
Standard Library Reference
Boca Raton Documentation Team

Standard Library Reference

Standard Library Reference
Boca Raton Documentation Team
Copyright © 2026 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2026 Version 10.2.0-1

© 2026 HPCC Systems®. All rights reserved
2

Standard Library Reference

Logical Files ... 8
CompareFiles ... 9
DeleteLogicalFile .. 10
LogicalFileList ... 11
GetNoCommonDefault .. 12
FileExists .. 13
ForeignLogicalFileName .. 14
GetFileDescription ... 15
GetLogicalFileAttribute .. 16
ProtectLogicalFile ... 17
RenameLogicalFile ... 18
SetFileDescription ... 19
SetReadOnly .. 20
VerifyFile .. 21

SuperFiles .. 22
CreateSuperFile .. 23
SuperFileExists ... 24
DeleteSuperFile .. 25
GetSuperFileSubCount ... 26
GetSuperFileSubName ... 27
LogicalFileSuperOwners .. 28
LogicalFileSuperSubList .. 29
SuperFileContents .. 30
FindSuperFileSubName .. 31
StartSuperFileTransaction ... 32
AddSuperFile .. 33
RemoveSuperFile ... 34
ClearSuperFile .. 35
RemoveOwnedSubFiles .. 36
SwapSuperFile ... 37
ReplaceSuperFile ... 38
PromoteSuperFileList .. 39
FinishSuperFileTransaction ... 40

External Files ... 41
ExternalLogicalFileName ... 42
MoveExternalFile .. 43
DeleteExternalFile ... 44
CreateExternalDirectory .. 45
RemoteDirectory ... 46

File Browsing .. 47
SetColumnMapping ... 48
GetColumnMapping .. 50
AddFileRelationship .. 51
FileRelationshipList ... 53
RemoveFileRelationship .. 54

File Movement .. 55
DfuPlusExec ... 56
AbortDfuWorkunit .. 57
Copy .. 58
DeSpray ... 60
RemotePull ... 61
Replicate .. 63
SprayFixed ... 64
SprayDelimited / SprayVariable ... 66

© 2026 HPCC Systems®. All rights reserved
3

Standard Library Reference

SprayXML .. 68
SprayJson .. 70
WaitDfuWorkunit ... 72
SetExpireDays .. 73
GetExpireDays .. 74
ClearExpireDays ... 75

String Handling ... 76
CleanAccents ... 77
CleanSpaces .. 78
CommonPrefix .. 79
CommonSuffix .. 80
CompareAtStrength .. 81
CompareIgnoreCase ... 82
Contains ... 83
CountWords ... 84
DecodeBase64 ... 85
EditDistance ... 86
EditDistanceWithinRadius .. 87
EncodeBase64 ... 88
EndsWith .. 89
EqualIgnoreCase .. 90
ExcludeFirstWord .. 91
ExcludeLastWord .. 92
ExcludeNthWord ... 93
Extract .. 94
ExtractMultiple .. 95
Filter ... 96
FilterOut ... 97
Find ... 98
FindCount ... 99
FindAtStrength .. 100
FindAtStrengthReplace .. 101
FindReplace ... 102
FindWord .. 103
FromHexPairs ... 104
GetNthWord .. 105
RemoveSuffix ... 106
Repeat ... 107
Reverse .. 108
SplitWords .. 109
SubstituteExcluded .. 110
SubstituteIncluded ... 111
StartsWith ... 112
ToHexPairs ... 113
ToLowerCase ... 114
ToTitleCase .. 115
ToUpperCase ... 116
Translate .. 117
Version ... 118
WildMatch ... 119
WordCount ... 120

Metaphone Support .. 121
Primary ... 122
Secondary .. 123

© 2026 HPCC Systems®. All rights reserved
4

Standard Library Reference

Double .. 124
Cryptography Support ... 125

Cryptographic Library Overview ... 126
SupportedHashAlgorithms ... 127
SupportedSymmetricCipherAlgorithms ... 128
SupportedPublicKeyAlgorithms .. 129
Hashing Module .. 130
Hash .. 131
SymmetricEncryption Module .. 132
Encrypt (Symmetric) .. 133
Decrypt (Symmetric) ... 134
PublicKeyEncryption Module ... 135
Encrypt (PKE) ... 136
Decrypt (PKE) .. 137
Sign (PKE) ... 138
VerifySignature (PKE) ... 139
PublicKeyEncryptionFromBuffer Module ... 140
Encrypt (PKE From Buffer) ... 142
Decrypt (PKE From Buffer) ... 143
Sign (PKE From Buffer) .. 144
VerifySignature (PKE From Buffer) .. 145
PublicKeyEncryptionFromLFN Module ... 146
Encrypt (PKE From LFN) .. 148
Decrypt (PKE From LFN) .. 150
Sign (PKE From LFN) ... 152
VerifySignature (PKE From LFN) ... 154

Date and Time Handling ... 156
Date Data Types .. 157
Time Data Types .. 158
Year ... 159
Month ... 160
Day .. 161
Hour ... 162
Minute .. 163
Second ... 164
DateFromParts ... 165
TimeFromParts ... 166
IsLeapYear ... 167
IsDateLeapYear .. 168
IsValidDate ... 169
IsValidTime ... 170
IsValidGregorianDate .. 171
FromGregorianYMD .. 172
ToGregorianYMD .. 173
FromStringToDate ... 174
Today ... 175
CurrentDate .. 176
CurrentTime .. 177
DayOfWeek .. 178
DayOfYear .. 179
DaysBetween .. 180
MonthsBetween .. 181
AdjustDate .. 182
AdjustCalendar ... 183

© 2026 HPCC Systems®. All rights reserved
5

Standard Library Reference

MonthWeekNumFromDate .. 184
YearWeekNumFromDate ... 185
TimestampToString ... 186
UniqueTZAbbreviations ... 187
UniqueTZLocations ... 188
TZDataForLocation ... 189
FindTZData .. 190
SecondsBetweenTZ .. 191
AdjustTimeTZ ... 192
ToLocalTime ... 193
ToUTCTime .. 194
AppendTZOffset .. 195
AppendTZAdjustedTime .. 197

Cluster Handling ... 199
Node .. 200
Nodes .. 201
LogicalToPhysical ... 202
DaliServer ... 203
Group ... 204
GetExpandLogicalName .. 205

Job Handling .. 206
WUID ... 207
Target .. 208
Name ... 209
User ... 210
OS ... 211
Platform .. 212
LogString .. 213

File Monitoring .. 214
MonitorFile .. 215
MonitorLogicalFileName .. 217

Logging .. 219
dbglog .. 220
addWorkunitInformation ... 221
addWorkunitWarning ... 222
addWorkunitError .. 223
getGlobalId ... 224
getLocalId ... 225
generateGloballyUniqueID ... 226
getElapsedMs ... 227

Auditing .. 228
Audit .. 229

Utilities ... 230
GetHostName ... 231
ResolveHostName .. 232
GetUniqueInteger .. 233
GetEspUrl ... 234
PlatformVersionCheck ... 235

Debugging .. 236
GetParseTree ... 237
GetXMLParseTree .. 238
Sleep .. 239
msTick .. 240

Email .. 241

© 2026 HPCC Systems®. All rights reserved
6

Standard Library Reference

SendEmail .. 242
SendEmailAttachData ... 243
SendEmailAttachText .. 244

Workunit Services ... 245
WorkunitExists .. 246
WorkunitList .. 247
SetWorkunitAppValue ... 249
WUIDonDate .. 250
WUIDdaysAgo .. 251
WorkunitTimeStamps .. 252
WorkunitMessages .. 253
WorkunitFilesRead .. 254
WorkunitFilesWritten ... 255
WorkunitTimings ... 256

BLAS Support ... 257
Types ... 258
ICellFunc .. 259
Apply2Cells .. 260
dasum .. 261
daxpy ... 262
dgemm ... 263
dgetf2 ... 264
dpotf2 ... 265
dscal .. 266
dsyrk .. 267
dtrsm .. 268
extract_diag .. 269
extract_tri ... 270
make_diag .. 271
make_vector ... 272
trace ... 273

Math Support .. 274
Infinity .. 275
NaN ... 276
isInfinite .. 277
isNaN ... 278
isFinite .. 279
FMod .. 280
FMatch ... 281

© 2026 HPCC Systems®. All rights reserved
7

Standard Library Reference
Logical Files

Logical Files

© 2026 HPCC Systems®. All rights reserved
8

Standard Library Reference
Logical Files

CompareFiles
STD.File.CompareFiles(file1, file2 [, logicalonly] [, usecrcs])

file1 A null-terminated string containing the logical name of the first file.

file2 A null-terminated string containing the logical name of the second file.

logicalonly Optional. A boolean TRUE/FALSE flag that, when TRUE, does not compare physical
information from disk but only the logical information in the system datastore (Dali). If
omitted, the default is TRUE.

usecrcs Optional. A boolean TRUE/FALSE flag indicating that, when TRUE, compares physical
CRCs of all the parts on disk. This may be slow on large files. If omitted, the default
is FALSE.

Return: CompareFiles returns returns an INTEGER4 value.

The CompareFiles function compares file1 against file2 and returns the following values:

0 file1 and file2 match exactly

1 file1 and file2 contents match, but file1 is newer than file2

-1 file1 and file2 contents match, but file2 is newer than file1

2 file1 and file2 contents do not match and file1 is newer than file2

-2 file1 and file2 contents do not match and file2 is newer than file1

Example:

A := STD.File.CompareFiles('Fred1', 'Fred2');

© 2026 HPCC Systems®. All rights reserved
9

Standard Library Reference
Logical Files

DeleteLogicalFile
STD.File.DeleteLogicalFile(filename [, ifexists])

filename A null-terminated string containing the logical name of the file.

ifexists Optional. A boolean value indicating whether to post an error if the filename does not
exist. If omitted, the default is FALSE.

The DeleteLogicalFile function removes the named file from disk.

Example:

A := STD.File.DeleteLogicalFile('Fred');

© 2026 HPCC Systems®. All rights reserved
10

Standard Library Reference
Logical Files

LogicalFileList
STD.File.LogicalFileList([pattern] [, includenormal] [, includesuper] [, unknownszero] [,
foreigndali])

pattern Optional. A null-terminated string containing the mask of the files to list. If omitted,the
default is '*' (all files).

includenormal Optional. A boolean flag indicating whether to include "normal" files. If omitted, the de-
fault is TRUE.

includesuper Optional. A boolean flag indicating whether to include SuperFiles. If omitted, the default
is FALSE.

unknownszero Optional. A boolean flag indicating to set file sizes that are unknown to zero (0) instead
of minus-one (-1). If omitted, the default is FALSE.

foreigndali Optional. The IP address of the foreign dali used to resolve the file. If blank then the file
is resolved locally. If omitted, the default is blank.

Return: LogicalFileList returns returns a dataset in the following format:

EXPORT FsLogicalFileNameRecord := RECORD
 STRING name;
END;

EXPORT FsLogicalFileInfoRecord := RECORD(FsLogicalFileNameRecord)
 BOOLEAN superfile;
 UNSIGNED8 size;
 UNSIGNED8 rowcount;
 STRING19 modified;
 STRING owner;
 STRING cluster;
END;

The LogicalFileList function returns a list of the logical files in the environment files as a dataset in the
format listed above.

Example:

OUTPUT(STD.File.LogicalFileList());
 //returns all normal files

OUTPUT(STD.File.LogicalFileList(,FALSE,TRUE));
 //returns all SuperFiles

© 2026 HPCC Systems®. All rights reserved
11

Standard Library Reference
Logical Files

GetNoCommonDefault
STD.File.GetNoCommonDefault()

Return: GetNoCommonDefault returns a BOOLEAN value

The GetNoCommonDefault function returns the boolean value of the 'noCommon' property in the system
configuration if it is defined. Otherwise it returns 'true' as the default.

Example:

IMPORT STD;
A := STD.File.GetNoCommonDefault();

See Also: SprayFixed, SprayXML, SprayJSON, SprayDelimited

© 2026 HPCC Systems®. All rights reserved
12

Standard Library Reference
Logical Files

FileExists
STD.File.FileExists(filename [, physicalcheck])

filename A null-terminated string containing the logical name of the file.

physicalcheck Optional. A boolean TRUE/FALSE to indicate whether to check for the physical existence
the filename on disk. If omitted, the default is FALSE.

Return: FileExists returns a BOOLEAN value.

The FileExists function returns TRUE if the specified filename is present in the Distributed File Utility (DFU).
If physicalcheck is set to TRUE, then the file's physical presence on disk is also checked.

Example:

A := STD.File.FileExists('~CLASS::RT::IN::People');

See Also: SuperFileExists

© 2026 HPCC Systems®. All rights reserved
13

Standard Library Reference
Logical Files

ForeignLogicalFileName
STD.File.ForeignLogicalFileName(filename [, foreigndali] [, absolutepath] [, omitClusterPrefix])

filename A null-terminated string containing the logical name of the file.

foreigndali A null-terminated string containing the IP address of the foreign Dali. If omitted, the
filename is presumed to be a foreign logical file name, which is converted to a local
logical file name.

absolutepath Optional. A boolean TRUE/FALSE to indicate whether to prepend a tilde (~) to the re-
sulting foreign logical file name. If omitted, the default is FALSE.

omitCluster-
Preifx

Optional. A boolean TRUE/FALSE to indicate whether the target cluster's prefix should
automatically be added if 'filename' is a relative logical file name. If omitted, the default
is FALSE.

Return: ForeignLogicalFileName returns returns a VARSTRING (null-terminated) value.

The ForeignLogicalFileName function returns either a foreign logical file name (if the foreigndali parameter
is present) or a local logical file name.

Example:

sf := '~thor_data400::BASE::Business_Header';
ff := STD.File.ForeignLogicalFileName(sf,'10.150.29.161',true);
 //results in: ~foreign::10.150.29.161::thor_data400::base::business_header
lf := STD.File.ForeignLogicalFileName(ff,'',true);
 //results in: ~thor_data400::base::business_header

© 2026 HPCC Systems®. All rights reserved
14

Standard Library Reference
Logical Files

GetFileDescription
STD.File.GetFileDescription(filename)

filename A null-terminated string containing the logical name of the file.

Return: GetFileDescription returns a VARSTRING (null-terminated) value.

The GetFileDescription function returns a string containing the description information stored by the DFU
about the specified filename. This description is set either through ECL watch or by using the STD.File.Set-
FileDescription function.

Example:

A := STD.File.GetFileDescription('Fred');

© 2026 HPCC Systems®. All rights reserved
15

Standard Library Reference
Logical Files

GetLogicalFileAttribute
STD.File.GetLogicalFileAttribute(logicalfilename, attrname)

logicalfilename A null-terminated string containing the name of the logical file as it is known by the DFU.

attrname A null-terminated string containing the name of the file attribute to return. Possible val-
ues are recordSize, recordCount, size, clusterName, directory, owner, description, ECL,
partmask, numparts, name, modified, format, job, checkSum, kind, csvSeparate, csvTer-
minate, csvEscape, headerLength, footerLength, rowTag, workunit, accessed, expire-
Days, maxRecordSize, csvQuote, blockCompressed, compressedSize, fileCrc, format-
Crc, or protected. The value is case-sensitive.

Return: GetLogicalFileAttribute returns returns a VARSTRING (null-terminated) value.

The GetLogicalFileAttribute function returns the value of the attrname for the specified logicalfilename.

Example:

IMPORT STD;
file := '~ certification::full_test_distributed';

OUTPUT(STD.File.GetLogicalFileAttribute(file,'recordSize'),NAMED('recordSize'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'recordCount'),NAMED('recordCount'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'size'),NAMED('size'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'clusterName'),NAMED('clusterName'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'directory'),NAMED('directory'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'numparts'),NAMED('numparts'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'owner'),NAMED('owner'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'description'),NAMED('description'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'ECL'),NAMED('ECL'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'partmask'),NAMED('partmask'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'name'),NAMED('name'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'modified'),NAMED('modified'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'protected'),NAMED('protected'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'format'),NAMED('format'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'job'),NAMED('job'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'checkSum'),NAMED('checkSum'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'kind'),NAMED('kind'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'csvSeparate'),NAMED('csvSeparate'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'csvTerminate'),NAMED('csvTerminate'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'csvEscape'),NAMED('csvEscape'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'headerLength'),NAMED('headerLength'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'footerLength'),NAMED('footerLength'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'rowtag'),NAMED('rowtag'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'workunit'),NAMED('workunit'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'accessed'),NAMED('accessed'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'expireDays'),NAMED('expireDays'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'maxRecordSize'),NAMED('maxRecordSize'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'csvQuote'),NAMED('csvQuote'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'blockCompressed'),NAMED('blockCompressed'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'compressedSize'),NAMED('compressedSize'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'fileCrc'),NAMED('fileCrc'));
OUTPUT(STD.File.GetLogicalFileAttribute(file,'formatCrc'),NAMED('formatCrc'));

© 2026 HPCC Systems®. All rights reserved
16

Standard Library Reference
Logical Files

ProtectLogicalFile
STD.File.ProtectLogicalFile(logicalfilename [, value])

logicalfilename A null-terminated string containing the name of the logical file as it is known by the DFU.

value Optional. A boolean flag indicating whether to protect or un-protect the file. If omitted,
the default is TRUE.

The ProtectLogicalFile function toggles protection on and off for the specified logicalfilename.

Example:

IMPORT STD;
file := '~class::bmf::join::halfkeyed';

STD.File.ProtectLogicalFile(file); //protect
STD.File.ProtectLogicalFile(file, FALSE); //unprotect

© 2026 HPCC Systems®. All rights reserved
17

Standard Library Reference
Logical Files

RenameLogicalFile
STD.File.RenameLogicalFile(filename, newname, [,allowOverwrite])

filename A null-terminated string containing the current logical name of the file.

newname A null-terminated string containing the new logical name for the file.

allowOverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the renamed file
to overwrite an existing file of the same name. If omitted, the default is FALSE.

The RenameLogicalFile function changes the logical filename to the newname.

Example:

A := STD.File.RenameLogicalFile('Fred', 'Freddie');

© 2026 HPCC Systems®. All rights reserved
18

Standard Library Reference
Logical Files

SetFileDescription
STD.File.SetFileDescription(filename , value)

filename A null-terminated string containing the logical name of the file.

value A null-terminated string containing the description to place on the file.

The SetFileDescription function changes the description information stored by the DFU about the spec-
ified filename to the specified value. This description is seen either through ECL watch or by using the
STD.File.GetFileDescription function.

Example:

A := STD.File.SetFileDescription('Fred','All the Freds in the world');

© 2026 HPCC Systems®. All rights reserved
19

Standard Library Reference
Logical Files

SetReadOnly
STD.File.SetReadOnly(filename , flag)

filename A null-terminated string containing the logical name of the file.

flag A boolean value indicating which way to set the read-only attribute of the filename.

The SetReadOnly function toggles the read-only attribute of the filename. If the flag is TRUE, read-only
is set on.

Example:

A := STD.File.SetReadOnly('Fred',TRUE);
 //set read only flag on

© 2026 HPCC Systems®. All rights reserved
20

Standard Library Reference
Logical Files

VerifyFile
STD.File.VerifyFile(file, usecrcs)

file A null-terminated string containing the logical name of the file.

usecrcs A boolean TRUE/FALSE flag indicating that, when TRUE, compares physical CRCs of
all the parts on disk. This may be slow on large files.

Return: VerifyFile returns returns a VARSTRING value.

The VerifyFile function checks the system datastore (Dali) information for the file against the physical parts
on disk and returns the following values:

OK The file parts match the datastore information

Could not find file: filename The logical filename was not found

Could not find part file: partname The partname was not found

Modified time differs for: partname The partname has a different timestamp

File size differs for: partname The partname has a file size

File CRC differs for: partname The partname has a different CRC

Example:

A := STD.File.VerifyFile('Fred1', TRUE);

© 2026 HPCC Systems®. All rights reserved
21

Standard Library Reference
SuperFiles

SuperFiles

© 2026 HPCC Systems®. All rights reserved
22

Standard Library Reference
SuperFiles

CreateSuperFile
STD.File.CreateSuperFile(superfile [, sequentialparts] [, allowExist])

superfile A null-terminated string containing the logical name of the superfile.

sequentialparts Optional. A boolean value indicating whether the sub-files must be sequentially ordered.
If omitted, the default is FALSE.

allowExist Optional. A boolean value indicating whether to post an error if the superfile already
exists. If TRUE, no error is posted. If omitted, the default is FALSE.

Return: Null.

The CreateSuperFile function creates an empty superfile. This function is not included in a superfile trans-
action.

The sequentialparts parameter set to TRUE governs the unusual case where the logical numbering of sub-
files must be sequential (for example, where all sub-files are already globally sorted). With sequentialparts
FALSE (the default) the subfile parts are interleaved so the parts are found locally.

For example, if on a 4-way cluster there are 3 files (A, B, and C) then the parts are as follows:

A._1_of_4, B._1_of_4, and C_1_of_4 are on node 1

A._2_of_4, B._2_of_4, and C_2_of_4 are on node 2

A._3_of_4, B._3_of_4, and C_3_of_4 are on node 3

A._4_of_4, B._4_of_4, and C_4_of_4 are on node 4

Reading the superfile created with sequentialparts FALSE on Thor will read the parts in the order:

[A1,B1,C1,] [A2,B2,C2,] [A3,B3,C3,] [A4,B4,C4]

so the reads will all be local (i.e., A1,B1,C1 on node 1 etc). Setting sequentialparts to TRUE will read the
parts in subfile order, like this:

[A1,A2,A3,] [A4,B1,B2] [,B3,B4,C1,] [C2,C3,C4]

so that the global order of A,B,C,D is maintained. However, the parts cannot all be read locally (e.g., A2
and A3 will be read on part 1). Because of this it is much less efficient to set sequentialparts true, and as it
is unusual anyway to have files that are partitioned in order, it becomes a very unusual option to set.

Example:

STD.File.CreateSuperFile('~CLASS::RT::IN::SF1',,1);
//This is the same but uses named parameter
STD.File.CreateSuperFile('~CLASS::RT::IN::SF1',allowExist := 1);

© 2026 HPCC Systems®. All rights reserved
23

Standard Library Reference
SuperFiles

SuperFileExists
STD.File.SuperFileExists(filename)

filename A null-terminated string containing the logical name of the superfile.

Return: SuperFileExists returns a BOOLEAN value.

The SuperFileExists function returns TRUE if the specified filename is present in the Distributed File Utility
(DFU) and is a SuperFile. It returns FALSE if the filename does exist but it is not a SuperFile (in other words,
it is a normal DATASET. Use the STD.File.FileExists function to detect their presence or absence).

This function is not included in a superfile transaction.

Example:

A := STD.File.SuperFileExists('~CLASS::RT::IN::SF1');

See Also: FileExists

© 2026 HPCC Systems®. All rights reserved
24

Standard Library Reference
SuperFiles

DeleteSuperFile
STD.File.DeleteSuperFile(superName [, deletesub])

superName A null-terminated string containing the logical name of the superfile.

deletesub A boolean value indicating whether to delete the subfiles. If omitted, the default is FALSE.
This option should not be used if the superfile contains any foreign file or foreign
superfile.

Return: Null.

The DeleteSuperFile function deletes the superName superfile.

This function is not included in a superfile transaction.

Example:

STD.File.DeleteSuperFile('~CLASS::RT::IN::SF1');

© 2026 HPCC Systems®. All rights reserved
25

Standard Library Reference
SuperFiles

GetSuperFileSubCount
STD.File.GetSuperFileSubCount(superfile)

superfile A null-terminated string containing the logical name of the superfile.

Return: GetSuperFileSubCount returns an INTEGER4 value.

The GetSuperFileSubCount function returns the number of sub-files comprising the superfile.

This function is not included in a superfile transaction.

Example:

A := STD.File.GetSuperFileSubCount('~CLASS::RT::IN::SF1');

© 2026 HPCC Systems®. All rights reserved
26

Standard Library Reference
SuperFiles

GetSuperFileSubName
STD.File.GetSuperFileSubName(superfile, subfile [, absolutepath])

superfile A null-terminated string containing the logical name of the superfile.

subfile An integer in the range of one (1) to the total number of sub-files in the superfile speci-
fying the ordinal position of the sub-file whose name to return.

absolutepath Optional. A boolean TRUE/FALSE to indicate whether to prepend a tilde (~) to the re-
sulting foreign logical file name. If omitted, the default is FALSE.

Return: GetSuperFileSubName returns a VARSTRING value.

The GetSuperFileSubName function returns the logical name of the specified subfile in the superfile.

This function is not included in a superfile transaction.

Example:

A := STD.File.GetSuperFileSubName('~CLASS::RT::IN::SF1', 1);
 //get name of first sub-file
//this example gets the name of the first sub-file in
// a foreign superfile
sf := '~thor_data400::BASE::Business_Header';
sub := STD.File.GetSuperFileSubName(STD.File.ForeignLogicalFileName (sf,
 '10.150.29.161',
 TRUE),
 1,TRUE);
OUTPUT(STD.File.ForeignLogicalFileName(sub,''));

© 2026 HPCC Systems®. All rights reserved
27

Standard Library Reference
SuperFiles

LogicalFileSuperOwners
STD.File.LogicalFileSuperOwners(filename)

filename A null-terminated string containing the logical name of the file.

Return: LogicalFileSuperOwners returns a dataset in the following format:

EXPORT FsLogicalFileNameRecord := RECORD
 STRING name;
END;

The LogicalFileSuperOwners function returns a list of the logical filenames of all the SuperFiles that con-
tain the filename as a sub-file.

This function is not included in a superfile transaction.

Example:

OUTPUT(STD.File.LogicalFileSuperowners('~CLASS::RT::SF::Daily1'));
 //returns all SuperFiles that "own" the Daily1 file

© 2026 HPCC Systems®. All rights reserved
28

Standard Library Reference
SuperFiles

LogicalFileSuperSubList
STD.File.LogicalFileSuperSubList()

Return: LogicalFileSuperSubList returns a dataset in the following format:

EXPORT FsLogicalSuperSubRecord := RECORD
 STRING supername{MAXLENGTH(255)};
 STRING subname{MAXLENGTH(255)};
END;

The LogicalFileSuperSubList function returns a list of the logical filenames of all the SuperFiles and their
component sub-files.

This function is not included in a superfile transaction.

Example:

OUTPUT(STD.File.LogicalFileSuperSubList());
 //returns all SuperFiles and their sub-files

© 2026 HPCC Systems®. All rights reserved
29

Standard Library Reference
SuperFiles

SuperFileContents
STD.File.SuperFileContents(filename [, recurse])

filename A null-terminated string containing the logical name of the SuperFile.

recurse A boolean flag indicating whether to expand nested SuperFiles withinthe filename so
that only logical files are returned. If omitted, the default is FALSE.

Return: SuperFileContents returns a dataset in the following format:

EXPORT FsLogicalFileNameRecord := RECORD
 STRING name;
END;

The SuperFileContents function returns a list of the logical filenames of all the sub-files in the filename.

This function is not included in a superfile transaction.

Example:

OUTPUT(STD.File.SuperFileContents('~CLASS::RT::SF::Daily'));
 //returns all files in the SuperFile

© 2026 HPCC Systems®. All rights reserved
30

Standard Library Reference
SuperFiles

FindSuperFileSubName
STD.File.FindSuperFileSubName(superfile, subfile)

superfile A null-terminated string containing the logical name of the superfile.

subfile A null-terminated string containing the logical name of the sub-file.

Return: FindSuperFileSubName returns an INTEGER4 value.

The FindSuperFileSubName function returns the ordinal position of the specified subfile in the superfile.

This function is not included in a superfile transaction.

Example:

A := STD.File.FindSuperFileSubName('~CLASS::SF1', '~CLASS::Sue'); //get position of
 // sub-file '~CLASS::Sue'

© 2026 HPCC Systems®. All rights reserved
31

Standard Library Reference
SuperFiles

StartSuperFileTransaction
STD.File.StartSuperFileTransaction()

Return: Null.

The StartSuperFileTransaction function begins a transaction frame for superfile maintenance. The trans-
action frame is terminated by calling the FinishSuperFileTransaction function. Within the transaction frame,
multiple superfiles may be maintained by using SuperFile Maintenance functions to add, remove, clear,
swap, and replace sub-files.

You must use the SEQUENTIAL action to ensure ordered execution of the function calls within the trans-
action frame. This way, the SuperFile Maintenance functions are called in the order that they are listed
between the transaction frame´s start and finish functions, but they are only committed once (i.e., actually
executed) at the finish of the transaction function.

