata name as a
prefix and dynamically generate the pod name such as, eclwatch-7f4dd4d-
d44cb-c0w3x.

Job name: The job name is typically a regular expression as well, since the job name is
generated dynamically. For example, a compile job compile-54eB67e567e,
could use "compile-" or "compile-.*" or "^compile-.*$"

All: Applies for all HPCC Systems components. The default placements for pods
delivered is [all]

Regardless of the order the placements appear in the configuration, they will be processed in the following
order: "all", "type", "target", and then "pod"/"job".

Mixed combinations

NodeSelector, taints and tolerations, and other values can all be placed on the same pods: [list] both per
zone and per node on Azure

placements:
- pods: ["eclwatch","roxie-workunit","^compile-.*$","mydali"]
 placement:
 nodeSelector:
 name: npone

Node Selection
In a Kubernetes container environment, there are several ways to schedule your nodes. The recommend-
ed approaches all use label selectors to facilitate the selection. Generally, you may not need to set such
constraints; as the scheduler usually does reasonably acceptable placement automatically. However, with
some deployments you may want more control over specific pods.

Kubernetes uses the following methods to choose where to schedule pods:

• nodeSelector field matching against node labels

• Affinity and anti-affinity

• Taints and Tolerations

• nodeName field

• Pod topology spread constraints

• Scheduler name

Node Labels

Kubernetes nodes have labels. Kubernetes has a standard set of labels used for nodes in a cluster. You can
also manually attach labels which is recommended as the value of these labels is cloud-provider specific
and not guaranteed to be reliable.

Adding labels to nodes allows you to schedule pods to nodes or groups of nodes. You can then use this
functionality to ensure that specific pods only run on nodes with certain properties.

© 2026 HPCC Systems®. All rights reserved
77

Containerized HPCC Systems® Platform
Configuration Values

The nodeSelector

The nodeSelector is a field in the Pod specification that allows you to specify a set of node labels that must
be present on the target node for the Pod to be scheduled there. It is the simplest form of node selection
constraint. It selects nodes based on the labels, but it has some limitations. It only supports one label key
and one label value. If you wanted to match multiple labels or use more complex expressions, you need
to use node Affinity.

Add the nodeSelector field to your pod specification and specify the node labels you want the target node to
have. You must have the node labels defined in the job and pod. Then you need to specify each node group
the node label to use. Kubernetes only schedules the pod onto nodes that have the labels you specify.

The following example shows the nodeSelector placed in the pods list. This example schedules "all" HPCC
components to use the node pool with the label group: "hpcc".

 placements:
 - pods: ["all"]
 placement:
 nodeSelector:
 group: "hpcc"

Note: The label group:hpcc matches the node pool label:hpcc.

This next example shows how to configure a node pool to prevent scheduling a Dali component onto this
node pool labelled with the key spot: via the value false. As this kind of node is not always available and
could get revoked therefore you would not want to use the spot node pool for Dali components. This is an
example for how to configure a specific type (Dali) of HPCC Systems component not to use a particular
node pool.

 placements:
 - pods: ["type:dali"]
 placement:
 nodeSelector:
 spot: "false"

When using nodeSelector, multiple nodeSelectors can be applied. If duplicate keys are defined, only the
last one prevails.

Taints and Tolerations

Taints and Tolerations are types of Kubernetes node constraints also referred to by node Affinity. Only one
affinity can be applied to a pod. If a pod matches multiple placement 'pods' lists, then only the last affinity
definition will apply.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate nodes. Tol-
erations are applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching
taints. Taints are the opposite -- they allow a node to repel a set of pods. One way to deploy using taints, is
to set to repel all but a specific node. Then that pod can be scheduled onto another node that is tolerate.

For example, Thor workers should all be on the appropriate type of VM. If a big Thor job comes along
– then the taints level repels any pods that attempt to be scheduled onto a node that does not meet the
requirements.

For more information and examples of our Taints, Tolerations, and Placements please review our developer
documentation:

https://github.com/hpcc-systems/HPCC-Platform/blob/master/helm/hpcc/docs/placements.md

© 2026 HPCC Systems®. All rights reserved
78

Containerized HPCC Systems® Platform
Configuration Values

Taints and Tolerations Examples

The following examples illustrate how some taints and tolerations can be applied.

Kubernetes can schedule a pod on to any node pool without a taint. In the following examples Kubernetes
can only schedule the two components to the node pools with these exact labels, group and gpu.

 placements:
 - pods: ["all"]
 tolerations:
 key: "group"
 operator: "Equal"
 value: "hpcc"
 effect: "NoSchedule"

placements:
 - pods: ["type:thor"]
 tolerations:
 key: "gpu"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

Multiple tolerations can also be used. The following example has two tolerations, group and gpu.

#The settings will be applied to all thor pods/jobs and myeclccserver pod and job
- pods: ["thorworker-", "thor-thoragent", "thormanager-","thor-eclagent","hthor-"]
 placement:
 nodeSelector:
 app: tf-gpu
 tolerations:
 - key: "group"
 operator: "Equal"
 value: "hpcc"
 effect: "NoSchedule"
 - key: "gpu"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

In this example the nodeSelector is preventing the Kubernetes scheduler from deploying any/all to this node
pool. Without taints the scheduler could deploy to any pods onto the node pool. By utilizing the nodeSelector,
the taint will force the pod to deploy only to the pods who match that node label. There are two constraints
then, in this example one from the node pool and the other from the pod.

Topology Spread Constraints

You can use topology spread constraints to control how pods are spread across your cluster among fail-
ure-domains such as regions, zones, nodes, and other user-defined topology domains. This can help to
achieve high availability as well as efficient resource utilization. You can set cluster-level constraints as a
default, or configure topology spread constraints for individual workloads. The Topology Spread Constraints
topologySpreadConstraints requires Kubernetes v1.19+.or better.

For more information see:

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/ and

https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Using the "topologySpreadConstraints" example, there are two node pools which have "hpcc=nodepool1"
and "hpcc=nodepool2" respectively. The Roxie pods will be evenly scheduled on the two node pools.

© 2026 HPCC Systems®. All rights reserved
79

Containerized HPCC Systems® Platform
Configuration Values

After deployment you can verify by issuing the following command:

kubectl get pod -o wide | grep roxie

The placements code:

- pods: ["type:roxie"]
 placement:
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: hpcc
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 roxie-cluster: "roxie"

Affinity and Anti-Affinity`

Affinity and anti-affinity expands the types of constraints that you can define. The affinity and anti-affinity
rules are still based on the labels. In addition to the labels, they provide rules that guide Kubernetes’ sched-
uler where to place pods based on specific criteria. The affinity/anti-affinity language is more expressive
than simple labels and gives you more control over the selection logic.