The first SuperFile Maintenance function called within the transaction frame initiates a “read” lock on the
superfile until the commit. At commit, the superfile is “write” locked for the transaction to actually execute,
and all locks are released at the end of the commit. It is important to note that any calls to functions other than
SuperFile Maintenance functions within the transaction frame are not part of the transaction frame (even
though they are executed in the order written). The “read” lock is only generated when the first SuperFile
Maintenance function is called. While the superfile is “read” locked, no concurrent “write” locks can modify
the superfile.

During the timeframe of the “write” lock at commit (usually a small time window), no concurrent “read” locks
are allowed. Therefore, the SuperFile Maintenance functions must be called within a transaction frame to
avoid the possibility of another process may try to modify the superfile during sub-file maintenance. As a
result, maintenance work can be accomplished without causing problems with any query that might use
the SuperFile.

The FinishSuperFileTransaction function does an automatic rollback of the transaction if any error or failure
occurs during the transaction frame. If no error occurs, then the commit or rollback of the transaction is
controlled by the rollback parameter to the FinishSuperFileTransaction function.

Example:

IMPORT STD;

WeeklyRollup:='~Training::Examples::WeeklyRollup';
WeeklySF :='~Training::Examples::Weekly';
DailySF :='~Training::Examples::Daily';

DailyDS := DATASET(DailySF,{string Myfield},THOR);

SEQUENTIAL(STD.File.StartSuperFileTransaction(),
 STD.File.ClearSuperFile(DailySF),
 OUTPUT(DailyDS,,WeeklyRollup),
 STD.File.AddSuperFile(WeeklySF,WeeklyRollup),
 STD.File.FinishSuperFileTransaction());
//executes the OUTPUT after a "read" lock on the superfile DailySF
//has been initiated by the ClearSuperFile Maintenance function,
//which in turn executes only at the FinishTransaction

© 2026 HPCC Systems®. All rights reserved
32

Standard Library Reference
SuperFiles

AddSuperFile
STD.File.AddSuperFile(superfile, subfile [, atpos] [, addcontents] [,strict])

superfile A null-terminated string containing the logical name of the superfile.

subfile A null-terminated string containing the logical name of the sub-file. This may be another
superfile.

atpos An integer specifying the position of the subfile in the superfile. If omitted, the default is
zero (0), which places the subfile at the end of the superfile.

addcontents A boolean flag that, if set to TRUE, specifies the subfile is also a superfile and the con-
tents of that superfile are added to the superfile rather than its reference. If omitted, the
default is to add by reference (addcontents := FALSE).

strict A boolean flag specifying, in the case of a subfile that is itself a superfile, whether to
check for the existence of the superfile and raise an error if it does not. Also, if addcon-
tents is set to TRUE, it will ensure the subfile that is itself a superfile is not empty. If
omitted, the default is false.

Return: Null.

The AddSuperFile function adds the subfile to the list of files comprising the superfile. All subfiles in the
superfile must have exactly the same structure type and format.

This function may be included in a superfile transaction, but is not required to be.

Example:

IMPORT STD;
SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.AddSuperFile('MySuperFile1','MySubFile1'),
 STD.File.AddSuperFile('MySuperFile1','MySubFile2'),
 STD.File.AddSuperFile('MySuperFile2','MySuperFile1'),
 STD.File.AddSuperFile('MySuperFile3','MySuperFile1',addcontents := true),
 STD.File.FinishSuperFileTransaction()
);

// MySuperFile1 contains { MySubFile1, MySubFile2 }
// MySuperFile2 contains { MySuperFile1 }
// MySuperFile3 contains { MySubFile1, MySubFile2 }

© 2026 HPCC Systems®. All rights reserved
33

Standard Library Reference
SuperFiles

RemoveSuperFile
STD.File.RemoveSuperFile(superfile, subfile [, del] [, removecontents])

superfile A null-terminated string containing the logical name of the superfile.

subfile A null-terminated string containing the logical name of the sub-file. This may be another
superfile or a foreign file or superfile.

del A boolean flag specifying whether to delete the subfile from disk or just remove it from
the superfile list of files. If omitted, the default is to just remove it from the superfile list
of files. This option should not be used if the subfile is a foreign file or foreign
superfile.

removecontents A boolean flag specifying whether the contents of a subfile that is itself a superfile are
recursively removed.

Return: Null.

The RemoveSuperFile function removes the subfile from the list of files comprising the superfile.

This function may be included in a superfile transaction.

Example:

SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.RemoveSuperFile('MySuperFile','MySubFile'),
 STD.File.FinishSuperFileTransaction()
);

© 2026 HPCC Systems®. All rights reserved
34

Standard Library Reference
SuperFiles

ClearSuperFile
STD.File.ClearSuperFile(superfile, [, delete])

superfile A null-terminated string containing the logical name of the superfile.

delete A boolean flag specifying whether to delete the sub-files from disk or just remove them
from the superfile list of files. If omitted, the default is to just remove them from the
superfile list of files.

Return: Null.

The ClearSuperFile function removes all sub-files from the list of files comprising the superfile.

This function may be included in a superfile transaction.

Example:

SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.ClearSuperFile('MySuperFile'),
 STD.File.FinishSuperFileTransaction()
);

© 2026 HPCC Systems®. All rights reserved
35

Standard Library Reference
SuperFiles

RemoveOwnedSubFiles
STD.File.RemoveOwnedSubFiles(superfile [, delete])

superfile A null-terminated string containing the logical name of the superfile.

delete A boolean flag specifying to delete the sub-files from disk when TRUE or just remove
them from the superfile list of files. If omitted, the default is to just remove them from
the superfile list of files.

Return: Null.

The RemoveOwnedSubFiles function removes all owned sub-files from the specified superfile. These are
only removed if they are soley owned by the superfile. If a subfile is co-owned, (i.e.,a member of any other
superfile), then the removal is ignored.

This function may be included in a superfile transaction, unless the delete Flag is TRUE.

Example:

SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.RemoveOwnedSubFiles('MySuperFile'),
 STD.File.FinishSuperFileTransaction()
);

© 2026 HPCC Systems®. All rights reserved
36

Standard Library Reference
SuperFiles

SwapSuperFile
STD.File.SwapSuperFile(superfile1, superfile2)

superfile1 A null-terminated string containing the logical name of the superfile.

superfile2 A null-terminated string containing the logical name of the superfile.

Return: Null.

The SwapSuperFile function moves all sub-files from superfile1 to superfile2 and vice versa.

This function may be included in a superfile transaction.

Example:

SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.SwapSuperFile('MySuperFile','YourSuperFile'),
 STD.File.FinishSuperFileTransaction()
);

© 2026 HPCC Systems®. All rights reserved
37

Standard Library Reference
SuperFiles

ReplaceSuperFile
STD.File.ReplaceSuperFile(superfile, subfile1 , subfile2)

superfile A null-terminated string containing the logical name of the superfile.

subfile1 A null-terminated string containing the logical name of the sub-file. This may be another
superfile.

subfile2 A null-terminated string containing the logical name of the sub-file. This may be another
superfile.

Return: Null.

The ReplaceSuperFile function removes the subfile1 from the list of files comprising the superfile and
replaces it with subfile2.

This function may be included in a superfile transaction.

Example:

SEQUENTIAL(
 STD.File.StartSuperFileTransaction(),
 STD.File.ReplaceSuperFile('MySuperFile',
 'MyOldSubFile',
 'MyNewSubFile'),
 STD.File.FinishSuperFileTransaction()
);

© 2026 HPCC Systems®. All rights reserved
38

Standard Library Reference
SuperFiles

PromoteSuperFileList
STD.File.PromoteSuperFileList(supernames [, addhead] [, deltail] [, createjustone] [, reverse])

oldlist := STD.File.fPromoteSuperFileList(supernames [, addhead] [, deltail] [, createjustone
] [, reverse]);

supernames A set of null-terminated strings containing the logical names of the superfiles to act on.
Any that don't exist will be created. The contents of each superfile will be moved to the
next in the list (NB -- each superfile must contain different sub-files).

addhead Optional. A null-terminated string containing a comma-delimited list of logical file names
to add to the first superfile after the promotion process is complete.

deltail Optional. A boolean value specifying whether to physically delete the contents moved
out of the last superfile. If omitted, the default is FALSE.

createjustone Optional. A boolean value specifying whether to only create a single superfile (truncate
the list at the first non-existent superfile). If omitted, the default is FALSE.

reverse Optional. A boolean value specifying whether to reverse the order of processing the
supernames list, effectively "demoting" instead of "promoting" the sub-files. If omitted,
the default is FALSE.

oldlist The name of the attribute that receives the returned string containing the list of the pre-
vious subfile contents of the emptied superfile.

Return: PromoteSuperFileList returns Null; fPromoteSuperFileList returns a string.

The PromoteSuperFileList function moves the subfiles from the first entry in the list of supernames to the
next in the list, subsequently repeating the process through the list of supernames.

This function does not use superfile transactions, it is an atomic operation.

Example:

STD.File.PromoteSuperFileList(['Super1','Super2','Super3'],
 'NewSub1');
//Moves what was in Super1 to Super2,
// what was in Super2 to Super3, replacing what was in Super3,
// and putting NewSub1 in Super1

© 2026 HPCC Systems®. All rights reserved
39

Standard Library Reference
SuperFiles

FinishSuperFileTransaction
STD.File.FinishSuperFileTransaction([rollback])

rollback Optional. A boolean flag that indicates whether to commit (FALSE) or roll back (TRUE)
the transaction. If omitted, the default is FALSE.

Return: Null.

The FinishSuperFileTransaction function terminates a superfile maintenance transaction frame.

If the rollback flag is FALSE, the transaction is committed atomically and the transaction frame closes.
Otherwise, the transaction is rolled back and the transaction frame closes.

At commit, the superfile is “write” locked for the transaction to actually execute, and all locks are released
when the transaction frame closes. During the timeframe of the “write” lock at commit (usually small time
window), no concurrent “read” locks are allowed.

Example:

IMPORT STD;

WeeklyRollup:='~Training::Examples::WeeklyRollup';
WeeklySF :='~Training::Examples::Weekly';
DailySF :='~Training::Examples::Daily';

DailyDS := DATASET(DailySF,{string Myfield},THOR);

SEQUENTIAL(STD.File.StartSuperFileTransaction(),
 STD.File.ClearSuperFile(DailySF),
 OUTPUT(DailyDS,,WeeklyRollup),
 STD.File.AddSuperFile(WeeklySF,WeeklyRollup),
 STD.File.FinishSuperFileTransaction());
//executes the OUTPUT after a "read" lock on the superfile DailySF
//has been initiated by the ClearSuperFile Maintenance function,
//which in turn executes only at the FinishTransaction

© 2026 HPCC Systems®. All rights reserved
40

Standard Library Reference
External Files

External Files

© 2026 HPCC Systems®. All rights reserved
41

Standard Library Reference
External Files

ExternalLogicalFileName
STD.File.ExternalLogicalFileName(machineIP, filename)

machineIP A null-terminated string containing the IP address of the remote machine.

filename A null-terminated string containing the path/name of the file.

Return: ExternalLogicalFileName returns returns a VARSTRING (null-terminated) value.

The ExternalLogicalFileName function returns an appropriately encoded external logical file name that
can be used to directly read a file from any node that is running the dafilesrv utility (typically a landing zone).
It handles upper case characters by escaping those characters in the return string.

Example:

IP := '10.150.254.6';
file := '/c$/training/import/AdvancedECL/people';
DS1 := DATASET(STD.File.ExternalLogicalFileName(IP,file),
 Training_Advanced.Layout_PeopleFile, FLAT);
OUTPUT(STD.File.ExternalLogicalFileName(IP,file));
//returns:
//~file::10.150.254.6::c$::training::import::^advanced^e^c^l::people
OUTPUT(DS1);
//returns records from the external file

© 2026 HPCC Systems®. All rights reserved
42

Standard Library Reference
External Files

MoveExternalFile
STD.File.MoveExternalFile(location, frompath, topath [, planename])

location A null-terminated string containing the IP address of the remote machine. Optional if
planename is provided.

frompath A null-terminated string containing the path/name of the file to move.

topath A null-terminated string containing the path/name of the target file.

planeName A null-terminated string containing name of the data plane containing the file. Optional
if location is provided, but planename is preferred.

The MoveExternalFile function moves the single physical file specified by the frompath to the topath. Both
frompath and topath are on the same remote machine, identified by the location. The dafileserv utility pro-
gram must be running on the location machine.

Example:

IMPORT STD;
IP := '';
infile := '/var/lib/HPCCSystems/dropzone/originalperson';
outfile := '/var/lib/HPCCSystems/dropzone/originalperson_bak';
planename := 'mydropzone';
STD.File.MoveExternalFile(IP,infile,outfile,planename);

© 2026 HPCC Systems®. All rights reserved
43

Standard Library Reference
External Files

DeleteExternalFile
STD.File.DeleteExternalFile(location, path [, planename])

location A null-terminated string containing the IP address of the remote machine. Optional if
planename is provided.

path A null-terminated string containing the path/name of the file to remove.

planename A null-terminated string containing name of the data plane containing the file. Optional
if location is provided, but planename is preferred.

The DeleteExternalFile function removes the single physical file specified by the path from the location.
The dafileserv utility program must be running on the location machine.

Example:

IMPORT STD;
IP := '';
infile := '/var/lib/HPCCSystems/dropzone/originalperson';
planename := 'mydropzone';
STD.File.DeleteExternalFile(IP,infile,planename);

© 2026 HPCC Systems®. All rights reserved
44

Standard Library Reference
External Files

CreateExternalDirectory
STD.File.CreateExternalDirectory(location, path [, planename])

location A null-terminated string containing the IP address of the remote machine. Optional if
planename is provided.

path A null-terminated string containing the directory path to create.

planename A null-terminated string containing name of the data plane containing the file. Optional
if location is provided, but planename is preferred.

The CreateExternalDirectory function creates the path on the location (if it does not already exist). The
dafileserv utility program must be running on the location machine.

Example:

IMPORT STD;
IP := '';
path := '/var/lib/HPCCSystems/dropzone/advancedtraining/';
planename := 'mydropzone';
STD.File.CreateExternalDirectory(IP,path,planename);

© 2026 HPCC Systems®. All rights reserved
45

Standard Library Reference
External Files

RemoteDirectory
STD.File.RemoteDirectory(machineIP, dir [, mask][, recurse][, planeName])

machineIP A null-terminated string containing the IP address of the remote machine. Optional if
planeName is provided.

dir A null-terminated string containing the path to the directory to read. This must be in the
appropriate format for the operating system running on the remote machine.

mask Optional. A null-terminated string containing the filemask specifying which files to include
in the result. If omitted,the default is '*' (all files).

recurse Optional. A boolean flag indicating whether to include files from sub-directories under
the directory. If omitted, the default is FALSE.

planeName A null-terminated string containing name of the data plane containing the file. Optional
if machineIP is provided, but planeName is preferred.

Return: RemoteDirectory returns a dataset in the following format:

EXPORT FsFilenameRecord := RECORD
 STRING name; //filename
 UNSIGNED8 size; //filesize
 STRING19 modified; //date-time stamp
END;

The RemoteDirectory function returns a list of files as a dataset in the format listed above from the specified
machineIP and directory. If recurse is set to TRUE, then the name field contains the relative path to the
file from the specified directory.

The mask argument is a string that can include wildcard characters. Valid wildcard characters are '*' (to
match zero or more characters) and '?' (to match exactly one character). Non-wild characters are matched
exactly and are case-sensitive.

Example:

IMPORT STD;
machineIP := '';
dir := '/var/lib/HPCCSystems/dropzone/training';
recurse:= FALSE;
planeName := 'mydropzone';
OUTPUT(STD.File.RemoteDirectory(machineIP,dir,'*.csv',recurse,planeName));

© 2026 HPCC Systems®. All rights reserved
46

Standard Library Reference
File Browsing

File Browsing

© 2026 HPCC Systems®. All rights reserved
47

Standard Library Reference
File Browsing

SetColumnMapping
STD.File.SetColumnMapping(file, mapping);

file A null-terminated string containing the logical filename.

mapping A null-terminated string containing a comma-delimited list of field mappings.

The SetColumnMapping function defines how the data in the fields of the file must be transformed between
the actual data storage format and the input format used to query that data.

The format for each field in the mapping list is:

<field>{set(<transform>(args),...),get(<transform>,...),displayname(<name>)}

<field> The name of the field in the file.

set Optional. Specifies the transforms applied to the values supplied by the user to convert
them to values in the file.

<transform> Optional. The name of a function to apply to the value. This is typically the name of a
plugin function. The value being converted is always provided as the first parameter to
the function, but extra parameters can be specified in brackets after the transform name
(similar to SALT hygiene).

get Optional. Specifies the transforms applied to the values in the file to convert them to the
formatted values as they are understood by the user.

displayname Optional. Allows a different name to be associated with the field than the user would
naturally understand.

Note that you may mix unicode and string functions, as the system automatically converts the parameters
to the appropriate types expected for the functions.

Example:

// A file where the firstname(string) and lastname(unicode) are
//always upper-cased:
// There is no need for a displayname since it isn't really a
// different field as far as the user is concerned, and there is
// obviously no get transformations.
 firstname{set(stringlib.StringToUpperCase)},
 surname{set(unicodelib.UnicodeToUpperCase)}
// A name translated using a phonetic key
// it is worth specifying a display name here, because it will make
// more sense to the user, and the user may want to enter either the
// translated or untranslated names.
 dph_lname{set(metaphonelib.DMetaPhone1),
 displayname(lname)}
// A file where a name is converted to a token using the namelib
// functions. (I don't think we have an example of this)
// (one of the few situations where a get() attribute is useful)
 fnametoken{set(namelib.nameToToken),
 get(namelib.tokenToName),
 displayname(fname)}
// upper case, and only include digits and alphabetic.
 searchname{set(stringlib.StringToUpperCase,
 stringlib.StringFilter(
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'))}
// A file with a field that that needs to remove accents and then
// uppercase:

© 2026 HPCC Systems®. All rights reserved
48

Standard Library Reference
File Browsing

 lastname{set(unicodeLIb.CleanAccents,stringLib.StringToUpperCase)}

© 2026 HPCC Systems®. All rights reserved
49

Standard Library Reference
File Browsing

GetColumnMapping
result := STD.File.GetColumnMapping(file);

file A null-terminated string containing the logical filename.

Return: GetColumnMapping returns a null-terminated string containing the comma-delimited list
of field mappings for the file.

The GetColumnMapping function returns the field mappings for the file, in the same format specified for
the SetColumnMapping function.

Example:

Maps := STD.File.GetColumnMapping('Thor::in::SomeFile');

© 2026 HPCC Systems®. All rights reserved
50

Standard Library Reference
File Browsing

AddFileRelationship
STD.File.AddFileRelationship(primary, secondary, primaryfields, secondaryfields, [relationship] ,
cardinality, payload [, description]);

primary A null-terminated string containing the logical filename of the primary file.

secondary A null-terminated string containing the logical filename of the secondary file.

primaryfields A null-terminated string containing the name of the primary key field for the primary file.
The value "__fileposition__" indicates the secondary is an INDEX that must use FETCH
to access non-keyed fields.

secondaryfields A null-terminated string containing the name of the foreign key field relating to the primary
file.

relationship A null-terminated string containing either "link" or "view" indicating the type of relationship
between the primary and secondary files. If omitted, the default is "link."

cardinality A null-terminated string containing the kind of relationship between the primary and sec-
ondary files. The format is X:Y where X indicates the primary and Y indicates the sec-
ondary. Valid values for X and Y are "1" or 'M'.

payload A BOOLEAN value indicating whether the primary or secondary are payload INDEXes.

description A null-terminated string containing the relationship description.

The AddFileRelationship function defines the relationship between two files. These may be DATASETs or
INDEXes. Each record in the primary file should be uniquely defined by the primaryfields (ideally), preferably
efficiently.

The primaryfields and secondaryfields parameters can have the same format as the column mappings for
a file (see the SetColumnMappings function documentation) , although they will often be just a list of fields.

They are currently used in two different ways:

First, the roxie browser needs a way of determining which indexes are built from which files. A "view"
relationship should be added each time an index is built from a file, like this:

STD.File.AddFileRelationship(DG_FlatFileName, DG_IndexFileName,
 '', '', 'view', '1:1', false);

To implement the roxie browser there is no need to define the primaryfields or secondaryfields, so passing
blank strings is recommended.

Second, the browser needs a way of finding all the original information from the file from an index.

This stage depends on the nature of the index:

a) If the index contains all the relevant data from the original file you don't need to do anything.

b) If the index uses a fileposition field to FETCH extra data from the original file then add a relationship
between the original file and the index, using a special value of __fileposition__ to indicate the record is
retrieved using a FETCH.

STD.File.AddFileRelationship('fetch_file',
 'new_index',
 '__fileposition__',
 'index_filepos_field',
 'link',

© 2026 HPCC Systems®. All rights reserved
51

Standard Library Reference
File Browsing

 '1:1',
 true);

The original file is the primary, since the rows are uniquely identified by the fileposition (also true of the
index), and the retrieval is efficient.

c) If the index uses a payload field which needs to be looked up in another index to provide the information,
then you need to define a relationship between the new index and the index that provides the extra infor-
mation. The index providing the extra information is the primary.

STD.File.AddFileRelationship('related_index',
 'new_index',
 'related_key_fields',
 'index_filepos_field',
 'link',
 '1:M',
 true);

The payload flag is there so that the roxie browser can distinguish this link from a more general relationship
between two files.

You should ensure any super-file names are expanded if the relation is defined between the particular sub-
files.

While going through all the attributes it may be worth examining whether it makes sense to add relationships
for any other combinations of files. It won't have any immediate beneficial effect, but would once we add an
ER diagram to the system. A couple of examples may help illustrate the syntax.

For a typical example, datasets with a household and person file, the following defines a relationship linking
by house hold id (hhid):

STD.File.AddFileRelationship('HHFile','PersonFile', 'hhid','hhid', 'link', '1:M', false);

Here's a more hypothetical example--a file query with firstname, lastname related to an index with phonetic
names you might have:

STD.File.AddFileRelationship('names', 'inquiries','plastname{set(phonetic)},
 pfirstname{set(phonetic)}',
 'lastname{set(fail)},firstname{set(fail)}','link', '1:M', false);

Note, the fail mapping indicates that you can use the phonetic mapping from inquiries to names, but there
is no way of mapping from names to inquiries. There could equally be get(fail) attributes on the index fields.

Example:

Maps := STD.File.GetColumnMapping('Thor::in::SomeFile');

© 2026 HPCC Systems®. All rights reserved
52

Standard Library Reference
File Browsing

FileRelationshipList
STD.File.FileRelationshipList(primary, secondary [, primaryfields] [, secondaryfields] [, rela-
tionship]);

primary A null-terminated string containing the logical filename of the primary file.

secondary A null-terminated string containing the logical filename of the secondary file.

primaryfields A null-terminated string containing the name of the primary key field for the primary file.
The value "__fileposition__" indicates the secondary is an INDEX that must use FETCH
to access non-keyed fields. If omitted, the default is an empty string.

secondaryfields A null-terminated string containing the name of the foreign key field relating to the primary
file. If omitted, the default is an empty string.

relationship A null-terminated string containing either "link" or "view" indicating the type of relationship
between the primary and secondary files. If omitted, the default is "link."

Return: FileRelationshipList returns a dataset in the FsFileRelationshipRecord format.

The FileRelationshipList function returns a list file relationships between the primary and secondary files.
The return records are structured in the FsFileRelationshipRecord format:

EXPORT FsFileRelationshipRecord := RECORD
 STRING primaryfile {MAXLENGTH(1023)};
 STRING secondaryfile {MAXLENGTH(1023)};
 STRING primaryflds {MAXLENGTH(1023)};
 STRING secondaryflds {MAXLENGTH(1023)};
 STRING kind {MAXLENGTH(16)};
 STRING cardinality {MAXLENGTH(16)};
 BOOLEAN payload;
 STRING description {MAXLENGTH(1023)};
END;

Example:

OUTPUT(STD.File.FileRelationshipList('names', 'inquiries'));

See Also: AddFileRelationship

© 2026 HPCC Systems®. All rights reserved
53

Standard Library Reference
File Browsing

RemoveFileRelationship
STD.File.RemoveFileRelationship(primary, secondary, [, primaryfields] [, secondaryfields] [,
relationship]);

primary A null-terminated string containing the logical filename of the primary file.

secondary A null-terminated string containing the logical filename of the secondary file.

primaryfields A null-terminated string containing the name of the primary key field for the primary file.
The value "__fileposition__" indicates the secondary is an INDEX that must use FETCH
to access non-keyed fields. If omitted, the default is an empty string.

secondaryfields A null-terminated string containing the name of the foreign key field relating to the primary
file. If omitted, the default is an empty string.

relationship A null-terminated string containing either "link" or "view" indicating the type of relationship
between the primary and secondary files. If omitted, the default is "link."

The RemoveFileRelationship function removes a file relationshuip between the primary and secondary
files.

Example:

STD.File.RemoveFileRelationship('names', 'inquiries');

See Also: AddFileRelationship

© 2026 HPCC Systems®. All rights reserved
54

Standard Library Reference
File Movement

File Movement

© 2026 HPCC Systems®. All rights reserved
55

Standard Library Reference
File Movement

DfuPlusExec
STD.File.DfuPlusExec(commandline])

commandline A null-terminated string containing the DFUPlus command line to execute. The valid
arguments are documented in the Client Tools manual, in the section describing the
Command Line DFU program.

The DfuPlusExec action executes the specified commandline just as the DfuPlus executable program
would. This allows you to have all the functionality of DfuPlus available within your ECL code.

Unless you need to access a foreign instance of the platform, the server= parameter for DfuPlus should be
omitted, which then defaults to the value contained in the environment's configuration. In a containerized
system, this defaults to the local eclservices service. If for some reason that doesn't work, the default can be
overridden by the value set in global.defaultEsp. In a bare-metal system, this is the service named WsSMC
(internal to ECLWatch).

Example:

IMPORT STD;
usr := 'username=emilyd ';

pwd := 'password=password ';
ovr := 'overwrite=1 ';
repl := 'replicate=1 ';
action := 'action=spray ';
srcplane := 'srcplane=mydropzone ';
srcfile := 'srcfile=originalperson ';
dstname := 'dstname=EmilyTutorial::originalperson ';
dstcluster := 'dstcluster=data ';
fmt := 'format=fixed ';
recsize := 'recordsize=124 ';
cmd := usr + pwd + ovr + repl + action + srcplane
 + srcfile + dstname + dstcluster + fmt + recsize;
STD.File.DfuPlusExec(cmd);

© 2026 HPCC Systems®. All rights reserved
56

Standard Library Reference
File Movement

AbortDfuWorkunit
STD.File.AbortDfuWorkunit(dfuwuid [,espserverIPport])

dfuwuid A null-terminated string containing the DFU workunit ID (DFUWUID) for the job to abort.
This value is returned by the "leading-f" versions of the Copy, SprayFixed, SprayVari-
able, SprayXML, and Despray FileServices functions.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

The AbortDfuWorkunit function aborts the specified DFU workunit. Typically that workunit will have been
launched with its timeout parameter set to zero (0).