The are two main kinds of affinity, Node Affinity and Pod Affinity.

Node Affinity

Node affinity is similar to the nodeSelector concept that allows you to constrain which nodes your pod can
be scheduled onto based on the node labels. These are used to constrain the nodes that can receive a pod
by matching labels of those nodes. Node affinity and anti-affinity can only be used to set positive affinities
that attract pods to the node. These are used to constrain the nodes that can receive a pod by matching
labels to those nodes. Node affinity and anti-affinity can only be used to set positive affinities that attract
pods to the node.

There is no schema check for the content of affinity. Only one affinity can be applied to a pod or job. If a
pod/job matches multiple placement pods lists, then only the last affinity definition applies.

For more information, see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

There are two types of node affinity:

requiredDuringSchedulingIgnoredDuringExecution: The scheduler can't schedule the pod unless this rule
is met. This function is similar to the nodeSelector, but with a more expressive syntax.

preferredDuringSchedulingIgnoredDuringExecution: The scheduler tries to find a node that meets the rule.
If a matching node is not available, the scheduler still schedules the pod.

You can specify node affinities using the .spec.affinity.nodeAffinity field in your pod spec.

Pod Affinity

Pod affinity or Inter-Pod Affinity is used to constrain the nodes that can receive a pod by matching the
labels of the existing pods already running on to those nodes. Pod affinity and anti-affinity can be either an
attracting affinity or a repelling anti-affinity.

Inter-Pod Affinity works very similarly to Node Affinity but have some important differences. The "hard"
and "soft" modes are indicated using the same requiredDuringSchedulingIgnoredDuringExecution and
preferredDuringSchedulingIgnoredDuringExecution fields. However, these should be nested under the

© 2026 HPCC Systems®. All rights reserved
80

Containerized HPCC Systems® Platform
Configuration Values

spec.affinity.podAffinity or spec.affinity.podAntiAffinity fields depending on whether you want to increase or
reduce the Pod's affinity.

Affinity Example

The following code illustrates an example of affinity:

- pods: ["thorworker-.*"]
 placement:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

In the following schedulerName section the, the "affinity" settings can also be included with that example.

Note: The "affinity" value in the "schedulerName" field is only supported in Kubernetes 1.20.0 beta and
later versions.

schedulerName

The schedulerName field specifies the name of the scheduler that is responsible for scheduling a pod
or a task. In Kubernetes, you can configure multiple schedulers with different names and profiles to run
simultaneously in the cluster.

Only one "schedulerName" can be applied to any pod/job.

A schedulerName example:

- pods: ["target:roxie"]
 placement:
 schedulerName: "my-scheduler"
#The settings will be applied to all thor pods/jobs and myeclccserver pod and job
- pods: ["target:myeclccserver", "type:thor"]
 placement:
 nodeSelector:
 app: "tf-gpu"
 tolerations:
 - key: "gpu"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"

© 2026 HPCC Systems®. All rights reserved
81

Containerized HPCC Systems® Platform
Configuration Values

Helm and Yaml Basics
This section is intended to provide some basic information to help you in getting started with your HPCC
Systems containerized deployment. There are numerous resources available for learning about Kubernetes,
Helm, and YAML files. For more information about using these tools, or for cloud or container deployments,
please refer to the respective documentation.

In the previous section, we touched on the values.yaml file and the values-schema.json file. This section
expands on some of those concepts and how they might be applied when using the containerized version
of the HPCC Systems platform.

The values.yaml File Structure
The values.yaml file is a YAML file which is a format frequently used for configuration files. The construct
that makes up the bulk of a YAML file is the key-value pair, sometimes referred to as a dictionary. The key-
value pair construct consists of a key that points to some value(s). These values are defined by the schema.

In these configuration files the indentation used to represent document structure relationship is quite impor-
tant. Leading spaces are significant and tabs are not allowed.

YAML files are made up mainly of two types of elements: dictionaries and lists.

Dictionary

Dictionaries are collections of key-value mappings. All keys are case-sensitive and the indentation is also
crucial. These keys must be followed by a colon (:) and a space. Dictionaries can also be nested.

For example:

 logging:
 detail: 80

This is an example of a dictionary for logging.

Dictionaries in passed in values files, such as in the myoverrides.yaml file in the example below, will be
merged into the corresponding dictionaries in the existing values, starting with the default values from the
delivered hpcc helm chart.

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

Any pre-existing values in a dictionary that are not overridden will continue to be present in the merged
result. However, you can override the contents of a dictionary by setting it to null.

Lists

Lists are groups of elements beginning at the same indentation level starting with a - (a hyphen and a
space). Every element of the list is indented at the same level and starts with a hyphen and a space. Lists
can also be nested, and they can even be lists of dictionaries.

An example of a list of dictionaries, with placement.tolerations as a nested list.:

placements:
- pods: ["all"]
 placement:
 tolerations:
 - key: "kubernetes.azure.com/scalesetpriority"

© 2026 HPCC Systems®. All rights reserved
82

Containerized HPCC Systems® Platform
Configuration Values

The list entry here is denoted using the hyphen, which is an entry item in the list, which itself is a dictionary
with nested attributes. Then the next hyphen (at that same indentation level) is the next entry in that list. A
list can be a list of simple value elements, or the elements can themselves be lists or dictionaries.

Sections of the HPCC Systems Values.yaml

The first section of the values.yaml file describes global values. Global applies generally to everything.

Default values for hpcc.
global:
 # Settings in the global section apply to all HPCC components in all subcharts

In the delivered HPCC Systems values.yaml file excerpt (above) global: is the top level dictionary. As noted
in the comments, the settings in the global section apply to all HPCC Systems components. Note from the
indentation level that the other values are nested in that global dictionary.

Items defined in the global section are shared between all components.

Some examples of global values in the delivered values.yaml file are the storage and security sections.

storage:
 planes:

and also

security:
 eclSecurity:
 # Possible values:
 # allow - functionality is permitted
 # deny - functionality is not permitted
 # allowSigned - functionality permitted only if code signed
 embedded: "allow"
 pipe: "allow"
 extern: "allow"
 datafile: "allow"

In the above examples, storage: and security: are global chart values.

HPCC Systems values.yaml File Usage
The HPCC Systems values.yaml file is used by the Helm chart to control how HPCC Systems is deployed.
The stock delivered HPCC Systems values.yaml is intended as a quick start type installation guide which is
not appropriate for non-trivial practical usage. You should customize your deployment to one more suited
towards your specific needs.

Further information about customized deployments is covered in previous sections, as well as the Kuber-
netes and Helm documentation.

Merging and Overriding

Having multiple YAML files, such as one for logging, another for storage, yet another for secrets and so
forth, allows granular configuration. These configuration files can all be under version control. There they
can be versioned, checked in, etc. and have the benefit of only defining/changing the specific area required,
while ensuring any non-changing areas are left untouched.

The rule here to keep in mind where multiple YAML files are applied, the later ones will always overwrite
the values in the earlier ones. They are always merged in sequence of the order they are specified on the
helm command line.

© 2026 HPCC Systems®. All rights reserved
83

Containerized HPCC Systems® Platform
Configuration Values

Another point to consider, where there is a global dictionary such as root: and its value is redefined in a 2nd
file (as a dictionary) it would not be overwritten. You simply cannot overwrite a dictionary. You can redefine
a dictionary and set it to null, which will effectively wipe out the first.

WARNING: If you had a global definition (such as storage.planes) and merge it where that becomes rede-
fined it would wipe out every definition in that list.

Another means to wipe out every value in a list is to pass in an empty set denoted by a [] such as this
example:

bundles: []

This would wipe out any properties defined for bundles.

Generally Applicable

These items are generally applicable for our HPCC Systems Helm YAML files.

• All names should be unique.

• All prefixes should be unique.

• Services should be unique.

• YAML files are merged in sequence.

Regarding the HPCC Systems components, primarily the components are lists. If you have an empty value
list denoted by [], it would invalidate that list elsewhere.

Overrides

You can add or modify HPCC Systems components by providing override values. You override the Helm
chart values by using either override value files with -f or the --set flag to specify a single value. Helm always
merges the override values in the order you specify them on the command line.

For example:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

Overrides any values in the delivered values.yaml by passing in values defined in myoverrides.yaml

You can also use --set as in the following example:

helm install myhpcc hpcc/hpcc --set storage.daliStorage.plane=dali-plane

To override only that one specified value.

It is even possible to combine file and single value overrides, for instance:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml --set storage.daliStorage.plane=dali-plane

In the preceding example, the --set flag overrides the value for the storage.daliStorage.plane (if) set in the
myoverrides.yaml, which would override any values.yaml file settings and results in setting its value to dali-
plane.

If the --set flag is used on helm install or helm upgrade, those values are simply converted to YAML on
the client side.

You can specify the override flags multiple times. The priority will be given to the last (right-most) file spec-
ified.

© 2026 HPCC Systems®. All rights reserved
84

Containerized HPCC Systems® Platform
Configuration Values

Global/Expert Settings

The 'expert' section under 'global' of the values.yaml should be used to define low-level, testing, or developer
settings. This section of the helm chart is intended to be used for custom, low-level or debugging options.,
therefore in most deployments, it should remain empty.

This is an example of what the global/expert section could look like:

global:
 expert:
 numRenameRetries: 3
 maxConnections: 10
 keepalive:
 time: 200
 interval: 75
 probes: 9

NOTE: Some components (such as the DfuServer and Thor) also have an 'expert' settings area (see the
values schema) that can be used for relevant settings on a per component instance basis, rather than
setting them globally.

The following options are currently available:

numRenameRetries (unsigned) If set to a positive number, the platform will re-attempt to perform a
rename of a physical file on failure (after a short delay). This should not normally
be needed, but on some file systems it may help mitigate issues where the file has
just been closed and not exposed correctly at the posix layer.

maxConnections (unsigned) This is a DFU Server setting. If set, it will limit the maximum number of
parallel connections and partition streams that will be active at any one time. By
default a DFU job will run as many active connection/streams as there are partitions
involved in the spray, limited to an absolute maximum of 800. The maxConnections
setting can be used to reduce this concurrency. This might be helpful in some sce-
narios where the concurrency is causing network congestion and degraded perfor-
mance.

keepalive (time: unsigned, interval: unsigned, probes: unsigned) See keepalive example
above. If set, these settings will override the system default socket keepalive set-
tings each time the platform creates a socket. This may be useful in some scenarios
if the connections would otherwise be closed prematurely by external factors (e.g.,
firewalls). An example of this is that Azure instances will close sockets that have
been idle for greater than 4 minutes that are connected outside of its networks.

© 2026 HPCC Systems®. All rights reserved
85

Containerized HPCC Systems® Platform
Containerized Logging

Containerized Logging

Logging Background
Bare-metal HPCC Systems component logs are written to persistent files on local file system, In contrast,
containerized HPCC logs are ephemeral, and their location is not always well defined. HPCC Systems
components provide informative application level logs for the purpose of debugging problems, auditing
actions, and progress monitoring.

Following the most widely accepted containerized methodologies, HPCC Systems component log informa-
tion is routed to the standard output streams rather than local files. In containerized deployments there aren't
any component logs written to files as in previous editions.

These logs are written to the standard error (stderr) stream. At the node level, the contents of the standard
error and out streams are redirected to a target location by a container engine. In a Kubernetes environment,
the Docker container engine redirects the streams to a logging driver, which Kubernetes configures to write
to a file in JSON format. The logs are exposed by Kubernetes via the aptly named "logs" command.

For example:

>kubectl logs myesp-6476c6659b-vqckq
>0000CF0F PRG INF 2020-05-12 17:10:34.910 1 10690 "HTTP First Line: GET / HTTP/1.1"
>0000CF10 PRG INF 2020-05-12 17:10:34.911 1 10690 "GET /, from 10.240.0.4"
>0000CF11 PRG INF 2020-05-12 17:10:34.911 1 10690 “TxSummary[activeReqs=22; rcv=5ms;total=6ms;]"

It is important to understand that these logs are ephemeral in nature, and may be lost if the pod is evicted,
the container crashes, the node dies, etc. Due to the nature of containerized systems, related logs are likely
to originate from various locations and need to be collected and processed. It is highly recommended to
develop a retention and processing strategy based on your needs.

Many tools are available to help create an appropriate solution based on either a do-it-yourself approach,
or managed features available from cloud providers.

For the simplest of environments, it might be acceptable to rely on the standard Kubernetes process which
forwards all contents of stdout/stderr to file. However, as the complexity of the cluster grows or the impor-
tance of retaining the logs' content grows, a cluster-level logging architecture should be employed.

Cluster-level logging for the containerized HPCC Systems cluster can be accomplished by including a log-
ging agent on each node. The task of each of agent is to expose the logs or push them to a log processing
back-end. Logging agents are generally not provided out of the box, but there are several available such as
Elasticsearch and Stackdriver Logging. Various cloud providers offer built-in solutions which automatically
harvest all stdout/err streams and provide dynamic storage and powerful analytic tools, and the ability to
create custom alerts based on log data.

It is your responsibility to determine the appropriate solution to process the streaming log data.