Example:

STD.File.AbortDfuWorkunit('D20051108-143758');

© 2026 HPCC Systems®. All rights reserved
57

Standard Library Reference
File Movement

Copy
STD.File.Copy(sourceLogicalName, destinationGroup , destinationLogicalName, [,sourceDali] [,time-
Out] [,espServerIPPort] [,maxConnections] [,allowOverwrite] [,replicate] [,asSuperfile] [,compress
] [,forcePush] [,transferBufferSize] [,preserveCompression] [,noSplit] [,expireDays] [,ensure] [
,wrap]);

dfuwuid := STD.File.fCopy(sourceLogicalName, destinationGroup , destinationLogicalName, [
,sourceDali] [,timeOut] [,espServerIPPort] [,maxConnections] [,allowOverwrite] [,replicate] [
,asSuperfile] [,compress] [,forcePush] [,transferBufferSize] [,preserveCompression] [,noSplit] [
,expireDays] [,ensure] [,wrap]);

sourceLogical-
Name

A null-terminated string containing the logical name of the file.

destination-
Group

A null-terminated string containing the destination cluster for the file.

destinationLogi-
calName

A null-terminated string containing the new logical name of the file.

sourceDali Optional. A null-terminated string containing the IP and Port of the Dali containing the
file to copy. If omitted, the default is an intra-Dali copy.

timeOut Optional. An integer value indicating the timeout setting. If omitted, the default is -1. If set
to zero (0), execution control returns immediately to the ECL workunit without waiting
for the DFU workunit to complete.

espServerIPPort Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omitted, the
default is -1, which indicates the system chooses a suitable default based on the size
of the cluster.

allowOverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new file to
overwrite an existing file of the same name. If omitted, the default is FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to automatically replicate
the new file. If omitted, the default is FALSE.

asSuperfile Optional. A boolean TRUE or FALSE flag indicating whether to treat the file as a super-
file. If omitted, the default is FALSE. If TRUE and the file to copy is a superfile, then the
operation creates a superfile on the target, creating subfiles as needed while overwriting
only those already existing subfiles whose content has changed. If FALSE and the file
to copy is a superfile, then the operation consolidates all the superfile content into a
single logical file on the target, not a superfile. If FALSE and the file to copy is a superfile
containing INDEXes, then the operation is not valid and will produce an error.

compress Optional. A boolean TRUE or FALSE flag indicating whether to LZW compress the new
file. If omitted, the default is FALSE.

forcePush Optional. A boolean TRUE or FALSE flag indicating whether to execute the copy process
on the source nodes and push to the targets instead of executing on the targets and
pulling from the source. This option is only valid within the same environment. If omitted,
the default is FALSE.

© 2026 HPCC Systems®. All rights reserved
58

Standard Library Reference
File Movement

transferBuffer-
Size

Optional. An integer value to override the DFU Server's buffer size value (default is 64k)

preserveCom-
pression

Optional. A boolean TRUE or FALSE flag indicating whether to preserve the compres-
sion of the old file when copying. If omitted, the default is TRUE.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to multiple
target parts. Default is FALSE.

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after the spec-
ified number of days since the file was read. If omitted, the default is -1 (never expires).
If set to 0, the file is automatically deleted when it reaches the threshold set in Sasha
Server's expiryDefault setting.

ensure Optional. Copies logical file, but does not copy file parts if they already exist. Default
is FALSE.

wrap Optional. A boolean TRUE or FALSE flag indicating whether to automatically wrap the
file parts when copying to smaller sized clusters. For example, copying from a 6-node
cluster to a 3-node cluster, two file parts will end up on each node; the difference is
whether node 1 gets parts 1 and 2 or parts 1 and 4. If omitted, the default is FALSE.

dfuwuid The attribute name to receive the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the job.

Return: Copy returns a null-terminated string containing the DFU workunit ID (DFUWUID).

The Copy function takes a logical file and copies it to another logical file. This may be done within the same
cluster or to another cluster. The Destination cannot be foreign file.

Example:

STD.File.Copy('OUT::MyFile',STD.System.Thorlib.Group(),'OUT::MyNewFile');

© 2026 HPCC Systems®. All rights reserved
59

Standard Library Reference
File Movement

DeSpray
STD.File.DeSpray(logicalname, destinationIP , destinationpath , [timeout] , [espserverIPport] , [
maxConnections] , [allowoverwrite],[destinationPlane])

dfuwuid := STD.File.fDeSpray(logicalname, destinationIP , destinationpath , [timeout] , [espserverIP-
port] , [maxConnections] , [allowoverwrite],[destinationPlane])

logicalname A null-terminated string containing the logical name of the file.

destinationIP A null-terminated string containing the destination IP address of the file. Dep-
recated, you should use destinationPlane instead.

destinationpath A null-terminated string containing the path and name of the file.

timeout Optional. An integer value indicating the timeout setting. If omitted, the de-
fault is -1. If set to zero (0), execution control returns immediately to the ECL
workunit without waiting for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the
value contained in the lib_system.ws_fs_server attribute. When not omitted,
it should be a null-terminated string containing the protocol, IP, port, and
directory, or the DNS equivalent, of the ESP server program. This is usually
the same IP and port as ECL Watch, with "/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omit-
ted, the default is -1, which indicates the system chooses a suitable default
based on the size of the cluster.

allowoverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new
file to overwrite an existing file of the same name. If omitted, the default is
FALSE.

destinationPlane Optional. The destination storage plane. Note: destinationPlane should not
be used at the same time as destinationIP. In a containerized deployment,
destinationPlane is required if you have more than one Landing Zone.

dfuwuid The attribute name to receive the null-terminated string containing the DFU
workunit ID (DFUWUID) generated for the job.

Return: fDeSpray returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The DeSpray function takes a logical file and desprays it (combines all parts on each supercomputer node
into a single physical file) to the landing zone.

Example:

STD.File.DeSpray('OUT::MyFile',
 '10.150.50.14',
 'c:\\OutputData\\MyFile.txt',
 -1,
 'http://10.150.50.12:8010/FileSpray');

© 2026 HPCC Systems®. All rights reserved
60

Standard Library Reference
File Movement

RemotePull
STD.File.RemotePull(remoteURL, sourcelogicalname, destinationGroup , destinationlogicalname, [
,timeout] [,maxConnections] [,allowoverwrite] [,replicate] [,asSuperfile] [,forcePush] [,transferBuffer-
Size] [,wrap] [,compress] [,noSplit] [,expireDays])

dfuwuid := STD.File.fRemotePull(remoteURL, sourcelogicalname, destinationGroup , destinationlog-
icalname, [,timeout] [,maxConnections] [,allowoverwrite] [,replicate] [,asSuperfile] [,forcePush]
[,transferBufferSize] [,wrap] [,compress] [,noSplit] [,expireDays]);

remoteURL A null-terminated string containing the protocol, IP, port, and directory, or the DNS equiv-
alent, of the remote ESP server program. This is usually the same IP and port as its
ECL Watch, with "/FileSpray" appended.

sourcelogical-
name

A null-terminated string containing the local logical name of the file.

destination-
Group

A null-terminated string containing the name of the destination cluster.

destinationlogi-
calname

A null-terminated string containing the logical name to give the file on the remote cluster
(this must be completely specified, including the domain).

timeout Optional. An integer value indicating the timeout setting. If omitted, the default is -1. If set
to zero (0), execution control returns immediately to the ECL workunit without waiting
for the DFU workunit to complete.

maxConnections Optional. An integer specifying the maximum number of connections. If omitted, the
default is -1, which indicates the system chooses a suitable default based on the size
of the cluster.

allowoverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new file to
overwrite an existing file of the same name. If omitted, the default is FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to automatically replicate
the new file. If omitted, the default is FALSE.

asSuperfile Optional. A boolean TRUE or FALSE flag indicating whether to treat the file as a super-
file. If omitted, the default is FALSE. If TRUE and the file to copy is a superfile, then the
operation creates a superfile on the target, creating subfiles as needed while overwriting
only those already existing subfiles whose content has changed. If FALSE and the file to
copy is a superfile, then the operation consolidates all the superfile content into a single
logical file on the target, not a superfile.

forcePush Optional. A boolean TRUE or FALSE flag indicating whether to execute the copy process
on the source nodes and push to the targets instead of executing on the targets and
pulling from the source. If omitted, the default is FALSE.

transferBuffer-
Size

Optional. An integer specifying the size in bytes of the transfer buffer. Sometimes using
larger values can speed the process. If omitted, a default buffer size of 64K is used.

wrap Optional. A boolean TRUE or FALSE flag indicating whether to automatically wrap the
file parts when copying to smaller sized clusters. For example, copying from a 6-node
cluster to a 3-node cluster, two file parts will end up on each node; the difference is
whether node 1 gets parts 1 and 2 or parts 1 and 4. If omitted, the default is FALSE.

compress Optional. A boolean TRUE or FALSE flag indicating whether to automatically LZW com-
press the new file. If omitted, the default is FALSE.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to multiple
target parts. Default is FALSE.

© 2026 HPCC Systems®. All rights reserved
61

Standard Library Reference
File Movement

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after the spec-
ified number of days since the file was read. If omitted, the default is -1 (never expires).
If set to 0, the file is automatically deleted when it reaches the threshold set in Sasha
Server's expiryDefault setting.

dfuwuid The definition name to receive the null-terminated string containing the DFU workunit
ID (DFUWUID) generated for the job.

Return: fRemotePull returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The RemotePull function executes on the remoteURL, copying the sourcelogicalname from the local en-
vironment that instantiated the operation to the remote environment's destinationGroup cluster, giving it
the destinationlogicalname. This is very similar to using the STD.File.Copy function and specifying its es-
pserverIPport parameter. Since the DFU workunit executes on the remote DFU server, the user name au-
thentication must be the same on both systems, and the use must have rights to copy files on both systems.

Example:

STD.File.RemotePull('http://10.150.50.14:8010/FileSpray',
 '~THOR::LOCAL::MyFile',
 'RemoteThor',
 '~REMOTETHOR::LOCAL::MyFile');

© 2026 HPCC Systems®. All rights reserved
62

Standard Library Reference
File Movement

Replicate
STD.File.Replicate (filename [, timeout] [, espserverIPport])

dfuwuid := STD.File.fReplicate(filename [, timeout] [, espserverIPport]);

filename A null-terminated string containing the logical name of the file.

timeout Optional. An integer value indicating the timeout setting. If omitted, the default is -1. If set
to zero (0), execution control returns immediately to the ECL workunit without waiting
for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

dfuwuid The attribute name to receive the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the job.

The Replicate function copies the individual parts of the filename to the mirror disks for the cluster. Typically,
this means that the file part on one node's C drive is copied to its neighbors D drive.

Example:

A := STD.File.Replicate('Fred');

© 2026 HPCC Systems®. All rights reserved
63

Standard Library Reference
File Movement

SprayFixed
STD.File.SprayFixed(sourceIP , sourcepath, recordsize, destinationgroup, destinationlogicalname , [
timeout] , [espserverIPport] , [maxConnections] , [allowoverwrite] , [replicate] , [compress
] , [failIfNoSourceFile] ,[expireDays] , [dfuServerQueue] , [noSplit] , [noCommon],[sourcePlane],[
destinationNumParts])

dfuwuid := STD.File.fSprayFixed(sourceIP , sourcepath, recordsize, destinationgroup, destinationlog-
icalname , [timeout] , [espserverIPport] , [maxConnections] , [allowoverwrite] , [replicate
] , [compress] , [failIfNoSourceFile], [expireDays] , [dfuServerQueue] , [noSplit] , [noCommon],[
sourcePlane],[destinationNumParts])

sourceIP A null-terminated string containing the IP address or hostname of the Drop-
zone where the file is located.

sourcepath A null-terminated string containing the path and name of the file.

recordsize An integer containing the size of the records in the file.

destinationgroup A null-terminated string containing the name of the specific supercomputer
within the target cluster.

destinationlogicalname A null-terminated string containing the logical name of the file.

timeout Optional. An integer value indicating the timeout setting. If omitted, the de-
fault is -1. If set to zero (0), execution control returns immediately to the ECL
workunit without waiting for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the
value contained in the lib_system.ws_fs_server attribute. When not omitted,
it should be a null-terminated string containing the protocol, IP, port, and
directory, or the DNS equivalent, of the ESP server program. This is usually
the same IP and port as ECL Watch, with "/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omit-
ted, the default is -1, which indicates the system chooses a suitable default
based on the size of the cluster.

allowoverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new
file to overwrite an existing file of the same name. If omitted, the default is
FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to replicate the
new file. If omitted, the default is FALSE.

compress Optional. A boolean TRUE or FALSE flag indicating whether to compress
the new file. If omitted, the default is TRUE in a containerized deployment
and FALSE in a bare-metal deployment.

failIfNoSourceFile Optional. A boolean TRUE or FALSE flag indicating whether a missing file
triggers a failure. If omitted, the default is FALSE.

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after
the specified number of days since the file was read. If omitted, the default is
-1 (never expires). If set to 0, the file is automatically deleted when it reaches
the threshold set in Sasha Server's expiryDefault setting.

dfuServerQueue Name of target DFU Server queue. Default is '' (empty) for the first DFU
queue in the environment.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to
multiple target parts. Default is FALSE.

© 2026 HPCC Systems®. All rights reserved
64

Standard Library Reference
File Movement

noCommon Optional. A boolean TRUE or FALSE flag for "commoning up" of pull or push
processes on same host. Set to FALSE to "common up" the operation on
same host. Default can be set in configuration. Use GetNoCommonDefault
to retrieve default setting. The value of this parameter can have a significant
impact on performance.

sourcePlane The name of the landing zone containing the file

destinationNumParts Override the number of parts to be created when spraying. The default is 0
which means it will create the same number of parts as the target cluster.

dfuwuid The attribute name to receive the null-terminated string containing the DFU
workunit ID (DFUWUID) generated for the job.

Return: fSprayFixed returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The SprayFixed function takes fixed-format file from the landing zone and distributes it across the nodes
of the destination supercomputer.

Example:

STD.File.SprayFixed('10.150.50.14','c:\\InputData\\MyFile.txt',
 255,'400way','IN::MyFile',-1,
 'http://10.150.50.12:8010/FileSpray');

© 2026 HPCC Systems®. All rights reserved
65

Standard Library Reference
File Movement

SprayDelimited / SprayVariable
STD.File.SprayDelimited(sourceIP , sourcePath , [sourceMaxRecordSize] , [sourceCsvSeparate
] , [sourceCsvTerminate] , [sourceCsvQuote] , destinationGroup, destinationLogicalName , [
timeout] , [espServerIpPort] , [maxConnections] , [allowOverwrite] , [replicate] , [compress] , [
sourceCsvEscape], [failIfNoSourceFile], [recordStructurePresent], [quotedTerminator], [encoding
] , [expireDays] , [dfuServerQueue] , [noSplit] , [noCommon],[sourcePlane],[destinationNumParts])

dfuwuid := STD.File.fSprayDelimited(sourceIP , sourcePath , [sourceMaxRecordSize] , [
sourceCsvSeparate] , [sourceCsvTerminate] , [sourceCsvQuote] , destinationGroup, destination-
LogicalName , [timeout] , [espServerIpPort] , [maxConnections] , [allowOverwrite] , [replicate] , [
compress] , [sourceCsvEscape], [failIfNoSourceFile], [recordStructurePresent], [quotedTer-
minator] , [encoding] , [expireDays] , [dfuServerQueue] , [noSplit] , [noCommon],[sourcePlane
],[destinationNumParts])

sourceIP A null-terminated string containing the IP address or hostname of the Drop-
zone where the file is located.

sourcePath A null-terminated string containing the path and name of the file.

sourceMaxRecordSize Optional. An integer containing the maximum size of the records in the file.
If omitted, the default is 4096.

sourceCsvSeparate Optional. A null-terminated string containing the CSV field separator. If omit-
ted, the default is '\\,'

sourceCSVterminate Optional. A null-terminated string containing the CSV record separator. If
omitted, the default is '\\n,\\r\\n'

sourceCSVquote Optional. A null-terminated string containing the CSV quoted field delimiter.
If omitted, the default is '\"'

destinationGroup A null-terminated string containing the name of the specific supercomputer
within the target cluster.

destinationLogicalName A null-terminated string containing the logical name of the file.

timeout Optional. An integer value indicating the timeout setting. If omitted, the de-
fault is -1. If set to zero (0), execution control returns immediately to the ECL
workunit without waiting for the DFU workunit to complete.

espServerIpPort Optional. This should almost always be omitted, which then defaults to the
value contained in the lib_system.ws_fs_server attribute. When not omitted,
it should be a null-terminated string containing the protocol, IP, port, and
directory, or the DNS equivalent, of the ESP server program. This is usually
the same IP and port as ECL Watch, with "/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omit-
ted, the default is -1, which indicates the system chooses a suitable default
based on the size of the cluster.

allowOverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new
file to overwrite an existing file of the same name. If omitted, the default is
FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to replicate the
new file. If omitted, the default is FALSE.

compress Optional. A boolean TRUE or FALSE flag indicating whether to compress
the new file. If omitted, the default is TRUE in a containerized deployment
and FALSE in a bare-metal deployment.

© 2026 HPCC Systems®. All rights reserved
66

Standard Library Reference
File Movement

sourceCsvEscape Optional. A null-terminated string containing the CSV escape characters. If
omitted, the default is none.

failIfNoSourceFile Optional. A boolean TRUE or FALSE flag indicating whether to allow the
spray to fail if no source file is found. If omitted, default is FALSE.

recordStructurePresent Optional. A boolean TRUE or FALSE flag indicating whether to derive the
record structure from the header of the file. If omitted, the default is FALSE.

quotedTerminator Optional. A boolean TRUE or FALSE flag indicating whether the terminator
character can be included in a quoted field. Defaults to TRUE. If FALSE, it
allows quicker partitioning of the file (avoiding a complete file scan).

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after
the specified number of days since the file was read. If omitted, the default is
-1 (never expires). If set to 0, the file is automatically deleted when it reaches
the threshold set in Sasha Server's expiryDefault setting.

encoding A null-terminated string containing the encoding. Can be set to one of the
following: ascii, utf8, utf8n, utf16, utf16le, utf16be, utf32, utf32le,utf32be. If
omitted, the default is ascii.

dfuServerQueue Name of target DFU Server queue. Default is '' (empty) for the first DFU
queue in the environment.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to
multiple target parts. Default is FALSE.

noCommon Optional. A boolean TRUE or FALSE flag for "commoning up" of pull or push
processes on same host. Set to FALSE to "common up" the operation on
same host. Default can be set in configuration. Use GetNoCommonDefault
to retrieve default setting. The value of this parameter can have a significant
impact on performance.

sourcePlane The name of the landing zone containing the file

destinationNumParts Override the number of parts to be created when spraying. The default is 0
which means it will create the same number of parts as the target cluster.

dfuwuid The definition name to receive the null-terminated string containing the DFU
workunit ID (DFUWUID) generated for the job.

Return: fSprayDelimited returns a null-terminated string containing the DFU workunit
ID (DFUWUID).

The SprayDelimited function takes a variable length file from the landing zone and distributes it across the
nodes of the destination supercomputer.

The SprayVariablefunction is now called SprayDelimited and the fSprayVariablefunction is now called
fSprayDelimited. The old names are still available for backward compatibility.

Example:

STD.File.SprayDelimited('10.150.50.14',
 'c:\\InputData\\MyFile.txt',
 ,,,,
 '400way',
 'IN::MyFile',
 -1,
 'http://10.150.50.12:8010/FileSpray');

© 2026 HPCC Systems®. All rights reserved
67

Standard Library Reference
File Movement

SprayXML
STD.File.SprayXML(sourceIP , sourcepath , [maxrecordsize] , srcRowTag , [srcEncoding
] , destinationgroup, destinationlogicalname [timeout] [espserverIPport] [maxConnections] [
allowoverwrite] [replicate] [compress] , [failIfNoSourceFile], [expireDays] , [dfuServerQueue] , [noSplit],
[noCommon],[sourcePlane],[destinationNumParts])

dfuwuid := STD.File.fSprayXML(sourceIP , sourcepath, [maxrecordsize] , srcRowTag , [srcEncod-
ing] ,destinationgroup, destinationlogicalname , [timeout] , [espserverIPport] , [maxConnections] ,
[allowoverwrite] , [replicate] , [compress] , [failIfNoSourceFile], [expireDays] , [dfuServerQueue] , [
noSplit], [noCommon],[sourcePlane],[destinationNumParts])

sourceIP A null-terminated string containing the IP address or hostname of the Drop-
zone where the file is located.

sourcepath A null-terminated string containing the path and name of the file.

maxrecordsize Optional. An integer containing the maximum size of the records in the file.
If omitted, the default is 8192.

srcRowTag A null-terminated string containing the row delimiting XML tag. Required.

srcEncoding Optional. A null-terminated string containing the encoding. If omitted, the de-
fault is 'utf8'

destinationgroup A null-terminated string containing the name of the specific supercomputer
within the target cluster.

destinationlogicalname A null-terminated string containing the logical name of the file.

timeout Optional. An integer value indicating the timeout setting. If omitted, the de-
fault is -1. If set to zero (0), execution control returns immediately to the ECL
workunit without waiting for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the
value contained in the lib_system.ws_fs_server attribute. When not omitted,
it should be a null-terminated string containing the protocol, IP, port, and
directory, or the DNS equivalent, of the ESP server program. This is usually
the same IP and port as ECL Watch, with "/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omit-
ted, the default is -1, which indicates the system chooses a suitable default
based on the size of the cluster.

allowoverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new
file to overwrite an existing file of the same name. If omitted, the default is
FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to replicate the
new file. If omitted, the default is FALSE.

compress Optional. A boolean TRUE or FALSE flag indicating whether to compress
the new file. If omitted, the default is TRUE in a containerized deployment
and FALSE in a bare-metal deployment.

failIfNoSourceFile Optional. A boolean TRUE or FALSE flag indicating whether a missing file
triggers a failure. If omitted, the default is FALSE.

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after
the specified number of days since the file was read. If omitted, the default is
-1 (never expires). If set to 0, the file is automatically deleted when it reaches
the threshold set in Sasha Server's expiryDefault setting.

© 2026 HPCC Systems®. All rights reserved
68

Standard Library Reference
File Movement

dfuServerQueue Name of target DFU Server queue. Default is '' (empty) for the first DFU
queue in the environment.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to
multiple target parts. Default is FALSE.

noCommon Optional. A boolean TRUE or FALSE flag for "commoning up" of pull or push
processes on same host. Set to FALSE to "common up" the operation on
same host. Default can be set in configuration. Use GetNoCommonDefault
to retrieve default setting. The value of this parameter can have a significant
impact on performance.

sourcePlane The name of the landing zone containing the file

destinationNumParts Override the number of parts to be created when spraying. The default is 0
which means it will create the same number of parts as the target cluster.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU
workunit ID (DFUWUID) generated for the job.

Return: fSprayXML returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The SprayXML function takes a well-formed XML file from the landing zone and distributes it across the
nodes of the destination supercomputer, producing a well-formed XML file on each node.

Example:

STD.File.SprayXML('10.150.50.14','c:\\InputData\\MyFile.txt',,
 'Row',,'400way','IN::MyFile',-1,
 'http://10.150.50.12:8010/FileSpray');

© 2026 HPCC Systems®. All rights reserved
69

Standard Library Reference
File Movement

SprayJson
STD.File.SprayJson(sourceIP , sourcepath , [maxrecordsize] , srcRowPath , [srcEncoding
] , destinationgroup, destinationlogicalname [timeout] [espserverIPport] [maxConnections] [
allowoverwrite] [replicate] [compress] , [failIfNoSourceFile], [expireDays] , [dfuServerQueue] , [noSplit],
[noCommon],[sourcePlane],[destinationNumParts])

dfuwuid := STD.File.fSprayJson(sourceIP , sourcepath, [maxrecordsize] , srcRowPath , [
srcEncoding] ,destinationgroup, destinationlogicalname , [timeout] , [espserverIPport] , [max-
Connections] , [allowoverwrite] , [replicate] , [compress] , [failIfNoSourceFile], [expireDays] , [
dfuServerQueue] , [noSplit], [noCommon],[sourcePlane],[destinationNumParts])

sourceIP A null-terminated string containing the IP address or hostname of the Drop-
zone where the file is located.

sourcepath A null-terminated string containing the path and name of the file.

maxrecordsize Optional. An integer containing the maximum size of the records in the file.
If omitted, the default is 8192.

sourceRowPath The JSON path that is used to delimit records in the source file. Required.

srcEncoding Optional. A null-terminated string containing the encoding (utf8,utf8n,ut-
f16be,utf16le,utf32be,utf32le). If omitted, the default is 'utf8'

destinationgroup A null-terminated string containing the name of the group to distribute the
file across.

destinationlogicalname A null-terminated string containing the logical name of the file to create.

timeout Optional. An integer value indicating the timeout setting. If omitted, the de-
fault is -1. If set to zero (0), execution control returns immediately to the ECL
workunit without waiting for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the
value contained in the lib_system.ws_fs_server attribute. When not omitted,
it should be a null-terminated string containing the protocol, IP, port, and
directory, or the DNS equivalent, of the ESP server program. This is usually
the same IP and port as ECL Watch, with "/FileSpray" appended.

maxConnections Optional. An integer specifying the maximum number of connections. If omit-
ted, the default is -1, which indicates the system chooses a suitable default
based on the size of the cluster.

allowoverwrite Optional. A boolean TRUE or FALSE flag indicating whether to allow the new
file to overwrite an existing file of the same name. If omitted, the default is
FALSE.

replicate Optional. A boolean TRUE or FALSE flag indicating whether to replicate the
new file. If omitted, the default is FALSE.

compress Optional. A boolean TRUE or FALSE flag indicating whether to compress
the new file. If omitted, the default is TRUE in a containerized deployment
and FALSE in a bare-metal deployment.

failIfNoSourceFile Optional. A boolean TRUE or FALSE flag indicating whether a missing file
triggers a failure. If omitted, the default is FALSE.

expireDays Optional. Specifies the file is a temporary file to be automatically deleted after
the specified number of days since the file was read. If omitted, the default is
-1 (never expires). If set to 0, the file is automatically deleted when it reaches
the threshold set in Sasha Server's expiryDefault setting.

© 2026 HPCC Systems®. All rights reserved
70

Standard Library Reference
File Movement

dfuServerQueue Name of target DFU Server queue. Default is '' (empty) for the first DFU
queue in the environment.

noSplit Optional. A boolean TRUE or FALSE flag indicating to not split a file part to
multiple target parts. Default is FALSE.

noCommon Optional. A boolean TRUE or FALSE flag for "commoning up" of pull or push
processes on same host. Set to FALSE to "common up" the operation on
same host. Default can be set in configuration. Use GetNoCommonDefault
to retrieve default setting. The value of this parameter can have a significant
impact on performance.

sourcePlane The name of the landing zone containing the file

destinationNumParts Override the number of parts to be created when spraying. The default is 0
which means it will create the same number of parts as the target cluster.

dfuwuid The attribute name to receive the null-terminated string containing the DFU
workunit ID (DFUWUID) generated for the job.

username Optional. String containing a username to use for authenticated access to
the ESP process; an empty string value indicates that no user authentication
is required. If omitted, the default is an empty string.

userPw: Optional. String containing the password to be used with the user cited in the
username argument; if username is empty then this is ignored. If omitted,
the default is an empty string.

Return: fSprayJson returns a null-terminated string containing the DFU workunit ID
(DFUWUID).

The SprayJson function takes a well-formed JSON file from a landing zone and distributes it across the
nodes of the destination cluster, producing a well-formed JSON file on each node.

Example:

STD.File.SprayJson('10.150.50.14','/var/lib/HPCCSystems/mydropzone/colors.json',,
 '/',,'mythor','examples::colors.json',-1,
 'http://10.150.50.12:8010/FileSpray');

© 2026 HPCC Systems®. All rights reserved
71

Standard Library Reference
File Movement

WaitDfuWorkunit
STD.File.WaitDfuWorkunit(dfuwuid [,timeout] [,espserverIPport])

dfuwuid A null-terminated string containing the DFU workunit ID (DFUWUID) for the job to wait
for. This value is returned by the "leading-f" versions of the Copy, DKC, SprayFixed,
SprayVariable, SprayXML, and Despray FileServices functions.

timeout Optional. An integer value indicating the timeout setting. If omitted, the default is -1. If set
to zero (0), execution control returns immediately to the ECL workunit without waiting
for the DFU workunit to complete.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

Return: WaitDfuWorkunit returns a null-terminated string containing the final status string of the
DFU workunit (such as: scheduled, queued, started, aborted, failed, finished, or moni-
toring).

The WaitDfuWorkunit function waits for the specified DFU workunit to finish. Typically that workunit will
have been launched with its timeout parameter set to zero (0).

Example:

STD.File.WaitDfuWorkunit('D20051108-143758');

© 2026 HPCC Systems®. All rights reserved
72

Standard Library Reference
File Movement

SetExpireDays
STD.File.SetExpireDays(lfn, expireDays)

lfn A string containing the logical name of the file.

expireDays Number of days before the file expires. Setting to 0 specifies to use the system's default
expire value (specified in the Sasha server's ExpiryDefault attribute).

The SetExpireDays action sets a logical file's expiration criteria (the expireDays attribute). The file is deleted
by the Sasha server when a file has not been accessed for the number of days specified.

Example:

STD.File.SetExpireDays('~samples::myscope::myfile',30);
 //file expires and is deleted after 30 days w/o access

See Also: GetExpireDays, ClearExpireDays

© 2026 HPCC Systems®. All rights reserved
73

Standard Library Reference
File Movement

GetExpireDays
STD.File.GetExpireDays(lfn)

lfn A string containing the logical name of the file.

The GetExpireDays function retrieves a logical file's expiration criteria (the expireDays attribute). A return
of -1 indicates that there is no expiration set.

Example:

A := STD.File.GetExpireDays('~samples::myscope::myfile');
 //returns a file's expireDays

See Also: SetExpireDays, ClearExpireDays

© 2026 HPCC Systems®. All rights reserved
74

Standard Library Reference
File Movement

ClearExpireDays
STD.File.ClearExpireDays(lfn)

lfn A string containing the logical name of the file.

The ClearExpireDays function clears a logical file's expiration criteria (the expireDays attribute).

Example:

A := STD.File.ClearExpireDays('~samples::myscope::myfile');
 //clears a file's expireDays

See Also: GetExpireDays, SetExpireDays

© 2026 HPCC Systems®. All rights reserved
75

Standard Library Reference
String Handling

String Handling

© 2026 HPCC Systems®. All rights reserved
76

Standard Library Reference
String Handling

CleanAccents
STD.Uni.CleanAccents(source)

source A string containing the data to clean.

Return: CleanAccents returns a UNICODE value.

The CleanAccents function returns the source string with all accented characters replaced with unaccented.

Example:

UNICODE A := STD.Uni.CleanAccents(u'caf\u00E9'); //café - U+00E9 is lowercase e with acute
 //a contains 'cafe'

© 2026 HPCC Systems®. All rights reserved
77

Standard Library Reference
String Handling

CleanSpaces
STD.Str.CleanSpaces(source)

STD.Uni.CleanSpaces(source)

source A string containing the data to clean.

Return: CleanSpaces returns either a STRING or UNICODE value, as appropriate.

All variations of the CleanSpaces function return the source string with all instances of multiple adjacent
space characters (2 or more spaces together, or a tab character) reduced to a single space character. It
also trims off all leading and trailing spaces.

Example:

A := STD.Str.CleanSpaces('ABCDE ABCDE');
 //A contains 'ABCDE ABCDE'
UNICODE C := STD.Uni.CleanSpaces(U'ABCDE ABCDE'); //C contains U'ABCDE ABCDE'

© 2026 HPCC Systems®. All rights reserved
78

Standard Library Reference
String Handling

CommonPrefix
STD.Str.CommonPrefix(s1, s2 [,nocase])

STD.Uni.CommonPrefix(s1, s2 [,nocase])

s1 A string to compare.

s2 A string to compare.

nocase Optional. If TRUE, the comparison is case-insensitive. If omitted, the default is FALSE.

Return: CommonPrefix returns either a STRING or UNICODE value, as appropriate. It contains the
longest prefix common to both strings, as copied from the first argument. The result is empty if
the strings have no common prefix or if either argument is empty.

The CommonPrefix function returns the longest prefix common to both strings. This can be used for identi-
fying shared prefixes between strings, which can be helpful in text processing tasks such as pattern match-
ing, data normalization, or linguistic analysis.

Example:

IMPORT Std;
Std.Str.CommonPrefix('DANIEL', 'DANNY',nocase:=FALSE); // DAN
Std.Str.CommonPrefix('DANIEL', 'Danny',FALSE); // D
Std.Str.CommonPrefix('DANIEL', 'Danny',TRUE); // DAN
Std.Str.CommonPrefix('APPLES', 'ORANGES',FALSE); // empty

See Also: CommonSuffix

© 2026 HPCC Systems®. All rights reserved
79

Standard Library Reference
String Handling

CommonSuffix
STD.Str.CommonSuffix(s1, s2 [,nocase])

STD.Uni.CommonSuffix(s1, s2 [,nocase])

s1 A string to compare.

s2 A string to compare.

nocase Optional. If TRUE, the comparison is case-insensitive. If omitted, the default is FALSE.

Return: CommonSuffix returns either a STRING or UNICODE value, as appropriate. It contains the longest
suffix common to both strings, as copied from the first argument. The result is empty if the strings
have no common suffix or if either argument is empty.

The CommonSuffix function returns the longest suffix common to both strings. This can be useful for
identifying shared endings between strings, which can be helpful in text processing tasks such as pattern
matching, data normalization, or linguistic analysis.

Example:

IMPORT Std;
Std.Str.CommonSuffix('SUNLIGHT', 'MOONLIGHT',nocase:=FALSE); // NLIGHT
Std.Str.CommonSuffix('TABLETOP', 'Laptop',FALSE); // empty
Std.Str.CommonSuffix('TABLETOP', 'Laptop',TRUE); // TOP
Std.Str.CommonSuffix('APPLES', 'ORANGES',FALSE); // ES

See Also: CommonPrefix

© 2026 HPCC Systems®. All rights reserved
80

Standard Library Reference
String Handling

CompareAtStrength
STD.Uni.CompareAtStrength(source1, source2, strength)

STD.Uni.LocaleCompareAtStrength(source1,source2,locale,strength)

source1 A string containing the data to compare.

source2 A string containing the data to compare.

strength An integer value indicating how to compare. Valid values are:

1 ignores accents and case, differentiating only between letters.

2 ignores case but differentiates between accents.

3 differentiates between accents and case but ignores e.g. differences between Hira-
gana and Katakana

4 differentiates between accents and case and e.g. Hiragana/Katakana, but ignores e.g.
Hebrew cantellation marks

5 differentiates between all strings whose canonically decomposed forms (NFD--Nor-
malization Form D) are non-identical

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: CompareAtStrength returns an INTEGER value.

The CompareAtStrength functions return zero (0) if the source1 and source2 strings contain the same
data, ignoring any differences in the case of the letters. These functions return negative one (-1) if source1
< source2 or positive one (1) if source1 > source2.

Example:

base := u'caf\u00E9'; // U+00E9 is lowercase e with acute
prim := u'coffee shop'; // 1st difference, different letters
seco := u'cafe'; // 2nd difference, accents (no acute)
tert := u'Caf\u00C9'; // 3rd, caps (U+00C9 is u/c E + acute)

A := STD.Uni.CompareAtStrength(base, prim, 1) != 0;
 // base and prim differ at all strengths

A := STD.Uni.CompareAtStrength(base, seco, 1) = 0;
 // base and seco same at strength 1 (differ only at strength 2)

A := STD.Uni.CompareAtStrength(base, tert, 1) = 0;
 // base and tert same at strength 1 (differ only at strength 3)

A := STD.Uni.CompareAtStrength(base, seco, 2) != 0;
 // base and seco differ at strength 2

A := STD.Uni.CompareAtStrength(base, tert, 2) = 0;
 // base and tert same at strength 2 (differ only at strength 3)

A := STD.Uni.CompareAtStrength(base, seco, 3) != 0;
 // base and seco differ at strength 2

A := STD.Uni.CompareAtStrength(base, tert, 3) != 0;
 // base and tert differ at strength 3

© 2026 HPCC Systems®. All rights reserved
81

Standard Library Reference
String Handling

CompareIgnoreCase
STD.Str.CompareIgnoreCase(source1,source2)

STD.Uni.CompareIgnoreCase(source1,source2)

STD.Uni.LocaleCompareIgnoreCase(source1,source2, locale)

source1 A string containing the data to compare.

source2 A string containing the data to compare.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: CompareIgnoreCase returns an INTEGER value.

The CompareIgnoreCase functions return zero (0) if the source1 and source2 strings contain the same
data, ignoring any differences in the case of the letters. These functions return negative one (-1) if source1
< source2 or positive one (1) if source1 > source2.

Example:

A := STD.Str.CompareIgnoreCase('ABCDE','abcde');
 //A contains 0 -- they "match"

B := STD.Str.CompareIgnoreCase('ABCDE','edcba');
 //B contains -1 -- they do not "match"

© 2026 HPCC Systems®. All rights reserved
82

Standard Library Reference
String Handling

Contains
STD.Str.Contains(source, pattern, nocase)

STD.Uni.Contains(source, pattern, nocase)

source A string containing the data to search.

pattern A string containing the characters to compare. An empty string ('') always returns true.

nocase A boolean true or false indicating whether to ignore the case.

Return: Contains returns a BOOLEAN value.

The Contains functions return true if all the characters in the pattern appear in the source, otherwise they
return false.

Example:

A := STD.Str.Contains(
 'the quick brown fox jumps over the lazy dog',
 'ABCdefghijklmnopqrstuvwxyz', true); //returns TRUE

B:= STD.Str.Contains(
 'the speedy ochre vixen leapt over the indolent retriever',
 'abcdefghijklmnopqrstuvwxyz', false); //returns FALSE -- 'z' is missing

See Also: Find

© 2026 HPCC Systems®. All rights reserved
83

Standard Library Reference
String Handling

CountWords
STD.Str.CountWords(source, separator, [allow_blank])

STD.Uni.CountWords(source, separator, [allow_blank])

source A string containing the words to count.

separator A string containing the word delimiter to use.

allow_blank Optional, A BOOLEAN value indicating if empty/blank string items are included in the
results. Defaults to FALSE

Return: CountWords returns an integer value.

The CountWords function returns the number of words in the source string based on the specified sepa-
rator.

Words are separated by one or more separator strings. No spaces are stripped from either string before
matching.

Example:

IMPORT Std;

str1 := 'a word a day keeps the doctor away';
str2 := 'a|word|a|day|keeps|the|doctor|away';

OUTPUT(LENGTH(TRIM(Str1,LEFT,RIGHT)) - LENGTH(TRIM(Str1,ALL)) + 1);
 //finds eight words by removing spaces
STD.STr.CountWords(str1,' '); //finds eight words based on space delimiter
STD.STr.CountWords(str2,'|'); //finds eight words based on bar delimiter

© 2026 HPCC Systems®. All rights reserved
84

Standard Library Reference
String Handling

DecodeBase64
STD.Str.DecodeBase64(value)

value A STRING value containing the data to decode.

Return: DecodeBase64 returns a DATA value.

The DecodeBase64 function returns a DATA value containing the decoded binary data.

Example:

IMPORT STD;
str:='AQIDBAU=';
DecodedData:= STD.Str.DecodeBase64(str);
DecodedData;

See Also: EncodeBase64

© 2026 HPCC Systems®. All rights reserved
85

Standard Library Reference
String Handling

EditDistance
STD.Str.EditDistance(string1, string2, radius)

STD.Uni.EditDistance(string1, string2, locale, radius)

string1 The first of a pair of strings to compare.

string2 The second of a pair of strings to compare.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

radius Optional. The maximum acceptable edit distance, or 0 for no limit. Defaults to 0.

Return: EditDistance returns an UNSIGNED4 value.

The EditDistance function returns a standard Levenshtein distance algorithm score for the edit distance
between string1 and string2. This score reflects the minimum number of operations needed to transform
string1 into string2.

If the edit distance is larger than the radius it will return an arbitrary value > radius, but it may not be accurate.
This allows the function to terminate faster if the strings are significantly different.

Example:

STD.Str.EditDistance('CAT','CAT'); //returns 0
STD.Str.EditDistance('CAT','BAT'); //returns 1
STD.Str.EditDistance('BAT','BAIT'); //returns 1
STD.Str.EditDistance('CAT','BAIT'); //returns 2
STD.Str.EditDistance('CARTMAN','BATMAN'); //returns 2
STD.Str.EditDistance('CARTMAN','BATMAN',1); //returns arbitrary number > 1

© 2026 HPCC Systems®. All rights reserved
86

Standard Library Reference
String Handling

EditDistanceWithinRadius
STD.Str.EditDistanceWithinRadius(string1, string2, radius)

STD.Uni.EditDistanceWithinRadius(string1, string2, radius, locale)

string1 The first of a pair of strings to compare.

string2 The second of a pair of strings to compare.

radius An integer specifying the maximum acceptable edit distance.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: EditDistanceWithinRadius returns a BOOLEAN value.

The EditDistanceWithinRadius function returns TRUE if the edit distance between string1 and string2 is
within the radius. The two strings are trimmed before comparison.

Example:

IMPORT STD;
STD.Str.EditDistance('CAT','BAIT'); //returns 2

STD.Str.EditDistanceWithinRadius('CAT','BAIT',1); //returns FALSE
STD.Str.EditDistanceWithinRadius('CAT','BAIT',2); //returns TRUE

© 2026 HPCC Systems®. All rights reserved
87

Standard Library Reference
String Handling

EncodeBase64
STD.Str.EncodeBase64(value [, insertLF])

value A DATA value containing the data to encode.

insertLF Optional. A boolean TRUE/FALSE flag indicating that, when TRUE, causes linefeeds to
be inserted periodically in the output, potentially resulting in a multi-line string. If omitted,
the default is TRUE.

Return: EncodeBase64 returns a STRING value.

The EncodeBase64 function returns a STRING containing the binary data encoded in Base64.

Example:

IMPORT STD;
dat:=X'0102030405';
EncodedStr:= STD.Str.EncodeBase64(dat);
EncodedStr;

See Also: DecodeBase64

© 2026 HPCC Systems®. All rights reserved
88

Standard Library Reference
String Handling

EndsWith
STD.Str.EndsWith(src, suffix)

STD.Uni.EndsWith(src, suffix, form)

src The string to search.

suffix The string to find.

form The type of Unicode normalization to be employed. (NFC, NFD, NFKC, or NFKD)

Return: EndsWith returns a BOOLEAN value.

The EndsWith function returns TRUE if the src ends with the text in the suffix parameter.

Trailing and Leading spaces are stripped from the suffix before matching.

For the Unicode version, unless specified, normalization will not occur. Unless initiated as hex and then
converted to Unicode using TRANSFER, ECL will perform its own normalization on your declared Unicode
string.

Example:

IMPORT STD;
STD.STr.EndsWith('a word away','away'); //returns TRUE
STD.STr.EndsWith('a word a way','away'); //returns FALSE

© 2026 HPCC Systems®. All rights reserved
89

Standard Library Reference
String Handling

EqualIgnoreCase
STD.Str.EqualIgnoreCase(source1,source2)

source1 A string containing the data to compare.

source2 A string containing the data to compare.

Return: EqualIgnoreCase returns a BOOLEAN value.

The EqualIgnoreCase function return TRUE if the source1 and source2 strings contain the same data,
ignoring any differences in the case of the letters.

Example:

A := STD.Str.EqualIgnoreCase('ABCDE','abcde');
 //A contains TRUE -- they "match"

B := STD.Str.CompareIgnoreCase('ABCDE','edcba');
 //B contains FALSE -- they do not "match"

© 2026 HPCC Systems®. All rights reserved
90

Standard Library Reference
String Handling

ExcludeFirstWord
STD.Str.ExcludeFirstWord(text)

STD.Uni.ExcludeFirstWord(text, localename)

text A string containing words separated by whitespace.

localename Optional. The locale to use for the break semantics. Defaults to ''

Return: ExcludeFirstWord returns a STRING or UNICODE value, as appropriate.

The ExcludeFirstWord function returns the text string with the first word removed.

Words are separated by one or more whitespace characters. For the Unicode version, words are marked
by the Unicode break semantics.

Whitespace before the first word is also removed.

Example:

A := STD.Str.ExcludeFirstWord('The quick brown fox');
 //A contains 'quick brown fox'

© 2026 HPCC Systems®. All rights reserved
91

Standard Library Reference
String Handling

ExcludeLastWord
STD.Str.ExcludeLastWord(text)

STD.Uni.ExcludeLastWord(text, localename)

text A string containing words separated by whitespace.

localename Optional. The locale to use for the break semantics. Defaults to ''

Return: ExcludeLastWord returns a STRING or UNICODE value, as appropriate.

The ExcludeLastWord function returns the text string with the last word removed.

Words are separated by one or more whitespace characters. For the Unicode version, words are marked
by the Unicode break semantics.

Whitespace after the last word is also removed.

Example:

A := STD.Str.ExcludeLastWord('The quick brown fox');
 //A contains 'The quick brown'

© 2026 HPCC Systems®. All rights reserved
92

Standard Library Reference
String Handling

ExcludeNthWord
STD.Str.ExcludeNthWord(text, n)

STD.Uni.ExcludeNthWord(text, n, localename)

text A string containing words separated by whitespace.

n A integer containing the ordinal position of the word to remove.

localename Optional. The locale to use for the break semantics. Defaults to ''

Return: ExcludeNthWord returns a STRING or UNICODE value, as appropriate.

The ExcludeNthWord function returns the text string with the nth word removed.

Words are separated by one or more whitespace characters. For the Unicode version, words are marked
by the Unicode break semantics.

Trailing whitespaces are always removed with the word. Leading whitespaces are only removed with the
word if the nth word is the first word.

Returns a blank string if there are no words in the source string. Returns the source string if the number of
words in the string is less than the n parameter's assigned value.

Example:

A := STD.Str.ExcludeNthWord('The quick brown fox',2);
 //A contains 'The brown fox'

© 2026 HPCC Systems®. All rights reserved
93

Standard Library Reference
String Handling

Extract
STD.Str.Extract(source, instance)

STD.Uni.Extract(source, instance)

source A string containing a comma-delimited list of data.

instance An integer specifying the ordinal position of the data item within the source to return.

Return: Extract returns either a STRING or UNICODE value, as appropriate.

The Extract function returns the data at the ordinal position specified by the instance within the comma-de-
limited source string.

Example:

//all these examples result in 'Success'

A := IF(STD.Str.Extract('AB,CD,,G,E',0) = '',
 'Success',
 'Failure -1');

B := IF(STD.Str.Extract('AB,CD,,G,E',1) = 'AB',
 'Success',
 'Failure -2');

C := IF(STD.Str.Extract('AB,CD,,G,E',2) = 'CD',
 'Success',
 'Failure -3');

D := IF(STD.Str.Extract('AB,CD,,G,E',3) = '',
 'Success',
 'Failure -4');

E := IF(STD.Str.Extract('AB,CD,,G,E',4) = 'G',
 'Success',
 'Failure -5');

F := IF(STD.Str.Extract('AB,CD,,G,E',5) = 'E',
 'Success',
 'Failure -6');

G := IF(STD.Str.Extract('AB,CD,,G,E',6) = '',
 'Success',
 'Failure -7');

© 2026 HPCC Systems®. All rights reserved
94

Standard Library Reference
String Handling

ExtractMultiple
STD.Str.ExtractMultiple(source, instance)

STD.Uni.ExtractMultiple(source, instance)

source A string containing a comma-delimited list of data.

mask A bitmask specifying the ordinal position of the data item within the source to return
where bit 0 is item 1, bit 1 is item 2, etc..

Return: ExtractMultiple returns either a STRING or UNICODE value, as appropriate.

The ExtractMultiple function returns the data at the bitmask positions specified by the mask within the
comma-delimited source string., where bit 0 is item 1, bit 1 is item 2, etc.

Example:

IMPORT STD;
MyTestString:= 'You, only, live, twice';
STD.Str.ExtractMultiple(MyTestString, 0b10011); //returns 'You, only'

© 2026 HPCC Systems®. All rights reserved
95

Standard Library Reference
String Handling

Filter
STD.Str.Filter(source, filterstring)

STD.Uni.Filter(source, filterstring)

source A string containing the data to filter.

filterstring A string containing the characters to use as the filter.

Return: Filter returns a STRING or UNICODE value, as appropriate.

The StringFilter functions return the source string with all the characters except those in the filterstring
removed.

Example:

//all these examples result in 'Success'

A := IF(STD.Str.Filter('ADCBE', 'BD') = 'DB',
 'Success',
 'Failure - 1');

B := IF(STD.Str.Filter('ADCBEREBD', 'BDG') = 'DBBD',
 'Success',
 'Failure - 2');

C := IF(STD.Str.Filter('ADCBE', '') = '',
 'Success',
 'Failure - 3');

D := IF(STD.Str.Filter('', 'BD') = '',
 'Success',
 'Failure - 4');

E := IF(STD.Str.Filter('ABCDE', 'EDCBA') = 'ABCDE',
 'Success',
 'Failure - 5');

© 2026 HPCC Systems®. All rights reserved
96

Standard Library Reference
String Handling

FilterOut
STD.Str.FilterOut(source, filterstring)

STD.Uni.FilterOut(source, filterstring)

source A string containing the data to filter.

filterstring A string containing the characters to use as the filter.

Return: FilterOut returns a STRING or UNICODE value, as appropriate.

The FilterOut functions return the source string with all the characters in the filterstring removed.

Example:

//all these examples result in 'Success'

A := IF(STD.Str.FilterOut('ABCDE', 'BD') = 'ACE',
 'Success',
 'Failure - 1');

B := IF(STD.Str.FilterOut('ABCDEABCDE', 'BD') = 'ACEACE',
 'Success',
 'Failure - 2');

C := IF(STD.Str.FilterOut('ABCDEABCDE', '') = 'ABCDEABCDE',
 'Success',
 'Failure - 3');

D := IF(STD.Str.FilterOut('', 'BD') = '',
 'Success',
 'Failure - 4');

© 2026 HPCC Systems®. All rights reserved
97

Standard Library Reference
String Handling

Find
STD.Str.Find(source, target, instance)

STD.Uni.Find(source, target, instance)

STD.Uni.LocaleFind(source, target, instance, locale)

source A string containing the data to search.

target A string containing the substring to search for.

instance An integer specifying which occurrence of the target to find.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: Find returns an INTEGER value.

The Find functions return the beginning index position within the source string of the specified instance of
the target string. If the target is not found or the specified instance is greater than the number of occurrences
of the target in the source, Find returns zero (0). Trailing spaces are considered to be significant when
comparing.

Example:

A := IF(STD.Str.Find('ABCDE', 'BC',1) = 2,
 'Success',
 'Failure - 1'); //success

B := IF(STD.Str.Find('ABCDEABCDE', 'BC', 2) = 7,
 'Success',
 'Failure - 2'); //success

C := IF(STD.Str.Find('ABCDEABCDE', '') = 0,
 'Success',
 'Failure - 3'); //syntax error, missing 3rd parameter

D := IF(STD.Str.Find('', 'BD', 1) = 0,
 'Success',
 'Failure - 4'); //success

See Also: Contains

© 2026 HPCC Systems®. All rights reserved
98

Standard Library Reference
String Handling

FindCount
STD.Str.FindCount(src, sought)

STD.Uni.FindCount(src, sought, form)

src A string containing the data to search.

sought A string containing the substring to search for.

form The type of Unicode normalization to be employed. (NFC, NFD, NFKC, or NFKD)

Return: StringFindCount returns an INTEGER value.

The FindCount function returns the number of non-overlapping instances of the sought string within the
src string.

Example:

A := IF(STD.Str.FindCount('ABCDE', 'BC') = 1,
 'Success',
 'Failure - 1'); //success

B := IF(STD.Str.FindCount('ABCDEABCDE', 'BC') = 1,
 'Success',
 'Failure - 1'); //failure

© 2026 HPCC Systems®. All rights reserved
99

Standard Library Reference
String Handling

FindAtStrength
STD.Uni.LocaleFindAtStrength(source,target,instance,locale,strength)

source A string containing the data to search.

target A string containing the substring to search for.

instance An integer specifying which occurrence of the target to find.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

strength An integer value indicating how to compare. Valid values are:

1 ignores accents and case, differentiating only between letters

2 ignores case but differentiates between accents.

3 differentiates between accents and case but ignores e.g. differences between Hira-
gana and Katakana

4 differentiates between accents and case and e.g. Hiragana/Katakana, but ignores e.g.
Hebrew cantellation marks

5 differentiates between all strings whose canonically decomposed forms (NFD--Nor-
malization Form D) are non-identical

Return: FindAtStrength returns an INTEGER value.

The FindAtStrength function returns the beginning index position within the source string of the specified
instance of the target string. If the target is not found or the specified instance is greater than the number
of occurrences of the target in the source, StringFind returns zero (0).

Example:

base := u'caf\u00E9'; // U+00E9 is lowercase e with acute
prim := u'coffee shop'; // 1st difference, different letters
seco := u'cafe'; // 2nd difference, accents (no acute)
tert := u'Caf\u00C9'; // 3rd, caps (U+00C9 is u/c E + acute)
search := seco + tert + base;
STD.Uni.LocaleFindAtStrength(search, base, 1, 'fr', 1) = 1;
 // at strength 1, base matches seco (only secondary diffs)
STD.Uni.LocaleFindAtStrength(search, base, 1, 'fr', 2) = 5;
 // at strength 2, base matches tert (only tertiary diffs)
STD.Uni.LocaleFindAtStrength(search, base, 1, 'fr', 3) = 9;
 // at strength 3, base doesn't match either seco or tert
STD.Uni.LocaleFindAtStrength(u'le caf\u00E9 vert',
 u'cafe', 1, 'fr', 2) = 4;
 // however, an accent on the source,
STD.Uni.LocaleFindAtStrength(u'le caf\u00E9 vert',
 u'cafe', 1, 'fr', 3) = 4;
 // rather than on the pattern,
STD.Uni.LocaleFindAtStrength(u'le caf\u00E9 vert',
 u'cafe', 1, 'fr', 4) = 4;
 // is ignored at strengths up to 4,
STD.Uni.LocaleFindAtStrength(u'le caf\u00E9 vert',
 u'cafe', 1, 'fr', 5) = 0;
 // and only counts at strength 5

© 2026 HPCC Systems®. All rights reserved
100

Standard Library Reference
String Handling

FindAtStrengthReplace
STD.Uni.LocaleFindAtStrengthReplace(source, target, replacement, locale, strength)

source A string containing the data to search.

target A string containing the substring to search for.

replacement A string containing the replacement data.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

strength An integer value indicating how to compare. Valid values are:

1 ignores accents and case, differentiating only between letters.

2 ignores case but differentiates between accents.

3 differentiates between accents and case but ignores e.g. differences between Hira-
gana and Katakana

4 differentiates between accents and case and e.g. Hiragana/Katakana, but ignores e.g.
Hebrew cantellation marks

5 differentiates between all strings whose canonically decomposed forms (NFD--Nor-
malization Form D) are non-identical

Return: FindAtStrengthReplace returns a UNICODE value.

The FindAtStrengthReplace functions return the source string with the replacement string substituted for
all instances of the target string. If the target string is not in the source string, it returns the source string
unaltered.

Example:

STD.Uni.LocaleFindAtStrengthReplace(u'e\u00E8E\u00C9eE',
 u'e\u00E9', u'xyz', 'fr', 1) = u'xyzxyzxyz';
STD.Uni.LocaleFindAtStrengthReplace(u'e\u00E8E\u00C9eE',
 u'e\u00E9', u'xyz', 'fr', 2) = u'e\u00E8xyzeE';
STD.Uni.LocaleFindAtStrengthReplace(u'e\u00E8E\u00C9eE',
 u'e\u00E9', u'xyz', 'fr', 3) = u'e\u00E8E\u00C9eE';

© 2026 HPCC Systems®. All rights reserved
101

Standard Library Reference
String Handling

FindReplace
STD.Str.FindReplace(source, target, replacement)

STD.Uni.FindReplace(source, target, replacement)

STD.Uni.LocaleFindReplace(source, target, replacement, locale)

source A string containing the data to search.

target A string containing the substring to search for.

replacement A string containing the replacement data.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: FindReplace returns a STRING or UNICODE value, as appropriate.

The FindReplace functions return the source string with the replacement string substituted for all instances
of the target string . If the target string is not in the source string, it returns the source string unaltered.

Example:

A := STD.Str.FindReplace('ABCDEABCDE', 'BC','XY');
 //A contains 'AXYDEAXYDE'
A := STD.Uni.FindReplace(u'abcde', u'a', u'AAAAA');
 //A contains u'AAAAAbcde'
A := STD.Uni.FindReplace(u'aaaaa', u'aa', u'b');
 //A contains u'bba'
A := STD.Uni.FindReplace(u'aaaaaa', u'aa', u'b');
 //A contains u'bbb'
A := STD.Uni.LocaleFindReplace(u'gh\u0131klm', u'hyk', u'XxXxX', 'lt');
 //A contains u'gXxXxXlm'
A := STD.Uni.LocaleFindReplace(u'gh\u0131klm', u'hyk', u'X', 'lt');
 //A contains u'gXlm'

© 2026 HPCC Systems®. All rights reserved
102

Standard Library Reference
String Handling

FindWord
STD.Str.FindWord(src, word, ignore_case)

STD.Uni.FindWord(src, word, ignore_case)

src A string containing the data to search.

word A string containing the substring to search for.

ignore_case A boolean true or false to indicate whether to ignore the case.

Return: FindWord returns a BOOLEAN value.

The FindWord functions return TRUE if the word string is found in src string.