Log Processing Solutions

There are multiple log processing solutions available. You could choose to integrate HPCC Systems logging
data with any existing logging solutions, or to implement another one specifically for HPCC Systems data.
Starting with HPCC Systems version 8.4, we provide a lightweight, yet complete log-processing solution for
convenience. Subsequent sections will look at a couple other possible log-processing solutions.

© 2026 HPCC Systems®. All rights reserved
86

Containerized HPCC Systems® Platform
Containerized Logging

Log Dependant Applications

Currently there is a utility delivered with a containerized HPCC Systems deployment which is dependant on
having a properly configured log-processing solution for optimal results.

The Z.A.P. Utility

The Zipped Analysis Package (Z.A.P.) utility collects system information and encapsulates it into a shareable
package. This utility packages up information to send for further analysis. ZAP reports contain several
artifacts related to a given workunit, to aid in debugging.

The Component logs are one of most important artifacts expected to be included in the report. In container-
ized deployments logging is handled differently from bare metal. The log fetching is dependent on a back-
end log processor being properly configured and available and the HPCC LogAccess feature configured
to bind to the log processor. If those two dependencies are not met, the containerized cluster logs are not
included in the ZAP report. Those ZAP reports will then be incomplete. To ensure inclusion of the logs in
the ZAP report you must have log access configured properly. See the Containerized Logging sections for
more information.

© 2026 HPCC Systems®. All rights reserved
87

Containerized HPCC Systems® Platform
Containerized Logging

Managed Elastic Stack Solution
HPCC Systems provides a managed Helm chart, elastic4hpcclogs which utilizes the Elastic Stack Helm
charts for Elastic Search, Filebeats, and Kibana. This chart describes a local, minimal Elastic Stack instance
for HPCC Systems component log processing. Once successfully deployed, HPCC component logs pro-
duced within the same namespace should be automatically indexed on the Elastic Search end-point. Users
can query those logs by issuing Elastic Search RESTful API queries, or via the Kibana UI (after creating
a simple index pattern).

Out of the box, the Filebeat forwards the HPCC component log entries to a generically named index: 'hpcc-
logs'- <DATE_STAMP> and writes the log data into 'hpcc.log.*' prefixed fields. It also aggregates k8s, Dock-
er, and system metadata to help the user query the log entries of their interest.

A Kibana index pattern is created automatically based on the default filebeat index layout.

Installing the elastic4hpcclogs chart
Installing the provided simple solution is as the name implies, simple and a convenient way to gather and
filter log data. It is installed via our helm charts from the HPCC Systems repository. In the HPCC-plat-
form/helm directory, the elastic4hpcclogs chart is delivered along with the other HPCC System platform
components. The next sections will show you how to install and set up the Elastic stack logging solution
for HPCC Systems.

NOTE: The elastic4hpcclogs chart does not enable any security. The responsibility of deter-
mining the need for security and enabling security on any deployed Elastic Stack instance or
components is up to you and your organization.

Add the HPCC Systems Repository

The delivered Elastic for HPCC Systems chart can be found in the HPCC Systems Helm repository. To fetch
and deploy the HPCC Systems managed charts, add the HPCC Systems Helm repository if you haven't
done so already:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Once this command has completed successfully, the elastic4hpcclogs chart will be accessible.

Confirm the appropriate chart was pulled down.

helm list

Issuing the helm list command will display the available HPCC Systems charts and repositories. The elas-
tic4hpcclogs chart is among them.

© 2026 HPCC Systems®. All rights reserved
88

Containerized HPCC Systems® Platform
Containerized Logging

Install the elastic4hpcc chart

Install the elastic4hpcclogs chart using the following command:

helm install <Instance_Name> hpcc/elastic4hpcclogs

Provide the name you wish to call your Elastic Search instance for the <Instance_Name> parameter. For
example, you could call your instance "myelk" in which case you would issue the install command as follows:

helm install myelk hpcc/elastic4hpcclogs

Upon successful completion, the following message is displayed:

Thank you for installing elastic4hpcclogs.
 A lightweight Elastic Search instance for HPCC component log processing.

This deployment varies slightly from defaults set by Elastic, please review the effective values.

PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit manual removal
 when no longer needed.

IMPORTANT: PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit
manual removal when no longer needed. This can be particularly important for some cloud
providers which could accrue costs even after no longer using your instance. You should ensure
no components (such as PVCs) persist and continue to accrue costs.

NOTE: Depending on the version of Kubernetes, users might be warned about deprecated APIs in the
Elastic charts (ClusterRole and ClusterRoleBinding are deprecated in v1.17+). Deployments based on Ku-
bernetes < v1.22 should not be impacted.

Confirm Your Pods are Ready

Confirm the Elastic pods are ready. Sometimes after installing, pods can take a few seconds to come up.
Confirming the pods are in a ready state is a good idea before proceeding. To do this, use the following
command:

kubectl get pods

This command returns the following information, displaying the status of the of the pods.

elasticsearch-master-0 1/1 Running 0
myelk-filebeat-6wd2g 1/1 Running 0
myelk-kibana-68688b4d4d-d489b 1/1 Running 0

© 2026 HPCC Systems®. All rights reserved
89

Containerized HPCC Systems® Platform
Containerized Logging

Once all the pods are indicating a 'ready' state and 'Running', including the three components for filebeats,
Elastic Search, and Kibana (highlighted above) you can proceed.

Confirming the Elastic Services

To confirm the Elastic services are running, issue the following command:

$ kubectl get svc

This displays the following confirmation information:

...
elasticsearch-master ClusterIP 10.109.50.54 <none> 9200/TCP,9300/TCP 68m
elasticsearch-master-headless ClusterIP None <none> 9200/TCP,9300/TCP 68m
myelk-kibana LoadBalancer 10.110.129.199 localhost 5601:31465/TCP 68m
...

Note: The myelk-kibana service is declared as LoadBalancer for convenience.

Configuring of Elastic Stack Components

You may need or want to customise the Elastic stack components. The Elastic component charts values
can be overridden as part of the HPCC System deployment command.

For example:

helm install myelk hpcc/elastic4hpcclogs --set elasticsearch.replicas=2

Please see the Elastic Stack GitHub repository for the complete list of all Filebeat, Elastic Search, LogStash
and Kibana options with descriptions.

Use of HPCC Systems Component Logs in Kibana

Once enabled and running, you can explore and query HPCC Systems component logs from the Kibana
user interface. Kibana index patterns are required to explore Elastic Search data from the Kibana user
interface. For more information about using the Elastic-Kibana interface please refer to the corresponding
documentation:

© 2026 HPCC Systems®. All rights reserved
90

Containerized HPCC Systems® Platform
Containerized Logging

https://www.elastic.co/

and

https://www.elastic.co/elastic-stack/

Configuring logAccess for Elasticstack

The logAccess feature allows HPCC Systems to query and package relevant logs for various features such
as the ZAP report, WorkUnit helper logs, ECLWatch log viewer, etc.

Once the logs are migrated or routed to the elastic stack instance. The HPCC Systems platform needs to
be able to access those logs. The way you direct HPCC Systems to do so is by providing a values file that
includes the log mappings. We have provided a default values file and we provide an example command
line that inserts that values file into your deployment. This suggested configuration values file for enabling
log access can be found in the HPCC Systems Platform GitHub repository.

https://github.com/hpcc-systems/HPCC-Platform

Then navigating to the helm/examples/azure/log-analytics/loganalytics-hpcc-logaccess.yaml file.

You can use the delivered Elastic4HPCCLogs chart provided or you can add the values there to your
customized configuration values yaml file.

You can then install it using a command such as:

helm install mycluster hpcc/hpcc -f elastic4hpcclogs-hpcc-logaccess.yaml

© 2026 HPCC Systems®. All rights reserved
91

Containerized HPCC Systems® Platform
Containerized Logging

Azure Log Analytics Solution
Azure Kubernetes Services (AKS) Azure Log Analytics (ALA) is an optional feature designed to help mon-
itor performance and health of Kubernetes based clusters. Once enabled and associated a given AKS with
an active HPCC System cluster, the HPCC component logs are automatically captured by Log Analytics.
All STDERR/STDOUT data is captured and made available for monitoring and/or querying purposes. As
is usually the case with cloud provider features, cost is a significant consideration and should be well un-
derstood before implementation. Log content is written to the logs store associated with your Log Analytics
workspace.

Enabling Azure Log Analytics
Enable Azure's Log Analytics (ALA) on the target AKS cluster using one of the following options: Direct
command line, Scripted command line, or from the Azure portal.

For more detailed information refer to the Azure documentation:

https://docs.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-onboard

Direct Command Line

To enable the Azure Log Analytics insights from the command line:

You can create a dedicated log analytics workspace manually, or you can skip this step and utilize the
default workspace instead.

To create a dedicated workspace enter this command:

az monitor log-analytics workspace create -g myresourcegroup -n myworkspace --query-access Enabled

To enable Log Analytics feature on a target AKS cluster, reference the workspace resource id created in
the previous step:

az aks enable-addons -g myresourcegroup -n myaks -a monitoring --workspace-resource-id \
 "/subscriptions/xyz/resourcegroups/myresourcegroup/providers/ \
 microsoft.operationalinsights/workspaces/myworkspace"

Scripted Command Line

As a convenience, HPCC Systems provides a script to enable ALA (with a dedicated log analytics work-
space) on the target AKS cluster.

The enable-loganalytics.sh script is located at:

https://github.com/hpcc-systems/HPCC-Platform/tree/master/helm/examples/azure/log-analytics

The script requires populating the following values in the env-loganalytics environment file.

Provide these values in the env-loganalytics environment file order to create a new Azure Log Analytics
workspace, associate it with a target AKS cluster, and enable the processing of logs:

• LOGANALYTICS_WORKSPACE_NAME The desired name for the Azure Log Analytics workspace to
be associated with target AKS cluster. A new workspace is created if this value does not exist

• LOGANALYTICS_RESOURCE_GROUP The Azure resource group associated with the target AKS
cluste. A new workspace will be associated with this resource group.

© 2026 HPCC Systems®. All rights reserved
92

Containerized HPCC Systems® Platform
Containerized Logging

• AKS_CLUSTER_NAME The name of the target AKS cluster to associate the log analytics workspace.

• TAGS The tags associated with the new workspace.

For example: "admin=MyName email=my.email@example.com environment=myenv justification=test-
ing"

• AZURE_SUBSCRIPTION [Optional] Ensures this subscription is set before creating the new workspace

Once these values are populated, the enable-loganalyics.sh script can be executed and it will create the
log analytics workspace and associate it with the target AKS cluster.

Azure Portal

To enable the Azure Log Analytics on the Azure portal:

1. Select Target AKS cluster

2. Select Monitoring

3. Select Insights

4. Enable - choose default workspace

Configure HPCC logAccess for Azure
The logAccess feature allows HPCC Systems to query and package relevant logs for various features such
as the ZAP report, WorkUnit helper logs, ECLWatch log viewer, etc.

Procure Service Principal

Azure requires an Azure Active Directory (AAD) registered application in order to grant Log Analytics API
access. Procure an AAD registered application.

For more information about registering an Azure Active Difrectory see the Azure official documentation:

https://docs.microsoft.com/en-us/power-apps/developer/data-platform/walkthrough-register-app-azure-
active-directory

Depending on your Azure subscription structure, it might be necessary to request this from a subscription
administrator.

Provide AAD Registered Application Information

HPCC Systems logAccess requires access to the AAD tenant, client, token, and target workspace ID via
secure secret object. The secret is expected to be in the 'esp' category, and named 'azure-logaccess'.

The following key value pairs are supported

• aad-tenant-id

• aad-client-id

• aad-client-secret

• ala-workspace-id

© 2026 HPCC Systems®. All rights reserved
93

Containerized HPCC Systems® Platform
Containerized Logging

The 'create-azure-logaccess-secret.sh' script provided at:

https://github.com/hpcc-systems/HPCC-Platform/tree/master/helm/examples/azure/log-analytics

The script can be used to create the necessary secret.

Example manual secret creation command (assuming ./secrets-templates contains a file named exactly as
the above keys):

create-azure-logaccess-secret.sh .HPCC-Platform/helm/examples/azure/log-analytics/secrets-templates/

Otherwise, create the secret manually.

Example manual secret creation command (assuming ./secrets-templates contains a file named exactly as
the above keys):

kubectl create secret generic azure-logaccess \
 --from-file=HPCC-Platform/helm/examples/azure/log-analytics/secrets-templates/

Configure HPCC logAccess

The target HPCC Systems deployment should be configured to target the above Azure Log Analytics work-
space by providing appropriate logAccess values (such as ./loganalytics-hpcc-logaccess.yaml). The previ-
ously created azure-logaccess secret must be declared and associated with the esp category, this can be
accomplished via secrets value yaml (such as ./loganalytics-logaccess-secrets.yaml).

Example use:

helm install myhpcc hpcc/hpcc \
 -f HPCC-Platform/helm/examples/azure/log-analytics/loganalytics-hpcc-logaccess.yaml

Accessing HPCC Systems Logs
The AKS Log Analytics interface on Azure provides Kubernetes-centric cluster/node/container-level health
metrics visualizations, and direct links to container logs via "log analytics" interfaces. The logs can be queried
via “Kusto” query language (KQL).