Example:

IMPORT STD;
src := 'Now is the winter of our discontent';
word := 'now';

STD.Str.FindWord(src,word); // false - case not ignored
STD.Str.FindWord(src,word,TRUE); // true - with case ignored word is found

© 2026 HPCC Systems®. All rights reserved
103

Standard Library Reference
String Handling

FromHexPairs
STD.Str.FromHexPairs(source)

source The string containing the hex pairs to process.

Return: FromHexPairs returns a data value with each byte created from a pair of hex digits.

The FromHexPairs function returns a data value with each byte created from a pair of hex digits.

Example:

A := STD.Str.FromHexPairs('0001FF80');

© 2026 HPCC Systems®. All rights reserved
104

Standard Library Reference
String Handling

GetNthWord
STD.Str.GetNthWord(source, instance)

STD.Uni.GetNthWord (source, instance [, locale])

source A string containing the space-delimited words.

instance An integer specifying the word to return.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: GetNthWord returns a string value.

The GetNthWord function returns the word in the instance position in the sourcestring.

Example:

IMPORT Std;

str1 := 'a word a day keeps the doctor away';

STD.STr.GetNthWord(str1,2); //returns "word"

© 2026 HPCC Systems®. All rights reserved
105

Standard Library Reference
String Handling

RemoveSuffix
STD.Str.RemoveSuffix(src, suffix)

STD.Uni.RemoveSuffix(src, suffix, form)

src The string to search.

suffix The ending string to remove.

form The type of Unicode normalization to be employed. (NFC, NFD, NFKC, or NFKD)

Return: RemoveSuffix returns a string value.

The RemoveSuffix function returns the src string with the ending text in the suffix parameter removed. If
the src string does not end with the suffix, then the src string is returned unchanged. Trailing spaces are
stripped from both strings before matching.

Example:

IMPORT STD;
STD.STr.RemoveSuffix('a word away','away'); //returns 'a word'
STD.STr.RemoveSuffix('a word a way','away'); //returns 'a word a way'

© 2026 HPCC Systems®. All rights reserved
106

Standard Library Reference
String Handling

Repeat
STD.Str.Repeat(text, n)

STD.Uni.Repeat(text, n)

text The string to be repeated (maximum length is 255 characters).

n The number of repetitions.

Return: Repeat returns a STRING containing n concatenations of the string text..

The Repeat function returns the text string repeated n times.

Example:

A := STD.Str.Repeat('ABC',3); //A contains 'ABCABCABC'

© 2026 HPCC Systems®. All rights reserved
107

Standard Library Reference
String Handling

Reverse
STD.Str.Reverse(source)

STD.Uni.Reverse(source)

source A string containing the data to reverse.

Return: Reverse returns a STRING or UNICODE value, as appropriate.

The Reverse functions return the source string with all characters in reverse order.

Example:

A := STD.Str.Reverse('ABCDE'); //A contains 'EDCBA'

© 2026 HPCC Systems®. All rights reserved
108

Standard Library Reference
String Handling

SplitWords
STD.Str.SplitWords(src, separator [, allow_blank])

STD.Uni.SplitWords(src, separator [, allow_blank])

src A string containing the words to extract.

separator A string containing the word delimiter to use.

allow_blank Optional. If TRUE, specifies allowing blank items in the result. If omitted, the default is
FALSE.

Return: SplitWords returns a SET OF STRING or a UnicodeSet, as appropriate .

The SplitWords function returns the list of words in the src string split out by the specified separator. No
spaces are stripped from either string before matching.

Example:

IMPORT Std;

str1 := 'a word a day keeps the doctor away';
str2 := 'a|word|a|day|keeps|the|doctor|away';

STD.STr.SplitWords(str1,' ');
 //returns ['a', 'word', 'a', 'day', 'keeps', 'the', 'doctor', 'away']

STD.STr.SplitWords(str2,'|');
 //returns ['a', 'word', 'a', 'day', 'keeps', 'the', 'doctor', 'away']

© 2026 HPCC Systems®. All rights reserved
109

Standard Library Reference
String Handling

SubstituteExcluded
STD.Str.SubstituteExcluded(source, target, replacement)

STD.Uni.SubstituteExcluded(source, target, replacement)

source A string containing the data to search.

target A string containing the characters to search for.

replacement A string containing the replacement character as its first character.

Return: SubstituteExcluded returns a STRING or UNICODE value, as appropriate.

The SubstituteExcluded functions return the source string with the replacement character substituted for
all characters except those in the target string. If the target string is not in the source string, it returns the
source string with all characters replaced by the replacement character.

Example:

IMPORT STD;
A := STD.Uni.SubstituteExcluded(u'abcdeabcdec', u'cd', u'x');
 //A contains u'xxcdxxxcdxc';

© 2026 HPCC Systems®. All rights reserved
110

Standard Library Reference
String Handling

SubstituteIncluded
STD.Str.SubstituteIncluded(source, target, replacement)

STD.Uni.SubstituteIncluded(source, target, replacement)

source A string containing the data to search.

target A string containing the characters to search for.

replacement A string containing the replacement character as its first character.

Return: SubstituteIncluded returns a STRING or UNICODE value, as appropriate.

The SubstituteIncluded functions return the source string with the replacement character substituted for
all characters that exist in both the source and the target string. If no target string characters are in the
source string, it returns the source string unaltered.

Example:

IMPORT STD;
A := STD.Uni.SubstituteIncluded(u'abcde', u'cd', u'x');
 //A contains u'abxxe';
B := STD.Str.SubstituteIncluded('abcabc','ac','yz');
 //B contains 'ybyyby'

© 2026 HPCC Systems®. All rights reserved
111

Standard Library Reference
String Handling

StartsWith
STD.Str.StartsWith(src, prefix)

STD.Uni.StartsWith(src, prefix, form)

src The string to search.

prefix The string to find.

form The type of Unicode normalization to be employed. (NFC, NFD, NFKC, or NFKD)

Return: StartsWith returns a BOOLEAN value.

The StartsWith function returns TRUE if the src starts with the text in the prefix parameter.

Trailing and Leading spaces are stripped from the prefix before matching.

For the Unicode version, unless specified, normalization will not occur. Unless initiated as hex and then
converted to Unicode using TRANSFER, ECL will perform its own normalization on your declared Unicode
string.

Example:

IMPORT STD;
STD.Str.StartsWith('a word away','a word'); //returns TRUE
STD.Str.StartsWith('a word away','aword'); //returns FALSE

© 2026 HPCC Systems®. All rights reserved
112

Standard Library Reference
String Handling

ToHexPairs
STD.Str.ToHexPairs(source)

source The data value that should be expanded as a sequence of hex pairs.

Return: ToHexPairs returns a string containing a sequence of hex pairs.

The ToHexPairs function Converts the data value to a sequence of hex pairs.

Example:

A := STD.Str.ToHexPairs(D'\000\001\377\200');

© 2026 HPCC Systems®. All rights reserved
113

Standard Library Reference
String Handling

ToLowerCase
STD.Str.ToLowerCase(source)

STD.Uni.ToLowerCase(source)

STD.Uni.LocaleToLowerCase(source, locale)

source A string containing the data to change case.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: ToLowerCase returns a STRING or UNICODE value, as appropriate.

The ToLowerCase functions return the source string with all upper case characters converted to lower case.

Example:

A := STD.Str.ToLowerCase('ABCDE'); //A contains 'abcde'

© 2026 HPCC Systems®. All rights reserved
114

Standard Library Reference
String Handling

ToTitleCase
STD.Str.ToTitleCase(source)

STD.Uni.ToTitleCase(source)

STD.Uni.LocaleToTitleCase(source, locale)

source A string containing the data to change case.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: ToTitleCase returns a STRING or UNICODE value, as appropriate.

The ToTitleCase functions return the source string with the first letter of each word in upper case and all
other letters lower cased.

Example:

A := STD.Str.ToTitleCase('ABCDE ABCDE '); //A contains 'Abcde Abcde'
B := STD.Str.ToTitleCase('john smith-jones'); //B contains 'John Smith-Jones'

© 2026 HPCC Systems®. All rights reserved
115

Standard Library Reference
String Handling

ToUpperCase
STD.Str.ToUpperCase(source)

STD.Uni.ToUpperCase(source)

STD.Uni.LocaleToUpperCase(source, locale)

source A string containing the data to change case.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: ToUpperCase returns a STRING value.

The ToUpperCase functions return the source string with all lower case characters converted to upper case.

Example:

A := STD.Str.ToUpperCase('abcde');
 //A contains 'ABCDE'

© 2026 HPCC Systems®. All rights reserved
116

Standard Library Reference
String Handling

Translate
STD.Str.Translate(src, search, replacement)

STD.Uni.Translate(src, search, replacement)

src A string containing the characters to search.

search A string containing the characters to be replaced by characters in the replacement string.

replacement A string containing the characters to act as replacements.

Return: Translate returns a STRING or UNICODE value, as appropriate.

The Translate functions return the src string with the replacement character substituted for all characters
in the src string. The search string characters are replaced by the characters in the equivalent position in
the replacement string.

If no search string characters are in the src string, it returns the src string unaltered.

Example:

IMPORT STD;
A := STD.Str.Translate('abcabc','ca','yz'); //A contains 'zbyzby'

© 2026 HPCC Systems®. All rights reserved
117

Standard Library Reference
String Handling

Version
STD.Uni.Version()

Return: Version returns a STRING value (e.g., '55.1').

The Version function returns the version of the International Components for Unicode (ICU) library installed.

Example:

© 2026 HPCC Systems®. All rights reserved
118

Standard Library Reference
String Handling

WildMatch
STD.Str.WildMatch(source, pattern, nocase)

STD.Uni.WildMatch(source, pattern, nocase)

source A string containing the data to search.

pattern A string containing the wildcard expression to match. Valid wildcards are ? (single char-
acter) and * (multiple character).

nocase A boolean true or false indicating whether to ignore the case.

Return: WildMatch returns a BOOLEAN value.

The WildMatch function returns TRUE if the pattern matches the source.

The case-insensitive version of the Unicode WildMatch has been optimized for speed over accuracy. For
accurate case-folding, you should either use the Unicode ToUpperCase function explicitly and then a case-
sensitive the Unicode WildMatch, or use REGEXFIND.

Example:

STD.Str.wildmatch('abcdeabcdec', 'a?c*', false) = TRUE;

© 2026 HPCC Systems®. All rights reserved
119

Standard Library Reference
String Handling

WordCount
STD.Str.WordCount(source)

STD.Uni.WordCount(source [, locale])

source A string containing the words to count. Words are delimited by spaces.

locale A null-terminated string containing the language and country code to use to determine
correct sort order and other operations.

Return: WordCount returns an integer value.

The WordCount function returns the number of words in the source string.

Example:

IMPORT Std;

str1 := 'a word a day keeps the doctor away';

OUTPUT(LENGTH(TRIM(Str1,LEFT,RIGHT)) - LENGTH(TRIM(Str1,ALL)) + 1);
 //finds eight words by removing spaces

STD.Str.WordCount(str1); //finds eight words based on space delimiter

© 2026 HPCC Systems®. All rights reserved
120

Standard Library Reference
Metaphone Support

Metaphone Support
These functions provide a means to implement Double Metaphone or Metaphone 3 phonetic encoding or
fuzzy-match algorithms which return a primary code, a secondary code, or both for a given string.

© 2026 HPCC Systems®. All rights reserved
121

Standard Library Reference
Metaphone Support

Primary
STD.Metaphone.Primary(source)

STD.Metaphone3.Primary(source)

source The string to process.

Return: Primary returns a STRING value.

The Primary function returns a textual representation of the source data, similar to a Soundex code. This
function returns the first return value from the Double Metaphone algorithm.

The Metaphone3.Primary function uses the newer Metaphone 3 libraries which improve phonetic encoding
of English words, non-English words familiar to Americans, and first and last names commonly found in the
United States (Enterprise Edition only).

Example:

r := RECORD
 STRING source;
 STRING M1;
 STRING M2;
 STRING Mboth;
END;

r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone.Primary(L.LastName);
 SELF.M2 := STD.Metaphone.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone.Double(L.LastName);
END;

// Example using Metaphone 3 (available in Enterprise Edition)
/*
r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone3.Primary(L.LastName);
 SELF.M2 := STD.Metaphone3.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone3.Double(L.LastName);
 END;
*/

ds := PROJECT(ProgGuide.Person.File,XF(LEFT));

COUNT(ds);
COUNT(ds(M1 <> M2));
OUTPUT(ds);
OUTPUT(ds(M1 <> M2));

© 2026 HPCC Systems®. All rights reserved
122

Standard Library Reference
Metaphone Support

Secondary
STD.Metaphone.Secondary(source)

STD.Metaphone3.Secondary(source)

source The string to process.

Return: Secondary returns a STRING value.

The Secondary function returns a textual representation of the source data, similar to a Soundex code.
This function returns the second return value from the Double Metaphone algorithm.

The Metaphone3.SecondaryPrimary function uses the newer Metaphone 3 libraries which improve pho-
netic encoding of English words, non-English words familiar to Americans, and first and last names com-
monly found in the United States (Enterprise Edition only).

Example:

r := RECORD
 STRING source;
 STRING M1;
 STRING M2;
 STRING Mboth;
END;

r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone.Primary(L.LastName);
 SELF.M2 := STD.Metaphone.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone.Double(L.LastName);
END;

// Example using Metaphone 3 (available in Enterprise Edition)
/*
r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone3.Primary(L.LastName);
 SELF.M2 := STD.Metaphone3.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone3.Double(L.LastName);
 END;
*/

ds := PROJECT(ProgGuide.Person.File,XF(LEFT));

COUNT(ds);
COUNT(ds(M1 <> M2));
OUTPUT(ds);
OUTPUT(ds(M1 <> M2));

© 2026 HPCC Systems®. All rights reserved
123

Standard Library Reference
Metaphone Support

Double
STD.Metaphone.Double(source)

STD.Metaphone3.Double(source)

source The string to process.

Return: Double returns a STRING value.

The Double function returns a textual representation of the source data, similar to a Soundex code. This
function returns both return values from the Double Metaphone algorithm, concatenating the two into a
single result string.

The Metaphone3.Double function uses the newer Metaphone 3 libraries which improve phonetic encoding
of English words, non-English words familiar to Americans, and first and last names commonly found in the
United States (Enterprise Edition only).

Example:

r := RECORD
 STRING source;
 STRING M1;
 STRING M2;
 STRING Mboth;
END;

r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone.Primary(L.LastName);
 SELF.M2 := STD.Metaphone.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone.Double(L.LastName);
END;

// Example using Metaphone 3 (available in Enterprise Edition)
/*
r XF(ProgGuide.Person.File L) := TRANSFORM
 SELF.source := L.LastName;
 SELF.M1 := STD.Metaphone3.Primary(L.LastName);
 SELF.M2 := STD.Metaphone3.Secondary(L.LastName);
 SELF.Mboth := STD.Metaphone3.Double(L.LastName);
 END;
*/

ds := PROJECT(ProgGuide.Person.File,XF(LEFT));

COUNT(ds);
COUNT(ds(M1 <> M2));
OUTPUT(ds);
OUTPUT(ds(M1 <> M2));

© 2026 HPCC Systems®. All rights reserved
124

Standard Library Reference
Cryptography Support

Cryptography Support
This section provides support to perform cryptographic functions on data in ECL.

© 2026 HPCC Systems®. All rights reserved
125

Standard Library Reference
Cryptography Support

Cryptographic Library Overview
There are three classes of Cryptographic Algorithms in the Cryptography library: Hashing functions, Sym-
metric-Key Algorithms, and Asymmetric-Key Algorithms.

Hashing Functions:

• Useful to verify data integrity

• Transforms large random sized data to small fixed size

• Impossible to reverse a hash back to its original data (one-way)

• Fast

See Also: SupportedHashAlgorithms

Symmetric-Key Algorithms:

• Uses a single shared key to Encrypt/Decrypt data

• Supports Block algorithms

• Fast

See Also: SupportedSymmetricCipherAlgorithms

Asymmetric-Key Algorithms (Also known as Public-Key or PKI Algorithms):

• Mathematically associated Public and Private Key Pair

• Used to Encrypt/Decrypt data

• Used to create Digital Signatures

• Comparatively slower

See Also: SupportedPublicKeyAlgorithms

© 2026 HPCC Systems®. All rights reserved
126

Standard Library Reference
Cryptography Support

SupportedHashAlgorithms
STD.Crypto.SupportedHashAlgorithms();

Return: SET OF STRINGs containing all supported Hash Algorithms

The SupportedHashAlgorithms function returns the set of supported Hash Algorithms

Example:

IMPORT STD;
STD.Crypto.SupportedHashAlgorithms(); //returns SET of STRINGs

© 2026 HPCC Systems®. All rights reserved
127

Standard Library Reference
Cryptography Support

SupportedSymmetricCipherAlgorithms
STD.Crypto.SupportedSymmetricCipherAlgorithms();

Return: SET OF STRINGs containing all supported Cipher Algorithms

The SupportedSymmetricCipherAlgorithms function returns the set of supported Cipher Algorithms

Example:

IMPORT STD;
STD.Crypto.SupportedSymmetricCipherAlgorithms(); //returns SET of STRINGs

© 2026 HPCC Systems®. All rights reserved
128

Standard Library Reference
Cryptography Support

SupportedPublicKeyAlgorithms
STD.Crypto.SupportedPublicKeyAlgorithms();

Return: SET OF STRINGs containing all supported Public Key Algorithms

The SupportedPublicKeyAlgorithms function returns the set of supported Public Key Algorithms

Example:

IMPORT STD;
STD.Crypto.SupportedPublicKeyAlgorithms(); //returns SET of STRINGs

© 2026 HPCC Systems®. All rights reserved
129

Standard Library Reference
Cryptography Support

Hashing Module
myHashModule := STD.Crypto.Hashing(hashAlgorithm);

myHashModule The name of the Hashing module structure

hashAlgorithm The hashing algorithm to use, as returned by SupportedHashAlgorithms()

A Hashing module is defined in ECL. Subsequent function definitions use the module definitions specified
in the Hashing module definition.

Example:

Import STD;

//Hashing module definition
myHashModuleSha512 := Std.Crypto.Hashing('sha512');
myHashModuleSha256 := Std.Crypto.Hashing('sha256');

DATA hash1 := myHashModuleSha512.Hash((DATA)'The quick brown fox jumps over the lazy dog');
DATA hash2 := myHashModuleSha256.Hash((DATA)'The quick brown fox jumps over the lazy dog');

OUTPUT(hash1);
OUTPUT(hash2);

© 2026 HPCC Systems®. All rights reserved
130

Standard Library Reference
Cryptography Support

Hash
myHashModule.Hash(inputData);

myHashModule The name of the Hashing module structure

inputData The data to hash in DATA format

Return: Hashed contents in DATA format

The Hash function creates a hash of the given inputData, using the hash algorithm defined in the Hashing
module.

Example:

Import STD;

//Hashing module definition
myHashModuleSha512 := Std.Crypto.Hashing('sha512');
myHashModuleSha256 := Std.Crypto.Hashing('sha256');

DATA hash1 := myHashModuleSha512.Hash((DATA)'The quick brown fox jumps over the lazy dog');
DATA hash2 := myHashModuleSha256.Hash((DATA)'The quick brown fox jumps over the lazy dog');

OUTPUT(hash1);
OUTPUT(hash2);

© 2026 HPCC Systems®. All rights reserved
131

Standard Library Reference
Cryptography Support

SymmetricEncryption Module
mySymEncModule := STD.Crypto.SymmetricEncryption(algorithm, passphrase);

mySymEncModule The name of the Symmetric Encryption module structure

algorithm The algorithm to use, as returned by SupportedSymmetricCipherAlgorithms()

passphrase The passphrase to use for encryption/decryption

A Symmetric Encryption module is defined in ECL. Subsequent function definitions use the options specified
in the Symmetric Encryption module definition.

Example:

IMPORT STD;

//Symmetric Encryption module definition
mySymEncModule := Std.Crypto.SymmetricEncryption('aes-256-cbc',
 '12345678901234567890123456789012');

//encrypt/decrypt string literals
STRING myStr := 'The quick brown fox jumps over the lazy dog';
DATA encryptedStr := mySymEncModule.Encrypt((DATA)myStr);
STRING decryptedStr := (STRING)mySymEncModule.Decrypt(encryptedStr) ;

OUTPUT(myStr);
OUTPUT(decryptedStr);

© 2026 HPCC Systems®. All rights reserved
132

Standard Library Reference
Cryptography Support

Encrypt (Symmetric)
mySymEncModule.Encrypt(inputData);

mySymEncModule The name of the Symmetric Encryption module structure

inputData The data to encrypt in DATA format

Return: Encrypted contents in DATA format

The Encrypt function encrypts the given inputData, using the options defined in the Symmetric Encryption
module.

Example:

IMPORT STD;

//Symmetric Encryption module definition
mySymEncModule := Std.Crypto.SymmetricEncryption('aes-256-cbc',
 '12345678901234567890123456789012');

//encrypt/decrypt string literals
STRING myStr := 'The quick brown fox jumps over the lazy dog';
DATA encryptedStr := mySymEncModule.Encrypt((DATA)myStr);
STRING decryptedStr := (STRING)mySymEncModule.Decrypt(encryptedStr) ;

OUTPUT(myStr);
OUTPUT(decryptedStr);

© 2026 HPCC Systems®. All rights reserved
133

Standard Library Reference
Cryptography Support

Decrypt (Symmetric)
mySymEncModule.Decrypt(encryptedData);

mySymEncModule The name of the Symmetric Encryption module structure

encryptedData The data to decrypt in DATA format

Return: Decrypted contents in DATA format

The Decrypt function decrypts the given encryptedData using the options defined in the Symmetric Encryp-
tion module. You can only decrypt data that was encrypted by the Standard Library's Encrypt method.

Example:

IMPORT STD;

//Symmetric Encryption module definition
mySymEncModule := Std.Crypto.SymmetricEncryption('aes-256-cbc',
 '12345678901234567890123456789012');

//encrypt/decrypt string literals
STRING myStr := 'The quick brown fox jumps over the lazy dog';
DATA encryptedStr := mySymEncModule.Encrypt((DATA)myStr);
STRING decryptedStr := (STRING)mySymEncModule.Decrypt(encryptedStr) ;

OUTPUT(myStr);
OUTPUT(decryptedStr);

© 2026 HPCC Systems®. All rights reserved
134

Standard Library Reference
Cryptography Support

PublicKeyEncryption Module
myPKEModule := STD.Crypto.PublicKeyEncryption(pkAlgorithm, publicKeyFile, privateKeyFile,
passphrase);

myPKEModule The name of the Public Key Encryption module structure

pkAlgorithm The algorithm to use, as returned by SupportedPublicKeyAlgorithms()

publicKeyFile The File Specification of the PEM formatted Public Key file

privateKeyFile The File Specification of the PEM formatted Private Key file

passphrase The passphrase to use for encryption, decryption, signing, verifying

A Public Key Encryption module is defined in ECL. Subsequent function definitions use the options defined
in the Public Key Encryption module to perform asymmetric encryption/decryption/digital signing/signature
verification.

Example:

IMPORT STD;
privKeyFile := '/var/lib/HPCCSystems/myesp/test.key';
pubKeyFile := '/var/lib/HPCCSystems/myesp/test.key.pub';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryption('RSA', pubKeyFile, privKeyFile,'');

DATA encrypted := myPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');

OUTPUT((STRING)myPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
135

Standard Library Reference
Cryptography Support

Encrypt (PKE)
myPKEModule.Encrypt(inputData);

myPKEModule The name of the Public Key Encryption module structure

inputData The data to encrypt in DATA format

Return: Encrypted contents in DATA format

The Encrypt function encrypts the given inputData using the options specified in the Public Key Encryption
module definition.

Example:

IMPORT STD;
privKeyFile := '/var/lib/HPCCSystems/myesp/test.key';
pubKeyFile := '/var/lib/HPCCSystems/myesp/test.key.pub';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryption('RSA', pubKeyFile, privKeyFile,'');

DATA encrypted := myPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');

OUTPUT((STRING)myPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
136

Standard Library Reference
Cryptography Support

Decrypt (PKE)
myPKEModule.Decrypt(encryptedData);

myPKEModule The name of the Public Key Encryption module structure

encryptedData The data to decrypt in DATA format

Return: Decrypted contents in DATA format

The Decrypt function decrypts the given encryptedData, using the options specified in the Public Key En-
cryption module definition. You can only decrypt data that was encrypted by the Standard Library's Encrypt
method.

Example:

IMPORT STD;
privKeyFile := '/var/lib/HPCCSystems/myesp/test.key';
pubKeyFile := '/var/lib/HPCCSystems/myesp/test.key.pub';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryption('RSA', pubKeyFile, privKeyFile,'');

DATA encrypted := myPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');

OUTPUT((STRING)myPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
137

Standard Library Reference
Cryptography Support

Sign (PKE)
mySymEncModule.Sign(encryptedData);

myPKEModule The name of the Public Key Encryption module structure

inputData The data to sign in DATA format

Return: Computed Digital signature

The Sign function creates a digital signature of the given inputData, using the options specified in the Public
Key Encryption module definition.

Example:

IMPORT STD;
privKeyFile := '/var/lib/HPCCSystems/myesp/test.key';
pubKeyFile := '/var/lib/HPCCSystems/myesp/test.key.pub';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryption('RSA', pubKeyFile, privKeyFile,'');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
138

Standard Library Reference
Cryptography Support

VerifySignature (PKE)
myPKEModule.VerifySignature(signature, signedData);

myPKEModule The name of the Public Key Encryption module structure

signature The Digital signature to verify

signedData Data used to create the signature in DATA format

Return: A BOOLEAN value to indicate verification

The VerifySignature function verifies the given digital signature using the options specified in the Public Key
Encryption module definition.

Example:

IMPORT STD;
privKeyFile := '/var/lib/HPCCSystems/myesp/test.key';
pubKeyFile := '/var/lib/HPCCSystems/myesp/test.key.pub';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryption('RSA', pubKeyFile, privKeyFile,'');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
139

Standard Library Reference
Cryptography Support

PublicKeyEncryptionFromBuffer Module
myPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer(pkAlgorithm, publicKeyFile, privateKey-
File, passphrase);

myPKEModule The name of the Public Key Encryption From Buffer module structure

pkAlgorithm The algorithm to use, as returned by SupportedPublicKeyAlgorithms()

publicKeyBuff PEM formatted Public Key buffer

privateKeyBuff PEM formatted Private Key buffer

passphrase The passphrase to use for encryption, decryption, signing, verifying

A Public Key Encryption From Buffer module is defined in ECL. Subsequent function definitions use the
options defined in the Public Key Encryption From Buffer module to perform asymmetric encryption/decryp-
tion/digital signing/signature verification.

Example:

IMPORT STD;

STRING publicKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----';

STRING privateKey := '-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----';

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer('RSA', PublicKey, PrivateKey, '');

© 2026 HPCC Systems®. All rights reserved
140

Standard Library Reference
Cryptography Support

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
141

Standard Library Reference
Cryptography Support

Encrypt (PKE From Buffer)
myPKEModule.Encrypt(inputData);

myPKEModule The name of the Public Key Encryption module structure

inputData The data to encrypt in DATA format

Return: Encrypted contents in DATA format

The Encrypt function encrypts the given inputData, using the options specified in the Public Key Encryption
From Buffer module definition.

Example:

IMPORT STD;

STRING publicKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----';

STRING privateKey := '-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----';

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer('RSA', PublicKey, PrivateKey, '');

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
142

Standard Library Reference
Cryptography Support

Decrypt (PKE From Buffer)
myPKEModule.Decrypt(encryptedData);

myPKEModule The name of the Public Key Encryption module structure

encryptedData The data to decrypt in DATA format

Return: Decrypted contents in DATA format

The Decrypt function decrypts the given encryptedData, using the options specified in the Public Key En-
cryption From Buffer module definition. You can only decrypt data that was encrypted by the Standard Li-
brary's Encrypt method.

Example:

IMPORT STD;

STRING publicKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----';

STRING privateKey := '-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----';

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer('RSA', PublicKey, PrivateKey, '');

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
143

Standard Library Reference
Cryptography Support

Sign (PKE From Buffer)
mySymEncModule.Sign(encryptedData);

myPKEModule The name of the Public Key Encryption module structure

inputData The data to sign in DATA format

Return: Computed Digital signature in DATA format

The Sign function creates a digital signature of the given inputData, using the options specified in the Public
Key Encryption From Buffer module definition.