See the Azure documentation for specifics on how to query the logs.

Example KQL query for fetching "Transaction summary" log entries from an ECLWatch container:

let ContainerIdList = KubePodInventory
| where ContainerName =~ 'xyz/myesp'
| where ClusterId =~ '/subscriptions/xyz/resourceGroups/xyz/providers/Microsoft.
 ContainerService/managedClusters/aks-clusterxyz'
| distinct ContainerID;
ContainerLog
| where LogEntry contains "TxSummary["
| where ContainerID in (ContainerIdList)
| project LogEntrySource, LogEntry, TimeGenerated, Computer, Image, Name, ContainerID
| order by TimeGenerated desc
| render table

Sample output

© 2026 HPCC Systems®. All rights reserved
94

Containerized HPCC Systems® Platform
Containerized Logging

More complex queries can be formulated to fetch specific information provided in any of the log columns
including unformatted data in the log message. The Log Analytics interface facilitates creation of alerts
based on those queries, which can be used to trigger emails, SMS, Logic App execution, and many other
actions.

© 2026 HPCC Systems®. All rights reserved
95

Containerized HPCC Systems® Platform
Containerized Logging

Controlling HPCC Systems Logging
Output
The HPCC Systems logs provide a wealth of information which can be used for benchmarking, auditing,
debugging, monitoring, etc. The type of information provided in the logs and its format is trivially controlled
via standard Helm configuration. Keep in mind in container mode, every line of logging output is liable to
incur a cost depending on the provider and plan you have and the verbosity should be carefully controlled
using the following options.

By default, the component logs are not filtered, and contain the following columns:

MessageID TargetAudience LogEntryClass JobID DateStamp TimeStamp ProcessId ThreadID QuotedLogMessage

The logs can be filtered by TargetAudience, Category, or Detail Level. Further, the output columns can be
configured. Logging configuration settings can be applied at the global, or component level.

Target Audience Filtering
The availble target audiences include operator(OPR), user(USR), programmer(PRO), monitor(MON), au-
dit(ADT), or all. The filter is controlled by the <section>.logging.audiences value. The string value is com-
prised of 3 letter codes delimited by the aggregation operator (+) or the removal operator (-).

For example, all component log output to include Programmer and User messages only:

helm install myhpcc ./hpcc --set global.logging.audiences="PRO+USR"

Target Category Filtering
The available target categories include disaster(DIS), error(ERR), information(INF), warning(WRN),
progress(PRO), event(EVT), metrics(MET). The category (or class) filter is controlled by the <section>.log-
ging.classes value, comprised of 3 letter codes delimited by the aggregation operator (+) or the removal
operator (-).

For example, the mydali instance's log output to include all classes except for progress:

helm install myhpcc ./hpcc --set dali[0].logging.classes="ALL-PRO" --set dali[0].name="mydali"

Log Detail Level Configuration
Log output verbosity can be adjusted from "critical messages only" (1) up to "report all messages" (100).
The default log level is rather high (80) and should be adjusted accordingly.

These are the available log levels:

• CriticalMsgThreshold = 1;

• FatalMsgThreshold = 1;

• ErrMsgThreshold = 10;

• WarnMsgThreshold = 20;

• AudMsgThreshold = 30;

© 2026 HPCC Systems®. All rights reserved
96

Containerized HPCC Systems® Platform
Containerized Logging

• ProgressMsgThreshold = 50;

• InfoMsgThreshold = 60;

• DebugMsgThreshold = 80;

• ExtraneousMsgThreshold = 90;

For example, to show only progress and lower level (more critical) messages set the verbosity to 50:

helm install myhpcc ./hpcc --set global.logging.detail="50"

Log Data Column Configuration
The available log data columns include messageid(MID), audience(AUD), class(CLS), date(DAT),
time(TIM), node(NOD), millitime(MLT), microtime(MCT), nanotime(NNT), processid(PID), threadid(TID),
job(JOB), use(USE), session(SES), code(COD), component(COM), quotedmessage(QUO), prefix(PFX),
all(ALL), and standard(STD). The log data columns (or fields) configuration is controlled by the <sec-
tion>.logging.fields value, comprised of 3 letter codes delimited by the aggregation operator (+) or the re-
moval operator (-).

For example, all component log output should include the standard columns except the job ID column:

helm install myhpcc ./hpcc --set global.logging.fields="STD-JOB"

Adjustment of per-component logging values can require assertion of multiple component specific values,
which can be inconvinient to do via the --set command line parameter. In these cases, a custom values file
could be used to set all required fields.

For example, the ESP component instance 'eclwatch' should output minimal log:

helm install myhpcc ./hpcc --set -f ./examples/logging/esp-eclwatch-low-logging-values.yaml

Asychronous Logging Configuration
By default log entries will be created and logged asynchronously, so as not to block the client that is logging.
Log entries will be held in a queue and output on a background thread. This queue has a maximum depth,
once hit, the client will block waiting for capacity. Alternatively, the behaviour can be be configured such
that when this limit is hit, logging entries are dropped and lost to avoid any potential blocking.

NB: normally it is expected that the logging stack will keep up and the default queue limit will be sufficient
to avoid any blocking.

The defaults can be configured by setting <section>.logging.queueLen and/or <section>.logging.queue-
Drop.

Setting <section>.logging.queueLen to 0, will disabled asynchronous logging, i.e. each log will block until
completed.

Setting <section>.logging.queueDrop to a non-zero (N) value will cause N logging entries from the queue
to be discarded if the queueLen is reached.

© 2026 HPCC Systems®. All rights reserved
97

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Troubleshooting Containerized
Deployments

© 2026 HPCC Systems®. All rights reserved
98

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Introduction
Helm is a powerful package manager for Kubernetes, simplifying the deployment and management of com-
plex applications. However, even with Helm, deployment issues can arise. This chapter will guide you
through common troubleshooting steps for Helm deployments. Command-line tools, such as kubectl and
helm are available for both local and cloud deployments.

© 2026 HPCC Systems®. All rights reserved
99

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Useful Helm Commands
Here are some useful Helm commands for troubleshooting.

List deployments using this command in a terminal window:

helm list

This returns all installed Helm releases.

If you have multiple namespaces, use this command:

helm list -A

Returns all installed Helm releases across all namespaces.

Get the status of a specific release using this command in a terminal window:

helm status <release-name>

This returns the status of a specific release.

Get the user supplied values for a release using this command in a terminal window:

helm get values <release-name>

By effectively using these Helm commands, you can quickly identify and resolve issues with your Helm
deployments. Remember to consult the official Helm documentation for more detailed information and spe-
cific use cases.

© 2026 HPCC Systems®. All rights reserved
100

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Check the Status of Pods
Pods are the smallest deployable units of computing that can be created and managed in Kubernetes.
Checking the status of pods is a fundamental step in troubleshooting Kubernetes deployments. By monitor-
ing pod status, you can quickly identify and address potential issues, ensuring the health and performance
of your applications.

The HPCC Systems platform has one or more pods for each component of a deployed system.

To get a quick overview of pod status, use the following command in a terminal window:

kubectl get pods

This lists all pods in your cluster, along with their status, restart count, and other details.

If you have deployments to more than one namespace, use this command:

kubectl get pods -A

This lists all pods in all namespaces.

Each pod should indicate a status of Running and have a matching number of pods displayed in the READY
column.

Check the RESTARTS column, a high number of restarts may indicate issues.

© 2026 HPCC Systems®. All rights reserved
101

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Identifying Other Issues and Their Root Cause
Pending Status:

Insufficient Resources The pod might be waiting for resources like CPU or memory to become
available.

Scheduling Failures There might be scheduling conflicts or node issues preventing the pod from
being scheduled.

Running Status:

High Restart Count Frequent restarts could indicate issues with the pod's configuration, image, or
underlying infrastructure.

Resource Constraints The pod might be experiencing resource limitations, leading to performance
degradation or crashes.

Failed Status:

Container Failures One or more containers within the pod might have failed due to errors or crash-
es.

Termination Signals The pod might have been intentionally terminated, potentially due to a deploy-
ment or scaling operation.

© 2026 HPCC Systems®. All rights reserved
102

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Describe a Pod
Use the kubectl command-line tool to get detailed information about pods. By describing a pod, you can
gain valuable insights into its current state, configuration, and resource utilization.

To get detailed information about a pod, use the following command in a terminal window:

kubectl describe pod <pod-name>

The output provides detailed information about the pod, including:

Events A timeline of events related to the pod's lifecycle. If there are issues with the deployment,
they are commonly found in this section.

Containers Information about the containers running within the pod.

Status The current status of the pod.

Conditions The conditions that the pod must meet to be considered running.

If you have deployments to more than one namespace, use this command:

kubectl describe pod <pod-name> -A

This describes the pod across all namespaces.

By carefully analyzing this information, you can:

Identify and troubleshoot is-
sues

Pinpoint the root cause of problems, such as resource constraints, con-
figuration errors, or network connectivity issues.

Monitor pod health and per-
formance

Track the pod's status, resource usage, and event history to ensure it's
operating as expected.

Optimize resource allocation Adjust resource requests and limits to improve performance and cost-
efficiency.

Gain insights into Kubernetes
scheduling and resource
management

Learn how Kubernetes allocates resources to pods and handles failures.

By mastering the art of describing pods, you can become a more effective Kubernetes administrator and
troubleshoot your deployments with confidence.

© 2026 HPCC Systems®. All rights reserved
103

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Check the Status of Services
Services expose applications running on a cluster.

The kubectl get services command is a powerful tool for troubleshooting Kubernetes deployments. It pro-
vides a concise overview of the services running in your cluster, helping you identify potential issues and
their root causes.

To get a quick overview of services status, use the following command in a terminal window:

kubectl get services

This lists all services in your cluster, along with their type, internal and external IP addresses, port, and
uptime (Age).

If you have deployments to more than one namespace, use this command:

kubectl get service -A

This lists all services in all namespaces.

If a service that should have an external IP listed does not have one displayed, that pod has an issue.

© 2026 HPCC Systems®. All rights reserved
104

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Describe a Service
Use the kubectl command-line tool to get detailed information about a service. By describing a service in
Kubernetes, you can gain valuable insights into its configuration, health, and how it interacts with pods.

To get detailed information about a service, use the following command in a terminal window:

kubectl describe service <service-name>

The output provides detailed information about the service, including the service's IP address, port, selec-
tors, and other details.

If you have deployments to more than one namespace, use this command:

kubectl describe service <service-name> -A

This describes the service across all namespaces.

© 2026 HPCC Systems®. All rights reserved
105

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Viewing Pod Logs
Viewing pod logs is a crucial step in troubleshooting Helm deployments because it provides real-time insights
into the behavior and errors occurring within your application containers. By analyzing these logs, you can
quickly identify and address a wide range of issues.

To view the logs of a specific pod, use the following command in a terminal window:

kubectl logs <pod-name>

This returns the entire log for a pod.

To tail the logs and see real-time output:

kubectl logs -f <pod-name>

If the pod has more than one container, use this command to get logs for a specific container:

kubectl logs <pod-name> -c <container-name>

© 2026 HPCC Systems®. All rights reserved
106

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Viewing Service Logs
While services themselves don't produce logs, you can view the logs of the pods that are running the service.

To do this, you'll need to identify the pods that are selected by the service's selector. You can use the
describe command to see the selector:

kubectl describe service <service-name>

Once you know the selector, you can list the pods that match it:

kubectl get pods -l <selector-label>

Then, you can view the logs of those pods using the logs command:

kubectl logs <pod-name>

© 2026 HPCC Systems®. All rights reserved
107

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Effective Log Analysis
Here are some additional tips for effective log analysis for troubleshooting.

Filter and Search Logs Use kubectl logs options to filter logs by timestamp, container name, or
specific keywords to focus on relevant information.

For example:

kubectl logs <pod-name> --since=10m

Filters logs from a specific time.

Even though kubectl logs doesn't have a direct keyword search option,
you can use tools like grep to filter the output.

For example:

kubectl logs <pod-name> | grep "TLS"

Correlate Logs with Metrics Combine log analysis with monitoring metrics to gain a holistic view of
application performance.

Leverage Logging Tools Consider using advanced logging tools like Elasticsearch, Logstash, and
Kibana (ELK Stack) to centralize, aggregate, and analyze logs from mul-
tiple pods and services.

Set Appropriate Log Levels Configure your application to log at the appropriate level of detail, bal-
ancing the need for informative logs with the risk of excessive log ver-
bosity. You can then use a filter to show only those log entries that meet
the criteria.

Monitor logs in real-time. Monitoring logs in real-time can be useful to debug ongoing issues. Use
the following command:

kubectl logs -f

© 2026 HPCC Systems®. All rights reserved
108

Containerized HPCC Systems® Platform
Troubleshooting Containerized Deployments

Additional Troubleshooting Tips
Here are some additional tips for troubleshooting your deployments.

Check your Helm chart con-
figuration.

Ensure that your Helm chart(s) are configured correctly, with accurate
values for images, resources, and environment variables.

Verify Image Availability. Make sure that the images used in your Helm chart are accessible and
can be pulled by Kubernetes.

Inspect Resource Limits and
Requests.