Example:

IMPORT STD;

STRING publicKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----';

STRING privateKey := '-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer('RSA', publicKey, privateKey,'');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
144

Standard Library Reference
Cryptography Support

VerifySignature (PKE From Buffer)
myPKEModule.VerifySignature(signature, signedData);

myPKEModule The name of the Public Key Encryption module structure

signature The Digital signature to verify

signedData Data used to create the signature in DATA format

Return: A BOOLEAN value to indicate verification

The VerifySignature function verifies the given digital signature using the options specified in the Public Key
Encryption From Buffer module definition.

Example:

IMPORT STD;

STRING publicKey := '-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----';

STRING privateKey := '-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----';

//PKE Encryption module definition
myPKEModule := STD.Crypto.PublicKeyEncryptionFromBuffer('RSA', publicKey, privateKey,'');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
145

Standard Library Reference
Cryptography Support

PublicKeyEncryptionFromLFN Module
myPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN(pkAlgorithm, publicKeyFile, privateKey-
File, passphrase);

myPKEModule The name of the Public Key Encryption From LFN (Logical FileName) module
structure

pkAlgorithm The algorithm to use, as returned by SupportedPublicKeyAlgorithms()

publicKeyLFN PEM formatted Public Key logical file

privateKeyLFN PEM formatted Private Key logical file

passphrase The passphrase to use for encryption, decryption, signing, verifying

A Public Key Encryption From LFN module is defined in ECL. Subsequent function definitions use the
options defined in the Public Key Encryption From LFN module to perform asymmetric encryption/decryp-
tion/digital signing/signature verification.

Example:

IMPORT Std;

PublicKeyFile := '~Examples::certificates::public::pubkey.pem';
PrivateKeyFile:= '~Examples::certificates::private::privkey.pem';
 //You can restrict access using file scope security
 //on the ~Examples::certificates::private scope

pubKey := RECORD
 STRING Key;
END;

dPubKey := DATASET([{
'-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----' + '\n'
}],pubKey);

OUTPUT(dPubKey,,PublicKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

PrivKey := RECORD
 STRING Key;
END;
dPrivKey := DATASET([{
'-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +

© 2026 HPCC Systems®. All rights reserved
146

Standard Library Reference
Cryptography Support

'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----' + '\n'
}],PrivKey);

OUTPUT(dPrivKey,,PrivateKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN('RSA', PublicKeyFile, PrivateKeyFile, '');

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
147

Standard Library Reference
Cryptography Support

Encrypt (PKE From LFN)
myPKEModule.Encrypt(inputData);

myPKEModule The name of the Public Key Encryption From LFN (Logical FileName) module
structure

inputData The data to encrypt in DATA format

Return: Encrypted contents in DATA format

The Encrypt function encrypts the given inputData, using the options specified in the Public Key Encryption
From LFN module definition.

Example:

IMPORT Std;

PublicKeyFile := '~Examples::certificates::public::pubkey.pem';
PrivateKeyFile:= '~Examples::certificates::private::privkey.pem';
 //You can restrict access using file scope security
 //on the ~Examples::certificates::private scope

pubKey := RECORD
 STRING Key;
END;

dPubKey := DATASET([{
'-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----' + '\n'
}],pubKey);

OUTPUT(dPubKey,,PublicKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

PrivKey := RECORD
 STRING Key;
END;
dPrivKey := DATASET([{
'-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +

© 2026 HPCC Systems®. All rights reserved
148

Standard Library Reference
Cryptography Support

'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----' + '\n'
}],PrivKey);

OUTPUT(dPrivKey,,PrivateKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN('RSA', PublicKeyFile, PrivateKeyFile, '');

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
149

Standard Library Reference
Cryptography Support

Decrypt (PKE From LFN)
myPKEModule.Decrypt(encryptedData);

myPKEModule The name of the Public Key Encryption From LFN (Logical FileName) module
structure

encryptedData The data to decrypt in DATA format

Return: Decrypted contents in DATA format

The Decrypt function decrypts the given encryptedData, using the options specified in the Public Key En-
cryption From LFN module definition. You can only decrypt data that was encrypted by the Standard Li-
brary's Encrypt method.

Example:

IMPORT Std;

PublicKeyFile := '~Examples::certificates::public::pubkey.pem';
PrivateKeyFile:= '~Examples::certificates::private::privkey.pem';
 //You can restrict access using file scope security
 //on the ~Examples::certificates::private scope

pubKey := RECORD
 STRING Key;
END;

dPubKey := DATASET([{
'-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----' + '\n'
}],pubKey);

OUTPUT(dPubKey,,PublicKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

PrivKey := RECORD
 STRING Key;
END;
dPrivKey := DATASET([{
'-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +

© 2026 HPCC Systems®. All rights reserved
150

Standard Library Reference
Cryptography Support

'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----' + '\n'
}],PrivKey);

OUTPUT(dPrivKey,,PrivateKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN('RSA', PublicKeyFile, PrivateKeyFile, '');

DATA encrypted := MyPKEModule.Encrypt((DATA)'The quick brown fox jumps over the lazy dog');
OUTPUT((STRING)MyPKEModule.Decrypt(encrypted));

© 2026 HPCC Systems®. All rights reserved
151

Standard Library Reference
Cryptography Support

Sign (PKE From LFN)
mySymEncModule.Sign(encryptedData);

myPKEModule The name of the Public Key Encryption From LFN (Logical FileName) module
structure

inputData The data to sign in DATA format

Return: Computed Digital signature in DATA format

The Sign function creates a digital signature of the given inputData, using the options specified in the Public
Key Encryption From LFN module definition.

Example:

IMPORT Std;

PublicKeyFile := '~Examples::certificates::public::pubkey.pem';
PrivateKeyFile:= '~Examples::certificates::private::privkey.pem';
 //You can restrict access using file scope security
 //on the ~Examples::certificates::private scope

pubKey := RECORD
 STRING Key;
END;

dPubKey := DATASET([{
'-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----' + '\n'
}],pubKey);

OUTPUT(dPubKey,,PublicKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

PrivKey := RECORD
 STRING Key;
END;
dPrivKey := DATASET([{
'-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +
'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +

© 2026 HPCC Systems®. All rights reserved
152

Standard Library Reference
Cryptography Support

'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----' + '\n'
}],PrivKey);

OUTPUT(dPrivKey,,PrivateKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN('RSA', PublicKeyFile, PrivateKeyFile, '');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
153

Standard Library Reference
Cryptography Support

VerifySignature (PKE From LFN)
myPKEModule.VerifySignature(signature, signedData);

myPKEModule The name of the Public Key Encryption From LFN (Logical FileName) module
structure

signature The Digital signature to verify

signedData Data used to create the signature in DATA format

Return: A BOOLEAN value to indicate verification

The VerifySignature function verifies the given digital signature using the options specified in the Public Key
Encryption From LFN module definition.

Example:

IMPORT Std;

PublicKeyFile := '~Examples::certificates::public::pubkey.pem';
PrivateKeyFile:= '~Examples::certificates::private::privkey.pem';
 //You can restrict access using file scope security
 //on the ~Examples::certificates::private scope

pubKey := RECORD
 STRING Key;
END;

dPubKey := DATASET([{
'-----BEGIN PUBLIC KEY-----' + '\n' +
'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr64RncTp5pV0KMnWRAof' + '\n' +
'od+3AUS/IDngT39j3Iovv9aI2N8g4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeE' + '\n' +
'BHqlMDydw9aHOQG17CB30GYsw3Lf8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoy' + '\n' +
'hIR9MexCldF+3WM/X0IX0ApSs7kuVPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv' + '\n' +
'/oKj6q7kInEIvhLiGfcm3bpTzWQ66zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3' + '\n' +
'J6Tk4NY3NySWzE/2/ZOWxZdR79XC+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0' + '\n' +
'bwIDAQAB' + '\n' +
'-----END PUBLIC KEY-----' + '\n'
}],pubKey);

OUTPUT(dPubKey,,PublicKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

PrivKey := RECORD
 STRING Key;
END;
dPrivKey := DATASET([{
'-----BEGIN RSA PRIVATE KEY-----' + '\n' +
'MIIEowIBAAKCAQEAr64RncTp5pV0KMnWRAofod+3AUS/IDngT39j3Iovv9aI2N8g' + '\n' +
'4W5ipqhKftRESmzQ6I/TiUQcmi42soUXmCeEBHqlMDydw9aHOQG17CB30GYsw3Lf' + '\n' +
'8iZo7RC7ocQE3OcRzH0eBkOryW6X3efWnMoyhIR9MexCldF+3WM/X0IX0ApSs7ku' + '\n' +
'VPVG4Yj202+1FVO/XNwjMukJG5ASuxpYAQvv/oKj6q7kInEIvhLiGfcm3bpTzWQ6' + '\n' +
'6zVz3z/huLbEXEy5oj2fQaC5E3s5mdpk/CW3J6Tk4NY3NySWzE/2/ZOWxZdR79XC' + '\n' +
'+goNL6v/5gPI8B/a3Z8OeM2PfSZwPMnVuvU0bwIDAQABAoIBAQCnGAtNYkOOu8wW' + '\n' +
'F5Oid3aKwnwPytF211WQh3v2AcFU17qle+SMRi+ykBL6+u5RU5qH+HSc9Jm31AjW' + '\n' +
'V1yPrdYVZInFjYIJCPzorcXY5zDOmMAuzg5PBVV7VhUA0a5GZck6FC8AilDUcEom' + '\n' +
'GCK6Ul8mR9XELBFQ6keeTo2yDu0TQ4oBXrPBMN61uMHCxh2tDb2yvl8Zz+EllADG' + '\n' +
'70pztRWNOrCzrC+ARlmmDfYOUgVFtZin53jq6O6ullPLzhkm3/+QFRGYWsFgQB6J' + '\n' +
'Z9HJtW5YB47RT5RbLHKXeMc6IJW+d+5HrzgTdK79P7wAZk8JCIDyHe2AaNAUzc/G' + '\n' +
'sB0cNeURAoGBAOKtaVFa6z2F4Q+koMBXCt4m7dCJnaC+qthF249uEOIBeF3ds9Fq' + '\n' +
'f0jhhvuV0OcN8lYbR/ZlYRJDUs6mHh/2BYSkdeaLKojXTxKR2bA4xQk5dtJCdoPf' + '\n' +
'0c15AlTgOYk2oNXP/azDICJYT/cdvIdUL9P4IoZthu1FjwG266GacEnNAoGBAMZn' + '\n' +
'1wRUXS1dbqemoc+g48wj5r3/qsIG8PsZ2Y8W+oYW7diNA5o6acc8YPEWE2RbJDbX' + '\n' +

© 2026 HPCC Systems®. All rights reserved
154

Standard Library Reference
Cryptography Support

'YEADBnRSdzzOdo0JEj4VbNZEtx6nQhBOOrtYKnnqHVI/XOz3VVu6kedUKdBR87KC' + '\n' +
'eCzO1VcEeZtsTHuLO4t7NmdHGqNxTV+jLvzBoQsrAoGAI+fOD+nz6znirYSpRe5D' + '\n' +
'tW67KtYxlr28+CcQoUaQ/Au5kjzE9/4DjXrT09QmVAMciNEnc/sZBjiNzFf525wv' + '\n' +
'wZP/bPZMVYKtbsaVkdlcNJranHGUrkzswbxSRzmBQ5/YmCWrDAuYcnhEqmMWcuU9' + '\n' +
'8jiS13JP9hOXlHDyIBYDhV0CgYBV6TznuQgnzp9NpQ/H8ijxilItz3lHTu4mLMlR' + '\n' +
'9mdAjMkszdLTg5uuE+z+N8rp17VUseoRjb3LvLG4+MXIyDbH/0sDdPm+IjqvCNDR' + '\n' +
'spmh9MgBh0JbsbWaZK0s9/qrI/FcSLZ04JLsfRmTPU/Y5y8/dHjYO6fDQhp44RZF' + '\n' +
'iCqNxQKBgHf7KZIOKgV4YNyphk1UYWHNz8YY5o7WtaQ51Q+kIbU8PRd9rqJLZyk2' + '\n' +
'tKf8e6z+wtKjxi8GKQzE/IdkQqiFmB1yEjjRHQ81WS+K5NnjN1t0IEscJqOAwv9s' + '\n' +
'iIhG5ueb6xoj/N0LuXa8loUT5aChKWxRHEYdegqU48f+qxUcJj9R' + '\n' +
'-----END RSA PRIVATE KEY-----' + '\n'
}],PrivKey);

OUTPUT(dPrivKey,,PrivateKeyFile, CSV(SEPARATOR(''), TERMINATOR('')), OVERWRITE);

//PKE Encryption module definition
MyPKEModule := STD.Crypto.PublicKeyEncryptionFromLFN('RSA', PublicKeyFile, PrivateKeyFile, '');

DATA signature := myPKEModule.Sign((DATA)'The quick brown fox jumps');
OUTPUT(TRUE = myPKEModule.VerifySignature(signature, (DATA)'The quick brown fox jumps'));

© 2026 HPCC Systems®. All rights reserved
155

Standard Library Reference
Date and Time Handling

Date and Time Handling

© 2026 HPCC Systems®. All rights reserved
156

Standard Library Reference
Date and Time Handling

Date Data Types
STD.Date.Date_rec

STD.Date.Date_t

STD.Date.Days_t

Date_rec A RECORD structure containing three fields, and INTEGER2 year, an UNSIGNED1
month, and an UNSIGNED1 day.

Date_t An UNSIGNED4 containing a date value in YYYYMMDD format.

Days_t An UNSIGNED4 containing a date value representing the number of elapsed days since
a particular base date. This number can be the number of days in the common era
(January 1, 1AD = 1) based on either the Julian or Gregorian calendars, or the number
of elapsed days since the Gregorian calendar's January 1, 1900 (January 1, 1900 = 1).

The three Date data types defined in the Date Standard Library are:

 // A record stucture with the different elements separated out.
EXPORT Date_rec := RECORD
 INTEGER2 year;
 UNSIGNED1 month;
 UNSIGNED1 day;
END;

 //An unsigned number holding a date in the decimal form YYYYMMDD.
 //This type does not support dates prior to 1AD
EXPORT Date_t := UNSIGNED4;

 //A number of elapsed days. Value depends on the function called.
EXPORT Days_t := UNSIGNED4;

See Also: Time Data Types

© 2026 HPCC Systems®. All rights reserved
157

Standard Library Reference
Date and Time Handling

Time Data Types
STD.Date.Time_rec

STD.Date.Time_t

STD.DateTime_rec

STD.Timestamp_t

Time_rec A RECORD structure containing three fields, and INTEGER1 hour, an UNSIGNED1
minute, and an UNSIGNED1 second.

Time_t An UNSIGNED3 holding a time of day in the decimal form HHMMDD.

Seconds_t An INTEGER8 holding holding a number of seconds. Can be used to represent either a
duration or the number of seconds since epoch (Jan 1, 1970).

DateTime_rec A RECORD structure containing both a Date_rec and a Time_rec

Timestamp_t An INTEGER8 holding a number of microseconds. Can be used to represent // either a
duration or the number of microseconds since epoch (Jan 1, 1970).

The Time data types defined in the Date Standard Library are:

// A record structure with the different time elements separated out.
EXPORT Time_rec := RECORD
 UNSIGNED1 hour;
 UNSIGNED1 minute;
 UNSIGNED1 second;
END;

// An unsigned number holding a time of day in the decimal form HHMMDD.
EXPORT Time_t := UNSIGNED3;
// A signed number holding a number of seconds. Can be used to represent either
// a duration or the number of seconds since epoch (Jan 1, 1970).
EXPORT Seconds_t := INTEGER8;

// A record structure with the different date and time elements separated out.
EXPORT DateTime_rec := RECORD
 Date_rec;
 Time_Rec;
END;

// A signed number holding a number of microseconds. Can be used to represent
// either a duration or the number of microseconds since epoch (Jan 1, 1970).
EXPORT Timestamp_t := INTEGER8;

See Also: Date Data Types

© 2026 HPCC Systems®. All rights reserved
158

Standard Library Reference
Date and Time Handling

Year
STD.Date.Year(date)

date A date value in the Date_t format.

Return: Year returns an INTEGER value.

The Year function returns the Year number from the date value.

Example:

IMPORT STD;
UNSIGNED4 MyDate := 20120101; //January 1, 2012

Y := STD.Date.Year(MyDate);
 //Y contains 2012

© 2026 HPCC Systems®. All rights reserved
159

Standard Library Reference
Date and Time Handling

Month
STD.Date.Month(date)

date A date value in the Date_t format.

Return: Month returns an INTEGER value in the range of 1 through 12.

The Month function returns the month number from the date value.

Example:

IMPORT STD;
UNSIGNED4 MyDate := 20120101; //January 1, 2012

M := STD.Date.Month(MyDate);
 //M contains 1, representing January

© 2026 HPCC Systems®. All rights reserved
160

Standard Library Reference
Date and Time Handling

Day
STD.Date.Day(date)

date A date value in the Date_t format.

Return: Day returns an INTEGER value in the range of 1 through 31.

The Day function returns the Day number from the date value.

Example:

IMPORT STD;
UNSIGNED4 MyDate := 20120101; //January 1, 2012

D := STD.Date.Day(MyDate);
 //D contains 1, representing the first of the month

© 2026 HPCC Systems®. All rights reserved
161

Standard Library Reference
Date and Time Handling

Hour
STD.Date.Hour(time)

time A time value in the Time_ format.

Return: Hour returns an INTEGER value representing the hour in the range of 0-23.

The Hour function returns the hour from the time value.

Example:

IMPORT STD;
MyTime:= STD.Date.CurrentTime(TRUE); //Local Time

t1 := STD.Date.Hour(MyTime);
 //t1 contains the hour of the current local time

© 2026 HPCC Systems®. All rights reserved
162

Standard Library Reference
Date and Time Handling

Minute
STD.Date.Minute(time)

time A time value in the Time_ format.

Return: Minute returns an INTEGER value representing the minute in the range of 0-59.

The Minute function returns the minute from the time value.

Example:

IMPORT STD;
MyTime:= STD.Date.CurrentTime(TRUE); //Local Time

t1 := STD.Date.Minute(MyTime);
 //t1 contains the minute of the current local time

© 2026 HPCC Systems®. All rights reserved
163

Standard Library Reference
Date and Time Handling

Second
STD.Date.Second(time)

time A time value in the Time_ format.

Return: Second returns an INTEGER value representing the second in the range of 0-59.

The Second function returns the second from the time value.

Example:

IMPORT STD;
MyTime:= STD.Date.CurrentTime(TRUE); //Local Time

t1 := STD.Date.Second(MyTime);
 //t1 contains the second of the current local time

© 2026 HPCC Systems®. All rights reserved
164

Standard Library Reference
Date and Time Handling

DateFromParts
STD.Date.DateFromParts(year, month, day)

year An INTEGER2 year value in the range 0 to 9999.

month An UNSIGNED1 month value in the range 1 to 12.

day An UNSIGNED1 day value in the range 1 to 31.

Return: DateFromParts returns an UNSIGNED4 value.

The DateFromParts function returns a Date_t value from the year, month, and day parameters.

Example:

IMPORT STD;
INTEGER2 MyYear := 2012;
UNSIGNED1 MyMonth := 1;
UNSIGNED1 MyDay := 1;

D := STD.Date.DateFromParts(MyYear,MyMonth,MyDay);
 //D contains 20120101, representing January 1, 2012

© 2026 HPCC Systems®. All rights reserved
165

Standard Library Reference
Date and Time Handling

TimeFromParts
STD.Date.TimeFromParts(hour, minute, second)

hour An INTEGER1 hour value in the range 0 to 23.

minute An UNSIGNED1 minute value in the range 0 to 59.

second An UNSIGNED1 second value in the range 0 to 59.

Return: TimeFromParts returns a Time_t (An UNSIGNED3 holding a time of day in the decimal
form HHMMDD.)

The TimeFromParts function returns a Time_t value from the hour, minute, and second parameters.

Example:

IMPORT STD;
 UNSIGNED1 MyHour := 23;
 UNSIGNED1 MyMinute := 59;
 UNSIGNED1 MySecond := 50;

T := STD.Date.TimeFromParts(MyHour,MyMinute,MySecond);
 //T contains 235950

© 2026 HPCC Systems®. All rights reserved
166

Standard Library Reference
Date and Time Handling

IsLeapYear
STD.Date.IsLeapYear(year)

year A year value in the INTEGER2 format.

Return: IsLeapYear returns a BOOLEAN value.

The IsLeapYear function returns TRUE if the year is a leap year in the Gregorian (or proleptic Gregorian)
calendar.

Example:

IMPORT STD;
INTEGER2 MyYear := 2012; //2012

D := STD.Date.IsLeapYear(MyYear);
 //D contains TRUE, 2012 is a leap year

© 2026 HPCC Systems®. All rights reserved
167

Standard Library Reference
Date and Time Handling

IsDateLeapYear
STD.Date.IsDateLeapYear(date)

date A date in Date_t format. (An UNSIGNED4 containing a date value in YYYYMMDD for-
mat.)

Return: IsDateLeapYear returns a BOOLEAN value.

The IsDateLeapYear function returns TRUE if the year represented in the date is a leap year in the Gre-
gorian (or proleptic Gregorian) calendar.

Example:

IMPORT STD;
MyDate := 20120112; //Jan. 12, 2012

D := STD.Date.IsDateLeapYear(MyDate);
 //D contains TRUE, 2012 is a leap year

© 2026 HPCC Systems®. All rights reserved
168

Standard Library Reference
Date and Time Handling

IsValidDate
STD.Date.IsValidDate(date , [yearLowerBound],[yearUpperBound])

date A date value in the Date_t format.

yearLowerBound The minimum acceptable year. Optional; defaults to 1800.

yearUpperBound The maximum acceptable year. Optional; defaults to 2100.

Return: IsValidDateYear returns a BOOLEAN value.

The IsValidDate function returns TRUE if the date is valid, both by range-checking the year and by validating
each of the other individual components.

Example:

IMPORT STD;
d1 := 19631122;
d2 := 19990230;
firstTest := STD.Date.IsValidDate(d1); //d1 is valid
secondTest := STD.Date.IsValidDate(d2); //d2 is not valid

© 2026 HPCC Systems®. All rights reserved
169

Standard Library Reference
Date and Time Handling

IsValidTime
STD.Date.IsValidTime(time)

time A time value in the Time_t format.

Return: IsValidTime returns a BOOLEAN value.

The IsValidTime function returns TRUE if the time is valid, by validating each of the individual components
(hours, minutes, and seconds).

Example:

IMPORT STD;

t1 := 225922;
t2 := 275922;

firstTest := STD.Date.IsValidTime(t1); //true
secondTest := STD.Date.IsValidTime(t2);//false

© 2026 HPCC Systems®. All rights reserved
170

Standard Library Reference
Date and Time Handling

IsValidGregorianDate
STD.Date.IsValidGregorianDate(date)

date A date value in the Date_t format. (An UNSIGNED4 containing a date value in YYYYM-
MDD format.)

Return: IsValidGregorianDateYear returns a BOOLEAN value.

The IsValidGregorianDate function returns TRUE if the date is valid in the Gregorian calendar. The year
must be between 1601 and 30827.

Example:

IMPORT STD;
d1 := 19991122;
d2 := 15130230;
firstTest := STD.Date.IsValidGregorianDate(d1); // TRUE
secondTest := STD.Date.IsValidGregorianDate(d2); // FALSE

© 2026 HPCC Systems®. All rights reserved
171

Standard Library Reference
Date and Time Handling

FromGregorianYMD
STD.Date.FromGregorianYMD(year, month, day)

year An INTEGER2 year value in the range 0 to 9999.

month An UNSIGNED1 month value in the range 1 to 12.

day An UNSIGNED1 day value in the range 1 to 31.

Return: FromGregorianYMD returns an UNSIGNED4 value.

The FromGregorianYMD function returns a Days_t value from the year, month, and day parameters rep-
resenting the number days since 31st December 1BC in the Gregorian calendar (see The Calendar FAQ
by Claus Tondering at http://www.tondering.dk/claus/calendar.html).

Example:

IMPORT STD;
INTEGER2 MyYear := 2012;
UNSIGNED1 MyMonth := 1;
UNSIGNED1 MyDay := 1;

D := STD.Date.FromGregorianYMD(MyYear,MyMonth,MyDay);
 //D contains 734503

© 2026 HPCC Systems®. All rights reserved
172

Standard Library Reference
Date and Time Handling

ToGregorianYMD
STD.Date.ToGregorianYMD(days)

days A year value in the Days_t format.

Return: ToGregorianYMD returns separate values for Year, Month, and Day.

The ToGregorianYMD function converts the number days since 31st December 1BC to a date in the Gre-
gorian calendar. It returns It returns a module with three exported values: Year, Month, and Day.

Example:

IMPORT STD;
INTEGER2 MyYear := 2012;
UNSIGNED1 MyMonth := 1;
UNSIGNED1 MyDay := 1;

J := STD.Date.FromGregorianYMD(MyYear,MyMonth,MyDay);
 //J contains 734503

X := STD.Date.ToGregorianYMD(J);
 // X is a module with exported values

Y := X.Year; //Y contains 2012
M := X.Month; //M contains 1
D := X.Day; //D contains 1

© 2026 HPCC Systems®. All rights reserved
173

Standard Library Reference
Date and Time Handling

FromStringToDate
STD.Date.FromStringToDate(date_text, format)

date_text The string to be converted

format The format of the input string. See strftime documentation for details (http://strftime.org/)

return The date that was matched in the string. Returns 0 if failed to match or if the date com-
ponents match but the result is an invalid date.

The FromStringToDate function converts a string to a Date_t using the relevant string format.

If the resulting date must be representable within the Gregorian calendar after the year 1600, you should
use the Std.Date.IsValidGregorianDate() function to determine its validity.

Supported characters:

 %B Full month name
 %b or %h Abbreviated month name
 %d Day of month (two digits)
 %e Day of month (two digits, or a space followed by a single digit)
 %m Month (two digits)
 %t Whitespace
 %y year within century (00-99)
 %Y Full year (yyyy)
 %j Julian day (1-366)

Common date formats

 American '%m/%d/%Y' mm/dd/yyyy
 Euro '%d/%m/%Y' dd/mm/yyyy
 Iso format '%Y-%m-%d' yyyy-mm-dd
 Iso basic '%Y%m%d' yyyymmdd
 '%d-%b-%Y' dd-mon-yyyy e.g., '21-Mar-1954'

Example:

IMPORT STD;

D1 := STD.Date.FromStringToDate('19720607', '%Y%m%d');
 //D1 contains 19720607
D2 := STD.Date.FromStringToDate('19720007', '%Y%m%d');
 //D2 contains 0
D3 := STD.Date.FromStringToDate('4/29/1974', '%m/%d/%Y');
 //D3 contains 19740429
D4:= STD.Date.FromStringToDate('29/4/1974', '%d/%m/%Y');
 //D4 contains 19740429

See Also: IsValidGregorianDate

© 2026 HPCC Systems®. All rights reserved
174

Standard Library Reference
Date and Time Handling

Today
STD.Date.Today()

Return: Today returns date_t (an UNSIGNED4 containing a date value in YYYYMMDD format)
representing the current date.

The Today function returns the current date in the local time zone.

Example:

IMPORT STD;

D1 := STD.Date.Today();
 //D1 contains today's date

© 2026 HPCC Systems®. All rights reserved
175

Standard Library Reference
Date and Time Handling

CurrentDate
STD.Date.CurrentDate ([in_local_time])

in_local_time TRUE if the returned value should be local to the cluster computing the date, FALSE for
UTC. Optional, defaults to FALSE.

Return: Today returns a Date_t representing the current date.

The CurrentDate function returns the current date. If the in_local_time parameter is TRUE the returned
value is local to the cluster computing the date, if FALSE then the UTC value is returned.

Example:

IMPORT STD;
d1 := STD.Date.CurrentDate(True);
 //d1 contains the current local date

© 2026 HPCC Systems®. All rights reserved
176

Standard Library Reference
Date and Time Handling

CurrentTime
STD.Date.CurrentTime ([in_local_time])

in_local_time TRUE if the returned value should be local to the cluster computing the time, FALSE for
UTC. Optional, defaults to FALSE.

Return: Today returns a time_t (An UNSIGNED3 holding a time of day in the decimal form HH-
MMDD.)

The CurrentTime function returns the current time. If the in_local_time parameter is TRUE the returned
value is local to the cluster computing the time, if FALSE then the UTC is returned.