Review the resource limits and requests defined for your pods and ser-
vices. Insufficient resources can lead to performance issues or pod fail-
ures.

Examine Kubernetes Logs. Use the kubectl logs command to view the logs of specific pods and
containers. These logs can provide valuable insights into errors and un-
expected behavior.

Review Network Connectivity. Ensure that your Kubernetes cluster has proper network connectivity,
both internally and externally. Network issues can prevent pods from
communicating with each other or with external services.

Consider Persistent Volume
Claims (PVCs).

If your application requires persistent storage, verify that PVCs are pro-
visioned correctly and that the underlying storage is accessible.

By following these steps and tips, you can effectively troubleshoot your containerized deployments and
quickly identify the root cause of issues.

© 2026 HPCC Systems®. All rights reserved
109

	Containerized HPCC Systems® Platform
	Table of Contents
	Containerized HPCC Overview
	Bare-metal vs Containers
	Processes and Pods, not Machines
	Helm Charts
	Static vs On-Demand Services
	Topology Settings – Clusters vs Queues

	Local Deployment (Development and Testing)
	Prerequisites
	Add a Repository
	Start a Default System
	Access the Default System
	Terminate (Decommission) the System
	Persistent Storage for a Local Deployment
	Using Minikube

	Import: Storage Planes and How To Use Them

	Azure Deployment (Development, Testing, and Production)
	Using Azure
	Azure Prerequisites
	Third Party Tools

	Azure Resource Group
	Azure Kubernetes Service Cluster
	Azure Node Pools
	Configure Credentials

	Installing the Helm Charts
	Installing the HPCC Systems Components
	Enable Access the ESP Services
	Install the Customized HPCC Systems Chart

	Accessing ECLWatch
	Uninstall Your Cluster
	Stopping Your HPCC Systems Cluster
	Removing the Resource Group

	Deploying HPCC Systems® with Terraform
	Interactive Terraform Deployment
	Requirements
	Terraform Repository
	Cloning the Terraform Repository

	The Modules to Modify
	Modify the Modules
	Modifying the AKS Module

	Initializing the Terraform Modules
	Applying the Terraform Modules
	Verify the Installation

	Accessing ECLWatch
	Taking Down The AKS Cluster

	Customizing Configurations
	Customization Techniques
	Create a Custom Configuration Chart for Two Roxies
	Create a Custom Configuration Chart for Two Thors
	Create a Custom Configuration Chart to AllowPipePrograms
	Create a Custom Configuration Chart for No Thor
	Create a Custom Configuration Chart for No Roxie
	Create a Custom Configuration Chart for Multiple Thors Listening to a Common Queue
	Create a Custom Configuration Chart for a Landing Zone only

	Container Cost Tracking
	Types of Costs
	Execution Cost
	Job Guillotine

	Compile Cost
	Storage Costs
	File Access Cost
	File Cost at Rest
	Spill Files

	Costs Configuration
	Configuring Cloud Costs
	Thor Cost Configurations
	Storage Cost Parameters

	Cost Optimizer
	Cost Optimizer Functionality
	Cost Estimation

	Securing Credentials
	Securing Credentials in Kubernetes
	Using the Kubernetes Secret
	Enable LDAP Authentication

	Securing credentials in HashiCorp Vault
	Deploy the HashiCorp Vault
	Referencing Vault Stored Authentication

	Configuration Values
	The Container Environment
	The values.yaml and how it is used
	The values-schema.json

	HPCC Systems Components and the values.yaml File
	The HPCC Systems Components
	The Systems Services
	Dali
	Components: dafilesvrs, dfuserver
	ECL Agent and ECLCC Server
	Sasha
	Thor
	Thor and hThor Memory

	The HPCC Systems values.yaml file
	Storage
	Storage Category
	Storage Defaults
	Storage Defaults Configuration
	How Storage Defaults Work

	Ephemeral Storage
	Persistent Storage
	Bare Metal Storage
	Remote Storage
	Azure Managed Identity Authentication
	Preferred Storage

	Storage Items for HPCC Systems Components
	Data Storage Categories
	Multiple Device Planes
	Logical Partition Striping

	Egress
	Security Values
	Secrets
	Vaults
	Cross Origin Resource Handling

	Certificates
	Enable Certificates
	Certificate Issuers Configuration
	Remote Issuer Configuration
	Alternative Domains Support

	Certificate Generation Process
	Generated Certificate Properties

	Use Cases and Best Practices
	Multi-Domain Certificate Management
	Configuration Best Practices

	Complete Configuration Example
	Troubleshooting Certificates
	Certificate Generation Issues
	Common Error Messages

	Migration from Legacy Configuration

	Visibilities
	Replicas and Resources
	Replicas
	Resources

	Environment Values
	Environment Variables for Containerized Systems

	Index Build Plane

	Pods and Nodes
	Placements
	Placement Scope
	Mixed combinations

	Node Selection
	Node Labels
	The nodeSelector
	Taints and Tolerations
	Taints and Tolerations Examples

	Topology Spread Constraints
	Affinity and Anti-Affinity`
	Node Affinity
	Pod Affinity
	Affinity Example

	schedulerName

	Helm and Yaml Basics
	The values.yaml File Structure
	Dictionary
	Lists
	Sections of the HPCC Systems Values.yaml

	HPCC Systems values.yaml File Usage
	Merging and Overriding
	Generally Applicable

	Overrides
	Global/Expert Settings

	Containerized Logging
	Logging Background
	Log Processing Solutions
	Log Dependant Applications
	The Z.A.P. Utility

	Managed Elastic Stack Solution
	Installing the elastic4hpcclogs chart
	Add the HPCC Systems Repository
	Install the elastic4hpcc chart
	Confirm Your Pods are Ready
	Confirming the Elastic Services
	Configuring of Elastic Stack Components
	Use of HPCC Systems Component Logs in Kibana
	Configuring logAccess for Elasticstack

	Azure Log Analytics Solution
	Enabling Azure Log Analytics
	Direct Command Line
	Scripted Command Line
	Azure Portal

	Configure HPCC logAccess for Azure
	Procure Service Principal
	Provide AAD Registered Application Information
	Configure HPCC logAccess

	Accessing HPCC Systems Logs

	Controlling HPCC Systems Logging Output
	Target Audience Filtering
	Target Category Filtering
	Log Detail Level Configuration
	Log Data Column Configuration
	Asychronous Logging Configuration

	Troubleshooting Containerized Deployments
	Introduction
	Useful Helm Commands
	Check the Status of Pods
	Identifying Other Issues and Their Root Cause

	Describe a Pod
	Check the Status of Services
	Describe a Service
	Viewing Pod Logs
	Viewing Service Logs
	Effective Log Analysis
	Additional Troubleshooting Tips