On containerized systems, servers are usually set to UTC making local time and UTC identical.

Example:

IMPORT STD;
t1 := STD.Date.CurrentTime(True);
 //t1 contains the current local time of day

© 2026 HPCC Systems®. All rights reserved
177

Standard Library Reference
Date and Time Handling

DayOfWeek
STD.Date.DayOfWeek(date)

date A date value in the Date_t format.

Return: DayofWeek returns an INTEGER value representing the day of the week, where 1 =
Sunday.

The DayOfWeek function returns a number representing the day of the week for the given date. The date
must be in the Gregorian calendar after the year 1600.

Example:

IMPORT STD;
D1 := STD.Date.DayOfWeek(STD.Date.Today());
 // D1 contains the day of the week for today's date

© 2026 HPCC Systems®. All rights reserved
178

Standard Library Reference
Date and Time Handling

DayOfYear
STD.Date.DayOfYear(date)

date A date value in the Date_t format.

Return: DayofYear returns an INTEGER value in the range of 1 through 366.

The DayOfYear function returns a number representing the day of the year for the given date. The date
must be in the Gregorian calendar after the year 1600.

Example:

IMPORT STD;
D1 := STD.Date.DayOfYear(STD.Date.Today());
 // D1 contains the day of the year for today's date

© 2026 HPCC Systems®. All rights reserved
179

Standard Library Reference
Date and Time Handling

DaysBetween
STD.Date.DaysBetween(fromDate, toDate)

fromDate The first date value in Date_t format.

toDate The last date value in Date_t format.

Return: DaysBetween returns an INTEGER value of the number of days between the two dates.

The DaysBetween function calculates the number of whole days between two dates.

Example:

IMPORT STD;
StartDate := 19631122;
numDays := STD.Date.DaysBetween(startDate,STD.Date.Today());
 // numDays contains the number of days between the startDate and today's date

© 2026 HPCC Systems®. All rights reserved
180

Standard Library Reference
Date and Time Handling

MonthsBetween
STD.Date.MonthsBetween(fromDate, toDate)

fromDate The first date value in Date_t format.

toDate The last date value in Date_t format.

month_ends_equal Optional. If TRUE and both dates fall on the last day of their respective months, the
difference between the dates will be treated as whole months regardless of the actual
day values. If FALSE then the day value of each date is considered when calculating
the difference. The default is FALSE

Return: MonthsBetween returns an INTEGER value of the number of whole months between
the two dates.

The MonthsBetween function calculates the number of whole months between two dates.

Example:

IMPORT STD;
StartDate := 19631122;
numMonths := STD.Date.MonthsBetween(startDate,STD.Date.Today());
 // numMonths contains the number of months between the startDate and today's date

© 2026 HPCC Systems®. All rights reserved
181

Standard Library Reference
Date and Time Handling

AdjustDate
STD.Date.AdjustDate(date , [year_delta],[month_delta] ,[day_delta])

date A date value in the Date_t format.

year_delta The minimum acceptable year. Optional; defaults to zero.

month_delta The minimum acceptable year. Optional; defaults to zero.

day_delta The maximum acceptable year. Optional; defaults to zero.

Return: AdjustDate returns date_t representing the adjusted date.

The AdjustDate function adjusts a date by incrementing or decrementing year, month, and/or day values.
The date must be in the Gregorian calendar after the year 1600.

If the new calculated date is invalid then it is normalized according to mktime() rules. For example, 20140130
plus 1 month would be 20140302.

Example:

IMPORT std;
inDate :=19631123;
Std.Date.AdjustDate(inDate,5,1,3); //returns 19681226

See Also: AdjustCalendar

© 2026 HPCC Systems®. All rights reserved
182

Standard Library Reference
Date and Time Handling

AdjustCalendar
STD.Date.AdjustCalendar(date , [year_delta],[month_delta] ,[day_delta])

date A date value in the Date_t format.

year_delta The minimum acceptable year. Optional; defaults to zero.

month_delta The minimum acceptable year. Optional; defaults to zero.

day_delta The maximum acceptable year. Optional; defaults to zero.

Return: AdjustDate returns date_t representing the adjusted date.

The AdjustCalendar function adjusts a date by incrementing or decrementing months and/or years. The
date must be in the Gregorian calendar after the year 1600.

This uses the rule outlined in McGinn v. State, 46 Neb. 427, 65 N.W. 46 (1895):

"The term calendar month, whether employed in statutes or contracts, and not appearing
to have been used in a different sense, denotes a period terminating with the day of the
succeeding month numerically corresponding to the day of its beginning, less one. If there
be no corresponding day of the succeeding month, it terminates with the last day thereof."

Note that day adjustments are performed after year and month adjustments using the preceding rules.

As an example, Jan. 31, 2014 + 1 month results in Feb. 28, 2014; Jan. 31, 2014 + 1 month + 1 day results
in Mar. 1, 2014.

Example:

IMPORT std;
inDate :=19631123;
Std.Date.AdjustCalendar(inDate,5,1,3); //returns 19681226

See Also: AdjustDate

© 2026 HPCC Systems®. All rights reserved
183

Standard Library Reference
Date and Time Handling

MonthWeekNumFromDate
STD.Date.MonthWeekNumFromDate(date, startingDayOfWeek)

date The date (in Date_t format) for which to compute the week number.

startingDay-
OfWeek

Optional, The index number of the first day of a week, 1-7, where 1 = Sunday. Default
is 1.

Return: The 1-based week number of the date, relative to the beginning of the date's month.

The WeekNumFromDate function returns the 1-based week number of a date within the date's month.
Week 1 always contains the first day of the month, and week 2 begins on the following day of the week
indicated by the value of startingDayOfWeek.

This is not an ISO-8601 implementation of computing week numbers ("week dates").

Example:

IMPORT STD;
startDate := STD.Date.Today();
weekNum := STD.Date.MonthWeekNumFromDate(startDate,2);
weekNum;

See Also: YearWeekNumFromDate

© 2026 HPCC Systems®. All rights reserved
184

Standard Library Reference
Date and Time Handling

YearWeekNumFromDate
STD.Date.YearWeekNumFromDate(date, startingDayOfWeek)

date The date (in Date_t format) for which to compute the week number.

startingDay-
OfWeek

Optional, The index number of the first day of a week, 1-7, where 1 = Sunday. Default
is 1.

Return: The 1-based week number of the date, relative to the beginning of the date's year.

The YearWeekNumFromDate function returns the 1-based week number of a date within the date's year.
Week 1 always contains the first day of the year, and week 2 begins on the following day of the week
indicated by the value of startingDayOfWeek.

This is not an ISO-8601 implementation of computing week numbers ("week dates").

Example:

IMPORT STD;
startDate := STD.Date.Today();
weekNum := STD.Date.YearWeekNumFromDate(startDate,2);
weekNum;

See Also: MonthWeekNumFromDate

© 2026 HPCC Systems®. All rights reserved
185

Standard Library Reference
Date and Time Handling

TimestampToString
STD.Date.TimestampToString (timestamp, format)

timestamp An INTEGER8 holding the number of microseconds since epoch (January 1, 1970 UTC)

format OPTIONAL. The format of the string to return. See strftime documentation for details
(http://strftime.org/). If omitted, it defaults to '%Y-%m-%dT%H:%M:%S.%@' which is
YYYY-MM-DDTHH:MM:SS.ssssss.

Return: The converted timestamp as a string in the specified format.

The TimestampToString function converts a Timestamp_t value containing the number of microseconds
since epoch (January 1, 1970 UTC) into a human-readable string using a format template of strftime stan-
dards. Two additional format specifiers are available to show fractional seconds:

%@ Fraction of seconds in microseconds (6 digits)

%# Fraction of seconds in milliseconds (3 digits)

Millisecond fractions are truncated from microseconds when necessary.

The maximum length of the resulting string is 255 characters.

Example:

IMPORT STD;
STD.Date.TimestampToString(1048998120000000, '%A %B %d, %Y T%H:%M:%S.%#');
 // returns Sunday March 30, 2003 T04:22:00.000

© 2026 HPCC Systems®. All rights reserved
186

Standard Library Reference
Date and Time Handling

UniqueTZAbbreviations
STD.Date.TimeZone.UniqueTZAbbreviations()

Returns: A new DATASET({STRING5 tzAbbrev}) containing the unique time zone abbreviations.

The STD.Date.TimeZone.UniqueTZAbbreviations function returns a list of unique time zone abbrevia-
tions from the hardcoded dataset in the TimeZone module. All abbreviations are in uppercase.

Example:

IMPORT STD;
STD.Date.TimeZone.UniqueTZAbbreviations();

© 2026 HPCC Systems®. All rights reserved
187

Standard Library Reference
Date and Time Handling

UniqueTZLocations
STD.Date.TimeZone.UniqueTZLocations()

Returns: A new DATASET({STRING name}) containing the unique location names.

The STD.Date.TimeZone.UniqueTZLocations function Return a list of unique location names from the
hardcoded dataset. All names are in uppercase.

Example:

IMPORT STD;
STD.Date.TimeZone.UniqueTZLocations();

© 2026 HPCC Systems®. All rights reserved
188

Standard Library Reference
Date and Time Handling

TZDataForLocation
STD.Date.TimeZone.TZDataForLocation(location)

location REQUIRED. The name of the location to search for; must be a non-empty uppercase
string.

Returns: A new DATASET(STRING5 tzAbbrev, INTEGER4 secondsOffset) containing the
records found for the given location.

The STD.Date.TimeZone.TZDataForLocation function returns the time zone records for a given location.

Example:

IMPORT STD;
STD.Date.TimeZone.TZDataForLocation('ASIA');

See Also: FindTZData

© 2026 HPCC Systems®. All rights reserved
189

Standard Library Reference
Date and Time Handling

FindTZData
STD.Date.TimeZone.FindTZData(timeZoneAbbrev, [location])

timeZoneAbbrev REQUIRED. The time zone abbreviation to search for; must be a non-empty uppercase
string.

location OPTIONAL. The name of the location to search for; if a location is not provided or is an
empty string, all records matching only the abbreviation are returned.

Returns: A new DATASET(TZDataLayout) containing the found records.

EXPORT TZDataLayout := RECORD
 STRING5 tzAbbrev; // Time zone abbreviation; always uppercase
 // may be duplicated between records
 INTEGER4 secondsOffset; // Number of seconds east (positive)
 // or west (negative) of UTC
 SET OF STRING15 locations; // Names of locations that use the given
 //time zone abbreviation
END;

The STD.Date.TimeZone.TZDataForLocation function returns the time zone records for a given abbrevi-
ation and optional location. A location should be provided as a method of differentiation if the abbreviation
has duplicate entries.

Example:

IMPORT STD;
STD.Date.TimeZone.FindTZData('CST','NORTH AMERICA');

See Also: TZDataForLocation

© 2026 HPCC Systems®. All rights reserved
190

Standard Library Reference
Date and Time Handling

SecondsBetweenTZ
STD.Date.TimeZone.SecondsBetweenTZ(fromTimeZoneAbbrev, toTimeZoneAbbrev, [fromLocation,]
[toLocation])

fromTimeZone-
Abbrev

REQUIRED. The time zone abbreviation designated as the starting point; must be a
non-empty uppercase string.

toTimeZoneAb-
brev

REQUIRED. The time zone abbreviation designated as the ending point; must be a non-
empty uppercase string.

fromLocation OPTIONAL. The name of the location that goes along with fromTimeZoneAbbrev; if a
location is not provided or is an empty string, the first record matching fromTimeZone-
Abbrev is used.

toLocation OPTIONAL. The name of the location that goes along with toTimeZoneAbbrev; if a lo-
cation is not provided or is an empty string, the first record matching toTimeZoneAbbrev
is used.

Returns: The number of seconds between the two time zones; returns zero if either time zone
cannot be found

The STD.Date.TimeZone.SecondsBetweenTZ function computes the offset, in seconds, between two dif-
ferent time zones. Each time zone is designated by a required time zone abbreviation and an optional lo-
cation name. The result is the number of seconds (which can be either positive or negative) that would have
to be applied to a time when traveling from fromTimeZoneAbbrev to toTimeZoneAbbrev.

Be aware that some time zones explicitly represent daylight savings time, so it is entirely possible to change
not only time zones but DST observance as well in a single call.

Example:

MPORT STD;
STD.Date.TimeZone.SecondsBetweenTZ('CST','IST','NORTH AMERICA','');

See Also: AdjustTimeTZ

© 2026 HPCC Systems®. All rights reserved
191

Standard Library Reference
Date and Time Handling

AdjustTimeTZ
STD.Date.TimeZone.AdjustTimeTZ(time,fromTimeZoneAbbrev, toTimeZoneAbbrev, [fromLocation,]
[toLocation])

time REQUIRED. The time value (in Time_t format) to adjust.

fromTimeZone-
Abbrev

REQUIRED. The time zone abbreviation that the time value is assumed to be within;
must be a non-empty uppercase string.

toTimeZoneAb-
brev

REQUIRED. The time zone abbreviation designated as the ending point; must be a non-
empty uppercase string.

fromLocation OPTIONAL. The name of the location that goes along with fromTimeZoneAbbrev; if a
location is not provided or is an empty string, the first record matching fromTimeZone-
Abbrev is used.

toLocation OPTIONAL. The name of the location that goes along with toTimeZoneAbbrev; if a lo-
cation is not provided or is an empty string, the first record matching toTimeZoneAbbrev
is used.

Returns: The given time value (in Time_t format) adjusted by the difference between the two given
time zones; if either time zone cannot be found then the original time value is returned
unchanged.

The STD.Date.TimeZone.AdjustTimeTZ function adjusts a given Time_t time value for another time zone.
Both the given time and the destination time zone are designated by a required time zone abbreviation and
an optional location name.

Example:

IMPORT STD;
STD.Date.TimeZone.AdjustTimeTZ(205246,'CST','IST','NORTH AMERICA','');

See Also: SecondsBetweenTZ

© 2026 HPCC Systems®. All rights reserved
192

Standard Library Reference
Date and Time Handling

ToLocalTime
STD.Date.TimeZone.ToLocalTime(utcTime, toTimeZoneAbbrev, [toLocation])

utcTime REQUIRED. The UTC time value (in Time_t format) to adjust.

toTimeZoneAb-
brev

REQUIRED. The time zone abbreviation designated as the ending point; must be a non-
empty uppercase string.

toLocation OPTIONAL. The name of the location that goes along with toTimeZoneAbbrev; if a lo-
cation is not provided or is an empty string, the first record matching toTimeZoneAbbrev
is used.

Returns: The given UTC time value (in Time_t format) adjusted to the time zone defined by to-
TimeZoneAbbrev and toLocation; if the time zone cannot be found then the original time
value is returned unchanged

The STD.Date.TimeZone.ToLocalTime function converts a UTC time to a time designated by a time zone
abbreviation and optional location.

Example:

IMPORT STD;
STD.Date.TimeZone.ToLocalTime(205246,'CST','NORTH AMERICA');

See Also: AdjustTimeTZ, ToUTCTime

© 2026 HPCC Systems®. All rights reserved
193

Standard Library Reference
Date and Time Handling

ToUTCTime
STD.Date.TimeZone.ToUTCTime(localTime, fromTimeZoneAbbrev, [fromLocation])

localTime REQUIRED. The time value (in Time_t format) to adjust.

fromTimeZone-
Abbrev

REQUIRED. The time zone abbreviation that the localTime value is assumed to be with-
in; must be a non-empty uppercase string.

fromLocation OPTIONAL. The name of the location that goes along with fromTimeZoneAbbrev; if a
location is not provided or is an empty string, the first record matching fromTimeZone-
Abbrev is used.

Returns: The given local time value adjusted to UTC time; if the given time zone cannot be found
then the original UTC time value is returned unchanged.

The STD.Date.TimeZone.ToUTCTime function converts a local time, defined with a time zone abbreviation
and optional location, to a UTC time.

Example:

IMPORT STD;
STD.Date.TimeZone.ToUTCTime(205246,'CST','NORTH AMERICA');

See Also: AdjustTimeTZ, ToLocalTime

© 2026 HPCC Systems®. All rights reserved
194

Standard Library Reference
Date and Time Handling

AppendTZOffset
STD.Date.TimeZone.AppendTZOffset(infile, timeZoneAbbrevField, newOffsetField, [fromLocationField,]
[toTimeZoneAbbrev,] [toLocation])

infile REQUIRED. The dataset to process.

timeZoneAb-
brevField

REQUIRED. The field within inFile that contains the time zone abbreviation to use for
matching; the values in this field should be uppercase. This is not a string

newOffsetField REQUIRED. The field to append to inFile that will contain the number of seconds offset
from UTC. This is not a string

fromLocation-
Field

OPTIONAL. The field within inFile that contains the time zone location for the time zone
cited by timeZoneAbbrevField. This is not a string. Defaults to a null value (indicating
that there is no time zone location field).

toTimeZoneAb-
brev

OPTIONAL. The to time zone abbreviation to use for all calculations, as a string. Defaults
to 'UTC'

toLocation OPTIONAL. The name of the location that goes along with toTimeZoneAbbrev; if a lo-
cation is not provided or is an empty string, the first record matching toTimeZoneAbbrev
is used. Defaults to an empty string

Returns: A new dataset with the same record definition as inFile but with four new fields added.
The new fields are named based on the name given as the newOffsetField attribute.
The appended fields are:

INTEGER4 <newOffsetField> // Offset, in seconds, between original
 //time zone and toTimeZoneAbbrev
BOOLEAN <newOffsetField>_is_valid // TRUE if <newOffsetField> contains a
 // valid value
 // If <newOffsetField>_is_valid is FALSE
 // then <newOffsetField> will be zero.
STRING5 <newOffsetField>_tz // The value of toTimeZoneAbbrev
STRING15 <newOffsetField>_location // The time zone location for
 // <newOffsetField>_tz.

The STD.Date.TimeZone.AppendTZOffset takes a dataset that contains a time zone abbreviation and
optional location, and appends four new attributes to the dataset that contain useful information for trans-
lating a time value into another time zone.

This could be useful as an ETL step where time data is made common in respect to one particular time
zone (e.g., UTC). The actions within this function macro are conceptually similar to SecondsBetweenTZ()
but applied to an entire dataset, and somewhat more efficiently.

Note: In order for this function macro to execute correctly, the calling code must import the Std library.

© 2026 HPCC Systems®. All rights reserved
195

Standard Library Reference
Date and Time Handling

Example:

IMPORT STD;
ds := DATASET ([
 {120000, 'CT'},
 {120000, 'ET'}
],{Std.Date.Time_t time, STRING tz});
utcOffsetDS := Std.Date.TimeZone.AppendTZOffset(ds, tz, seconds_to_utc);
OUTPUT(utcOffsetDS, NAMED('offset_to_utc_result'));

ptOffsetDS := Std.Date.TimeZone.AppendTZOffset (ds, tz, seconds_to_pacific_time,
 toTimeZoneAbbrev := 'PT',
 toLocation := 'NORTH AMERICA');
OUTPUT(ptOffsetDS, NAMED('offset_to_pacific_time_result'));

See Also: AppendTZAdjustedTime , SecondsBetweenTZ

© 2026 HPCC Systems®. All rights reserved
196

Standard Library Reference
Date and Time Handling

AppendTZAdjustedTime
STD.Date.TimeZone.AppendTZAdjustedTime(infile, timeField, timeZoneAbbrevField, newTimeField,
[fromLocationField,][toTimeZoneAbbrev,] [toLocation])

infile REQUIRED. The dataset to process.

timeField REQUIRED. The field within inFile that contains a time represented in Time_t format.
This is not a string.

timeZoneAb-
brevField

REQUIRED. The field within inFile that contains the time zone abbreviation to use for
matching; the values in this field should be uppercase.

newTimeField REQUIRED. The field to append to inFile that will contain the adjusted value of timeField.

fromLocation-
Field

OPTIONAL. The field within inFile that contains the time zone location for the time zone
cited by timeZoneAbbrevField. Defaults to a null value (indicating that there is no time
zone location attribute.) If a location is not provided or is an empty string, the first record
matching fromTimeZoneAbbrevField is used

toTimeZoneAb-
brev

OPTIONAL. The to time zone abbreviation to use for all calculations, as a string. Defaults
to 'UTC'

toLocation OPTIONAL. The name of the location that goes along with toTimeZoneAbbrev; if a lo-
cation is not provided or is an empty string, the first record matching toTimeZoneAbbrev
is used; Defaults to an empty string

Returns: A new dataset with the same record definition as inFile but with four new fields added;
the new fields are named based on the name given as the newOffsetField attribute:

std.Date.Time_t <newOffsetField> // Value of timeField expressed in new
 // time zone
BOOLEAN <newOffsetField>_is_valid // TRUE if <newOffsetField> contains a
 // valid value
 // If <newOffsetField>_is_valid is FALSE
 // then <newOffsetField> will have the same
 // value as timeField.
STRING5 <newOffsetField>_tz // The value of toTimeZoneAbbrev
STRING15 <newOffsetField>_location // The time zone location for
 // <newOffsetField>_tz

The STD.Date.TimeZone.AppendTZAdjustedTime takes a given a dataset that contains a time (in Time_t
format), a time zone abbreviation, and an optional time zone location, and appends four new fields to the
dataset: A new Time_t attribute containing the original time expressed in a different time zone, and three
attributes providing information regarding that destination time zone and the validity of the translation.

This could be useful as an ETL step where time data is made common in respect to one particular time zone
(e.g., UTC). The actions within this function macro are conceptually similar to AdjustTimeTZ() but applied
to an entire dataset, and somewhat more efficiently.

Note: In order for this function macro to execute correctly, the calling code must import the STD library.

© 2026 HPCC Systems®. All rights reserved
197

Standard Library Reference
Date and Time Handling

Example:

IMPORT STD;
ds := DATASET ([
 {120000, 'CT'},
 {120000, 'ET'}
],{Std.Date.Time_t time, STRING tz});

utcRewriteDS := Std.Date.TimeZone.AppendTZAdjustedTime(ds, time, tz, utc_time);
OUTPUT(utcRewriteDS, NAMED('utc_result'));

ptRewriteDS := Std.Date.TimeZone.AppendTZAdjustedTime (ds, time, tz, pacific_time,
 toTimeZoneAbbrev := 'PT',
 toLocation := 'NORTH AMERICA');
OUTPUT(ptRewriteDS, NAMED('pacific_time_result'));

See Also: AppendTZOffset , AdjustTimeTZ

© 2026 HPCC Systems®. All rights reserved
198

Standard Library Reference
Cluster Handling

Cluster Handling

© 2026 HPCC Systems®. All rights reserved
199

Standard Library Reference
Cluster Handling

Node
STD.System.Thorlib.Node()

Return: Node returns an UNSIGNED INTEGER4 value.

The Node function returns the (zero-based) number of the Data Refinery (Thor) or Rapid Data Delivery
Engine (Roxie) node.

Example:

A := STD.System.Thorlib.Node();

© 2026 HPCC Systems®. All rights reserved
200

Standard Library Reference
Cluster Handling

Nodes
STD.System.Thorlib.Nodes()

Return: Nodes returns an UNSIGNED INTEGER4 value.

The Nodes function returns the number of nodes in the Thor cluster (always returns 1 on hThor and Roxie).
This number is the same as the CLUSTERSIZE compile time constant. The Nodes function is evaluated
each time it is called, so the choice to use the function versus the constant depends upon the circumstances.

Example:

A := STD.System.Thorlib.Nodes();

© 2026 HPCC Systems®. All rights reserved
201

Standard Library Reference
Cluster Handling

LogicalToPhysical
STD.System.Thorlib.LogicalToPhysical (filename [, createflag])

filename A null-terminated string containing the logical name of the file.

createflag A boolean value indicating whether to create the filename. If omitted, the default is
FALSE.

Return: LogicalToPhysical returns a VARSTRING value.

The LogicalToPhysical function (Logical to Physical) returns the physical name of the file represented by
the logical filename.

Example:

A := STD.System.Thorlib.LogicalToPhysical('Fred');

© 2026 HPCC Systems®. All rights reserved
202

Standard Library Reference
Cluster Handling

DaliServer
STD.System.Thorlib.DaliServer ()

Return: Daliserver returns a VARSTRING value.

The Daliserver function returns the IP and port of the system data store (Dali) server for the environment
running the workunit.

Example:

IMPORT STD;
A := STD.System.Thorlib.Daliserver();

© 2026 HPCC Systems®. All rights reserved
203

Standard Library Reference
Cluster Handling

Group
STD.System.Thorlib.Group ()

Return: Group returns a VARSTRING value.

The Group function returns the name of the node group running the workunit. This name is used in ECL
code to specify the target CLUSTER for an OUTPUT action or a PERSISTed attribute.

Example:

IMPORT STD;
A := STD.System.Thorlib.Group();

© 2026 HPCC Systems®. All rights reserved
204

Standard Library Reference
Cluster Handling

GetExpandLogicalName
ThorLib.GetExpandLogicalName (filename)

filename A null-terminated string containing the logical name of the file.

Return: GetExpandLogicalName returns a VARSTRING (null-terminated) value.

The GetExpandLogicalName function returns a string containing the expanded logical filename (including
the default scope, if the filename does not contain a leading tilde), all in lowercase. This is the same value
as is used internally by DATASET and OUTPUT.

Example:

IMPORT STD;
A := STD.System.ThorLib.GetExpandLogicalName('Fred');

© 2026 HPCC Systems®. All rights reserved
205

Standard Library Reference
Job Handling

Job Handling

© 2026 HPCC Systems®. All rights reserved
206

Standard Library Reference
Job Handling

WUID
STD.System.Job.WUID ()

Return: WUID returns a VARSTRING value.

The WUID function returns the workunit identifier of the current job. This is the same as the WORKUNIT
compile time constant.

Example:

A := STD.System.Job.WUID();

© 2026 HPCC Systems®. All rights reserved
207

Standard Library Reference
Job Handling

Target
STD.System.Job.Target ()

Return: Target returns a VARSTRING value.

The Target function returns the name of the cluster running the workunit. Not supported on Roxie clusters.
This name is used by #WORKUNIT, the ecl command line utility, or the eclplus command line utility to
specify the the target cluster for a workunit.

Example:

A := STD.System.Job.Target();

© 2026 HPCC Systems®. All rights reserved
208

Standard Library Reference
Job Handling

Name
STD.System.Job.Name ()

Return: Name returns a VARSTRING value.

The Name function returns the name of the workunit.

Example:

A := STD.System.Job.Name();

© 2026 HPCC Systems®. All rights reserved
209

Standard Library Reference
Job Handling

User
STD.System.Job.User ()

Return: User returns a VARSTRING value.

The User function returns the username of the person running the workunit.

Example:

A := STD.System.Job.User();

© 2026 HPCC Systems®. All rights reserved
210

Standard Library Reference
Job Handling

OS
STD.System.Job.OS ()

Return: OS returns a VARSTRING value.

The OS function returns the operating system (windows or Linux) of the cluster running the workunit.

Example:

A := STD.System.Job.OS();

© 2026 HPCC Systems®. All rights reserved
211

Standard Library Reference
Job Handling

Platform
STD.System.Job.Platform ()

Return: Platform returns a VARSTRING value.

The Platform function returns the platform name (hthor, thor, or roxie) of the cluster running the workunit.

Example:

A := STD.System.Job.Platform();

© 2026 HPCC Systems®. All rights reserved
212

Standard Library Reference
Job Handling

LogString
STD.System.Job.LogString (message)

message A string expression containing the text to place in the log file.

Return: LogString returns an INTEGER value.

The LogString function outputs "USER:" followed by the message text to the eclagent or Roxie log file and
returns the length of the text written to the file.

Example:

A := STD.System.Job.LogString('The text message to log');
 //places USER:The text message to log
 //in the log file

© 2026 HPCC Systems®. All rights reserved
213

Standard Library Reference
File Monitoring

File Monitoring

© 2026 HPCC Systems®. All rights reserved
214

Standard Library Reference
File Monitoring

MonitorFile
STD.File.MonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport])

dfuwuid := STD.File.fMonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the
filenameappears. This value is used as the first parameter to the EVENT function.

ip Optional. A null-terminated string containing the ip address for the file to monitor. This
is typically a landing zone. This may be omitted only if the filenameparameter contains
a complete URL.

filename A null-terminated string containing the full path to the file to monitor. This may contain
wildcard characters (* and ?).

subdirs Optional. A boolean value indicating whether to include files in sub-directories that match
the wildcard mask when the filename contains wildcards. If omitted, the default is false.

shotcount Optional. An integer value indicating the number of times to generate the event before
the monitoring job completes. A negative one (-1) value indicates the monitoring job
continues until manually aborted. If omitted, the default is 1.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorFile returns a null-terminated string containing the DFU workunit ID (DFUWUID).

The MonitorFile function creates a file monitor job in the DFU Server. Once the job is received it goes into
a 'monitoring' mode (which can be seen in the ECL Watch DFU Workunit display), which polls at a fixed
interval. This interval is specified in the DFU Server's monitorinterval configuration setting. The default
interval is 900 seconds (15 minutes). If an appropriately named file arrives in this interval it will fire the event
with the name of the triggering object as the event subtype (see the EVENT function).

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for
the DFU job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) Events are only generated when the monitor job starts or subsequently on the polling interval.

2) Note that the event is generated if the file has been created since the last polling interval. Therefore, the
event may occur before the file is closed and the data all written. To ensure the file is not subsequently read
before it is complete you should use a technique that will preclude this possibility, such as using a separate
'flag' file instead of the file, itself or renaming the file once it has been created and completely written.

© 2026 HPCC Systems®. All rights reserved
215

Standard Library Reference
File Monitoring

3) The EVENT function's subtype parameter (its 2nd parameter) when monitoring physical files is the full
URL of the file, with an absolute IP rather than DNS/netbios name of the file. This parameter cannot be
retrieved but can only be used for matching a particular value.

Example:

EventName := 'MyFileEvent';
FileName := 'c:\\test\\myfile';
LZ := '10.150.50.14';
STD.File.MonitorFile(EventName,LZ,FileName);
OUTPUT('File Found') : WHEN(EVENT(EventName,'*'),COUNT(1));

© 2026 HPCC Systems®. All rights reserved
216

Standard Library Reference
File Monitoring

MonitorLogicalFileName
STD.File.MonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport])

dfuwuid := STD.File.fMonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the
filename appears. This value is used as the first parameter to the EVENT function.

filename A null-terminated string containing the name of the logical file in the DFU to monitor.

shotcount Optional. An integer value indicating the number of times to generate the event before
the monitoring job completes. A negative one (-1) value indicates the monitoring job
continues until manually aborted. If omitted, the default is 1.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorLogicalFileName returns a null-terminated string containing the DFU workunit
ID (DFUWUID).

The MonitorLogicalFileName function creates a file monitor job in the DFU Server. Once the job is received
it goes into a 'monitoring' mode (which can be seen in the eclwatch DFU Workunit display), which polls at a
fixed interval (default 15 mins). If an appropriately named file arrives in this interval it will fire the event with
the name of the triggering object as the event subtype (see the EVENT function).

This function does not support wildcard characters. To monitor physical files or directories using wildcards,
use the MonitorFile function.

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for
the DFU job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) If a matching file already exists when the DFU Monitoring job is started, that file will not generate an
event. It will only generate an event once the file has been deleted and recreated.

2) If a file is created and then deleted (or deleted then re-created) between polling intervals, it will not be
seen by the monitor and will not trigger an event.

3) Events are only generated on the polling interval.

Example:

EventName := 'MyFileEvent';
FileName := 'test::myfile';

© 2026 HPCC Systems®. All rights reserved
217

Standard Library Reference
File Monitoring

IF (STD.File.FileExists(FileName),
 STD.File.DeleteLogicalFile(FileName));
STD.File.MonitorLogicalFileName(EventName,FileName);
OUTPUT('File Created') : WHEN(EVENT(EventName,'*'),COUNT(1));

rec := RECORD
 STRING10 key;
 STRING10 val;
END;
afile := DATASET([{ 'A', '0'}], rec);
OUTPUT(afile,,FileName);

© 2026 HPCC Systems®. All rights reserved
218

Standard Library Reference
Logging

Logging

© 2026 HPCC Systems®. All rights reserved
219

Standard Library Reference
Logging

dbglog
STD.System.Log.dbglog (text)

text A string containing the text to write.

Return: dbglog does not return a value.

The dbglog action writes the text string to the eclagent.log file for the workunit.

In a containerized platform deployment, this action writes the text string to the eclagent pod's log, accessible
using this command:

kubectl logs <podname>

Example:

IMPORT STD;
STD.System.Log.dbglog('Got Here 1'); //write text to log

© 2026 HPCC Systems®. All rights reserved
220

Standard Library Reference
Logging

addWorkunitInformation
STD.System.Log.addWorkunitInformation (text [, code])

text A string containing the text to write.

code Optional. The code number to associate with the text. If omitted, the default is zero (0).

Return: addWorkunitInformation does not return a value.

The addWorkunitInformation action writes the text string to the eclagent.log file for the workunit, and also
displays the code and text in the Info section of the ECL Watch page for the workunit.

Example:

IMPORT STD;
STD.System.Log.addWorkunitInformation('Got Here',1);
 //write text to log and display "1: Got Here" as Info

© 2026 HPCC Systems®. All rights reserved
221

Standard Library Reference
Logging

addWorkunitWarning
STD.System.Log.addWorkunitWarning (text [, code])

text A string containing the text to write.

code Optional. The code number to associate with the text. If omitted, the default is zero (0).

Return: addWorkunitWarning does not return a value.

The addWorkunitWarning action writes the text string to the eclagent.log file for the workunit, and also
displays the code and text in the Syntax Errors toolbox along with the Warnings section of the ECL Watch
page for the workunit.

Example:

IMPORT STD;
STD.System.Log.addWorkunitWarning('Got Here',1);
 //write text to log and display "1: Got Here" in Warnings

© 2026 HPCC Systems®. All rights reserved
222

Standard Library Reference
Logging

addWorkunitError
STD.System.Log.addWorkunitError (text [, code])

text A string containing the text to write.

code Optional. The code number to associate with the text. If omitted, the default is zero (0).

Return: addWorkunitError does not return a value.

The addWorkunitError action writes the text string to the eclagent.log file for the workunit, and also displays
the code and text in the Syntax Errors toolbox along with the Errors section of the ECL Watch page for
the workunit.

Example:

IMPORT STD;
STD.System.Log.addWorkunitError('Got Here',1);
 //write text to log and display "1: Got Here" in Errors

© 2026 HPCC Systems®. All rights reserved
223

Standard Library Reference
Logging

getGlobalId
STD.System.Log.getGlobalId ()

Return: getGlobalId returns the Global Id

The getGlobalId gets the Global Id associated with the current query or workunit. Example:

IMPORT STD;
STD.System.Log.getGlobalId();

© 2026 HPCC Systems®. All rights reserved
224

Standard Library Reference
Logging

getLocalId
STD.System.Log.getLocalId ()

Return: getLocalId returns the Local Id

The getLocalId gets the Local Id associated with the current query or workunit. Example:

IMPORT STD;
STD.System.Log.getLocalId();

© 2026 HPCC Systems®. All rights reserved
225

Standard Library Reference
Logging

generateGloballyUniqueID
STD.System.Log.generateGloballyUniqueID ()

Return: generateGloballyUniqueID returns a globally unique identifier.

The generateGloballyUniqueID returns a globally unique identifier (GUID) with base58 encoding. Base58
encoding is similar to base64 encoding but avoids both non-alphanumeric characters and visually ambigu-
ous letters. It is designed to avoid errors by human users who manually enter the data by copying from
some visual source. It allows easy copy/paste because a double-click will usually select the entire string.

IMPORT STD;

value1 := std.system.log.generateGloballyUniqueId() : INDEPENDENT;
value2 := NOFOLD(std.system.log.generateGloballyUniqueId()) : INDEPENDENT;

OUTPUT(value1);
OUTPUT(value2);
OUTPUT(IF (value1 = value2, 'Values are not unique', 'Values are unique'));

© 2026 HPCC Systems®. All rights reserved
226

Standard Library Reference
Logging

getElapsedMs
result := STD.System.Log.getElapsedMs ();

Return: getElapsedMs returns returns the elapsed time in milliseconds.

The getElapsedMs function returns the current elapsed query time (in ms) in Roxie.

This is the elapsed time when STD.System.Log.getElapsedMs() is called. Because ECL is a declarative
language, code is not necessarily executed in sequence. You have to be careful when trying to get the
elapsed time for a particular point in your code. You can look at the Workunit graphs to see the exact point
at which the activity executes.

For use in Roxie only. An error is returned if you try to run on Thor or hThor.

Example:

IMPORT STD;
STD.System.Debug.Sleep (1054); // pause processing for 1054 milliseconds.
OUTPUT(STD.System.Log.getElapsedMs(), NAMED('Elapsed')); //returns total time elapsed

© 2026 HPCC Systems®. All rights reserved
227

Standard Library Reference
Auditing

Auditing

© 2026 HPCC Systems®. All rights reserved
228

Standard Library Reference
Auditing

Audit
STD.Audit.Audit(type, message)

type A string constant containing the type of audit entry. Currently, only INFO is provided.

message A string containing the audit entry text.

Return: Audit returns a BOOLEAN value indicating whether it was successful or not.

The Audit function writes the message into the Windows event log or Linux system log on the ECL Agent
computer. The entries can be retrieved from the logs using standard operating system tools.

Example:

STD.Audit.Audit('INFO','Audit Message');

© 2026 HPCC Systems®. All rights reserved
229

Standard Library Reference
Utilities

Utilities

© 2026 HPCC Systems®. All rights reserved
230

Standard Library Reference
Utilities

GetHostName
result := STD.System.Util.GetHostName (ip);

ip A null-terminated string containing the IP address of the remote machine.

Return: GetHostName returns returns a VARSTRING (null-terminated) value.

The GetHostName function does a reverse DNS lookup to return the host name for the machine at the
specified ip address.

Example:

IP := '10.150.254.6';

OUTPUT(STD.System.Util.GetHostName(IP));

© 2026 HPCC Systems®. All rights reserved
231

Standard Library Reference
Utilities

ResolveHostName
result := STD.System.Util.ResolveHostName (host);

host A null-terminated string containing the DNS name of the remote machine.

Return: ResolveHostName returns returns a VARSTRING (null-terminated) value.

The ResolveHostName function does a DNS lookup to return the ip address for the specified host name.

Example:

host := 'dataland_dali.br.seisint.com';
OUTPUT(STD.System.Util.ResolveHostName(host));

© 2026 HPCC Systems®. All rights reserved
232

Standard Library Reference
Utilities

GetUniqueInteger
result := STD.System.Util.GetUniqueInteger ([dali]);

dali Optional. A null-terminated string containing the ip address of the remote dali to provide
the number. If omitted, the default is local.

Return: GetUniqueInteger returns returns an UNSIGNED8 value.

The GetUniqueInteger function returns a number that is unique across all the worker nodes of the specified
dali.

Example:

IMPORT STD;

OUTPUT(STD.System.Util.GetUniqueInteger());

© 2026 HPCC Systems®. All rights reserved
233

Standard Library Reference
Utilities

GetEspUrl
result := STD.File.GetEspUrl ([username, userPW]);

username Optional. A STRING containing a username to use for authenticated access to the ESP
process. If omitted, it indicates that no user authentication is required.

userPW Optional. A STRING containing the password to use with the user cited in the username
argument. If username is empty then this is ignored

Return: GetEspUrl returns a STRING containing the full URL (including HTTP scheme and port)
to an ESP server process. If more than one ESP process is defined then the first found
process is returned. Returns an empty string if an ESP server process cannot be found
in the environment.

The GetEspUrl function returns the full URL to an ESP server process.

Example:

IMPORT STD;
EspAddress := STD.File.GetEspUrl();
EspAddress;

© 2026 HPCC Systems®. All rights reserved
234

Standard Library Reference
Utilities

PlatformVersionCheck
result := STD.System.Util.PlatformVersionCheck(v);

v Required. The minimum platform version in either xx.xx.xx, xx.xx, or xx format (where
xx is an integer and does not need to be zero-padded); extra trailing characters (such
as the '-1' in the example below) are ignored.

Return: TRUE if the platform's current version is equal to or higher than the argument, otherwise
FALSE.

The PlatformVersionCheck function tests a full version string against the individual platform version con-
stants to determine if the platform's version is at least as high as the argument. This function is evaluated
at compile-time if the argument is a constant. This makes it useful for embedding in #IF() declarations as
shown in the example.

Example:

IMPORT STD;
#IF(STD.System.Util.PlatformVersionCheck('8.2.0-1'))
 OUTPUT('Platform check TRUE');
#ELSE
 OUTPUT('Platform check FALSE');
#END

© 2026 HPCC Systems®. All rights reserved
235

Standard Library Reference
Debugging

Debugging

© 2026 HPCC Systems®. All rights reserved
236

Standard Library Reference
Debugging

GetParseTree
STD.System.Debug.GetParseTree ()

Return: GetParseTree returns a STRING value.

The GetParseTree function returns a textual representation of the match that occurred, using square brack-
ets (such as: a[b[c]d]) to indicate nesting. This function is only used within the RECORD or TRANSFORM
structure that defines the result of a PARSE operation. This function is useful for debugging PARSE oper-
ations.

Example:

IMPORT STD;

r := {string150 line};
d := dataset([
{'Ge 34:2 And when Shechem the son of Hamor the Hivite, '+
 'prince of the country, saw her, he took her, and lay with her, '+
 'and defiled her.'},
{'Ge 36:10 These are the names of Esaus sons; Eliphaz the son of '+
 'Adah the wife of Esau, Reuel the son of Bashemath the wife of '+
 'Esau.'}
],r);
PATTERN ws := [' ','\t',',']*;
PATTERN patStart := FIRST | ws;
PATTERN patEnd := LAST | ws;
PATTERN article := ['A','The','Thou','a','the','thou'];
TOKEN patWord := PATTERN('[a-zA-Z]+');
TOKEN Name := PATTERN('[A-Z][a-zA-Z]+');
RULE Namet := name OPT(ws 'the' ws name);
PATTERN produced_by := OPT(article ws) ['son of','daughter of'];
PATTERN produces_with := OPT(article ws) ['wife of'];
RULE progeny := namet ws (produced_by | produces_with) ws namet;
results := RECORD
 STRING LeftName := MATCHTEXT(Namet[1]);
 STRING RightName := MATCHTEXT(Namet[2]);
 STRING LinkPhrase := IF(MATCHTEXT(produced_by[1])<>'',
 MATCHTEXT(produced_by[1]),
 MATCHTEXT(produces_with[1]));
 STRING Tree := 'Tree: ' + STD.System.Debug.getParseTree();
END;
outfile1 := PARSE(d,line,progeny,results,SCAN ALL);
/* the Tree field output looks like this:
Tree: [namet[name"Shechem"] ws" " produced_by"the son of" ws" " namet[name"Hamor"]]
*/

© 2026 HPCC Systems®. All rights reserved
237

Standard Library Reference
Debugging

GetXMLParseTree
STD.System.Debug.GetXMLParseTree ()

Return: GetXMLParseTree returns a STRING value.

The GetXMLParseTree function returns a textual representation of the match that occurred, using XML tags
to indicate nesting. This function is only used within the RECORD or TRANSFORM structure that defines
the result of a PARSE operation. This function is useful for debugging PARSE operations.

Example:

IMPORT STD;

r := {string150 line};
d := dataset([
{'Ge 34:2 And when Shechem the son of Hamor the Hivite, '+
 'prince of the country, saw her, he took her, and lay with her, '+
 'and defiled her.'},
{'Ge 36:10 These are the names of Esaus sons; Eliphaz the son of '+
 'Adah the wife of Esau, Reuel the son of Bashemath the wife of '+
 'Esau.'}
],r);

PATTERN ws := [' ','\t',',']*;
PATTERN patStart := FIRST | ws;
PATTERN patEnd := LAST | ws;
PATTERN article := ['A','The','Thou','a','the','thou'];
TOKEN patWord := PATTERN('[a-zA-Z]+');
TOKEN Name := PATTERN('[A-Z][a-zA-Z]+');
RULE Namet := name OPT(ws 'the' ws name);
PATTERN produced_by := OPT(article ws) ['son of','daughter of'];
PATTERN produces_with := OPT(article ws) ['wife of'];
RULE progeny := namet ws (produced_by | produces_with) ws namet;
results := RECORD
 STRING LeftName := MATCHTEXT(Namet[1]);
 STRING RightName := MATCHTEXT(Namet[2]);
 STRING LinkPhrase := IF(MATCHTEXT(produced_by[1])<>'',
 MATCHTEXT(produced_by[1]),
 MATCHTEXT(produces_with[1]));
 STRING Tree := STD.System.Debug.getXMLParseTree();
END;
outfile1 := PARSE(d,line,progeny,results,SCAN ALL);
/* the Tree field output
looks like this:
<namet>
 <name>Shechem</name>
</namet>
<ws> </ws>
<produced_by>the son of</produced_by>
<ws> </ws>
<namet>
 <name>Hamor</name>
</namet>
*/

© 2026 HPCC Systems®. All rights reserved
238

Standard Library Reference
Debugging

Sleep
STD.System.Debug.Sleep (duration)

duration An integer value specifying the length of the sleep period, in milliseconds.

Return: Sleep does not return a value.

The Sleep function pauses processing for duration milliseconds.

Example:

IMPORT STD;
STD.System.Debug.Sleep(1000); //pause for one second before continuing

© 2026 HPCC Systems®. All rights reserved
239

Standard Library Reference
Debugging

msTick
STD.System.Debug.msTick ()

Return: msTick returns a 4-byte unsigned integer value.

The msTick function returns elapsed time since its start point, in milliseconds. The start point is undefined,
making this function useful only for judging elapsed time between calls to the function by subtracting the
latest return value from the earlier. When the return value reaches the maximum value of a 4-byte unsigned
integer (2 ^32 or 4 Gb), it starts over again at zero (0). This occurs approximately every 49.71 days.

Example:

IMPORT STD;
t1 := STD.System.Debug.msTick() : STORED('StartTime'); //get start time

ds1 := DATASET([{0,0,0,0,0}],
 {UNSIGNED4 RecID,
 UNSIGNED4 Started,
 UNSIGNED4 ThisOne,
 UNSIGNED4 Elapsed,
 UNSIGNED4 RecsProcessed});

RECORDOF(ds1) XF1(ds1 L, integer C) := TRANSFORM
 SELF.RecID := C;
 SELF := L;
END;
ds2 := NORMALIZE(ds1,100000,XF1(LEFT,COUNTER));

RECORDOF(ds1) XF(ds1 L) := TRANSFORM
 SELF.Started := T1;
 SELF.ThisOne := STD.System.Debug.msTick();
 SELF.Elapsed := SELF.ThisOne - SELF.Started;
 SELF := L;
END;

P := PROJECT(ds2,XF(LEFT)) : PERSIST('~RTTEST::TestTick');
R := ROLLUP(P,
 LEFT.Elapsed=RIGHT.Elapsed,
 TRANSFORM(RECORDOF(ds1),
 SELF.RecsProcessed := RIGHT.RecID - LEFT.RecID,
 SELF := LEFT));

paws := STD.System.Debug.Sleep(1000); //pause for one second before continuing

SEQUENTIAL(paws,OUTPUT(P, ALL),OUTPUT(R, ALL));

© 2026 HPCC Systems®. All rights reserved
240

Standard Library Reference
Email

Email

© 2026 HPCC Systems®. All rights reserved
241

Standard Library Reference
Email

SendEmail
STD.System.Email.SendEmail (to, subject, body, attachment, mimietype, filename, mailServer, port,
sender, cc, bcc, highPriority)

to A null-terminated string containing a comma-delimited list of the addresses of the in-
tended recipients. The validity of the addresses is not checked, so it is the programmer's
responsibility to ensure they are all valid.

subject A null-terminated string containing the subject line.

body A null-terminated string containing the text of the email to send. This must be character
encoding "ISO-8859-1 (latin1)" (the ECL default character set). Text in any other char-
acter set must be sent as an attachment (see the STD.System.Email.SendEmailAttach-
Text() function).

mailServer Optional. A null-terminated string containing the name of the mail server. If omitted,
defaults to the value in the SMTPserver environment variable.

port Optional. An UNSIGNED4 integer value containing the port number. If omitted, defaults
to the value in the SMTPport environment variable.

sender Optional. A null-terminated string containing the address of the sender. If omitted, de-
faults to the value in the emailSenderAddress environment variable.

cc Optional. comma-delimited addresses of carbon-copy recipients. Defaults to an empty
string (none).

bcc Optional. comma-delimited addresses of blind-carbon-copy recipients. Defaults to an
empty string (none).

highPriority Optional. If true, the message is sent with high priority. Defaults to false (normal priority).

The SendEmail function sends an email message.

Example:

STD.System.Email.SendEmail('me@example.com', 'testing 1,2,3', 'this is a test message');

© 2026 HPCC Systems®. All rights reserved
242

Standard Library Reference
Email

SendEmailAttachData
STD.System.Email.SendEmailAttachData (to, subject, body, attachment, mimietype, filename,
mailServer, port, sendercc, bcc, highPriority)

to A null-terminated string containing a comma-delimited list of the addresses of the in-
tended recipients. The validity of the addresses is not checked, so it is the programmer's
responsibility to ensure they are all valid.

subject A null-terminated string containing the subject line.

body A null-terminated string containing the text of the email to send. This must be character
encoding "ISO-8859-1 (latin1)" (the ECL default character set). Text in any other char-
acter set must be sent as an attachment.

attachment A DATA value containing the binary data to attach.

mimetype A null-terminated string containing the MIME-type of the attachment, which may include
entrymeters (such as 'text/plain; charset=ISO-8859-3'). When attaching general binary
data for which no specific MIME type exists, use 'application/octet-stream'.

filename A null-terminated string containing the name of the attachment for the mail reader to
display.

mailServer Optional. A null-terminated string containing the name of the mail server. If omitted,
defaults to the value in the SMTPserver environment variable.

port Optional. An UNSIGNED4 integer value containing the port number. If omitted, defaults
to the value in the SMTPport environment variable.

sender Optional. A null-terminated string containing the address of the sender. If omitted, de-
faults to the value in the emailSenderAddress environment variable.

cc Optional. comma-delimited addresses of carbon-copy recipients. Defaults to an empty
string (none).

bcc Optional. comma-delimited addresses of blind-carbon-copy recipients. Defaults to an
empty string (none).

highPriority Optional. If true, the message is sent with high priority. Defaults to false (normal priority).

The SendEmailAttachData function sends an email message with a binary attachment.

Example:

DATA15 attachment := D'test attachment';

STD.System.Email.SendEmailAttachData('me@example.com',
 'testing 1,2,3',
 'this is a test message',
 attachment,
 'application/octet-stream',
 'attachment.txt');

© 2026 HPCC Systems®. All rights reserved
243

Standard Library Reference
Email

SendEmailAttachText
STD.System.Email.SendEmailAttachText (to, subject, body, attachment, mimietype, filename,
mailServer, port, sender, cc, bcc, highPriority)

to A null-terminated string containing a comma-delimited list of the addresses of the in-
tended recipients. The validity of the addresses is not checked, so it is the programmer's
responsibility to ensure they are all valid.

subject A null-terminated string containing the subject line.

body A null-terminated string containing the text of the email to send. This must be character
encoding "ISO-8859-1 (latin1)" (the ECL default character set). Text in any other char-
acter set must be sent as an attachment.

attachment A null-terminated string containing the text to attach.

mimetype A null-terminated string containing the MIME-type of the attachment, which may include
entrymeters (such as 'text/plain; charset=ISO-8859-3').

filename A null-terminated string containing the name of the attachment for the mail reader to
display.

mailServer Optional. A null-terminated string containing the name of the mail server. If omitted,
defaults to the value in the SMTPserver environment variable.

port Optional. An UNSIGNED4 integer value containing the port number. If omitted, defaults
to the value in the SMTPport environment variable.

sender Optional. A null-terminated string containing the address of the sender. If omitted, de-
faults to the value in the emailSenderAddress environment variable.

cc Optional. comma-delimited addresses of carbon-copy recipients. Defaults to an empty
string (none).

bcc Optional. comma-delimited addresses of blind-carbon-copy recipients. Defaults to an
empty string (none).

highPriority Optional. If true, the message is sent with high priority. Defaults to false (normal priority).

The SendEmailAttachText function sends an email message with a text attachment.

Example:

STD.System.Email.SendEmailAttachText('me@mydomain.com', 'testing 1,2,3',
 'this is a test message', 'this is a test attachment',
 'text/plain; charset=ISO-8859-3', 'attachment.txt');

© 2026 HPCC Systems®. All rights reserved
244

Standard Library Reference
Workunit Services

Workunit Services

© 2026 HPCC Systems®. All rights reserved
245

Standard Library Reference
Workunit Services

WorkunitExists
STD.System.Workunit.WorkunitExists(wuid [, online] [, archived])

wuid A null-terminated string containing the WorkUnit IDentifier to locate.

online Optional. A Boolean true/false value specifying whether the search is performed online.
If omitted, the default is TRUE.

archived Optional. A Boolean true/false value specifying whether the search is performed in the
archives. If omitted, the default is FALSE.

Return: WorkunitExists returns a BOOLEAN value.

The WorkunitExists function returns whether the wuid exists.

Example:

OUTPUT(STD.System.Workunit.WorkunitExists('W20070308-164946'));

© 2026 HPCC Systems®. All rights reserved
246

Standard Library Reference
Workunit Services

WorkunitList
STD.System.Workunit.WorkunitList (lowwuid [, highwuid] [, username] [, cluster] [, jobname
] [, state] [, priority] [, fileread] [, filewritten] [, roxiecluster] [, eclcontains] [, online] [,
archived] [, appvalues])

lowwuid A null-terminated string containing the lowest WorkUnit IDentifier to list. This may be an
empty string.

highwuid Optional. A null-terminated string containing the highest WorkUnit IDentifier to list. If
omitted, the default is an empty string.

cluster Optional. A null-terminated string containing the name of the cluster the workunit ran on.
If omitted, the default is an empty string.

jobname Optional. A null-terminated string containing the name of the workunit. This may contain
wildcard (* ?) characters. If omitted, the default is an empty string.

state Optional. A null-terminated string containing the state of the workunit. If omitted, the
default is an empty string.

priority Optional. A null-terminated string containing the priority of the workunit. If omitted, the
default is an empty string.

fileread Optional. A null-terminated string containing the name of a file read by the workunit. This
may contain wildcard (* ?) characters. If omitted, the default is an empty string.

filewritten Optional. A null-terminated string containing the name of a file written by the workunit.
This may contain wildcard (* ?) characters. If omitted, the default is an empty string.

roxiecluster Optional. A null-terminated string containing the name of the Roxie cluster. If omitted,
the default is an empty string.

eclcontains Optional. A null-terminated string containing text to search for in the workunit's ECL code.
This may contain wildcard (* ?) characters. If omitted, the default is an empty string.

online Optional. A Boolean true/false value specifying whether the search is performed online.
If omitted, the default is TRUE.

archived Optional. A Boolean true/false value specifying whether the search is performed in the
archives. If omitted, the default is FALSE.

appvalues Optional. A null-terminated string containing application values to search for. Use a string
of the form appname/key=value or appname/*=value.

Return: WorkunitList returns a DATASET.

The WorkunitList function returns a dataset of all workunits that meet the search criteria specified by the
parameters passed to the function. All the parameters are search values and all but the first are omittable,
therefore the easiest way to pass a particular single search parameter would be to use the NAMED para-
meter passing technique.

The resulting DATASET is in this format:

WorkunitRecord := RECORD
 STRING24 wuid;
 STRING owner{MAXLENGTH(64)};
 STRING cluster{MAXLENGTH(64)};
 STRING roxiecluster{MAXLENGTH(64)};
 STRING job{MAXLENGTH(256)};
 STRING10 state;
 STRING7 priority;
 STRING20 created;

© 2026 HPCC Systems®. All rights reserved
247

Standard Library Reference
Workunit Services

 STRING20 modified;
 BOOLEAN online;
 BOOLEAN protected;
END;

Example:

OUTPUT(STD.System.Workunit.WorkunitList(''));
 //list all current workunits
OUTPUT(STD.System.Workunit.WorkunitList('',
 NAMED eclcontains := 'COUNT'));
 //list only those where the ECL code contains the word 'COUNT'
 //this search is case insensitive and does include comments

STD.System.Workunit.SetWorkunitAppValue('MyApp','FirstName','Jim',TRUE);
OUTPUT(STD.System.Workunit.WorkunitList(appvalues := 'MyApp/FirstName='Jim'));
//returns a list of workunits with app values where FirstName='Jim'

See Also: SetWorkunitAppValue

© 2026 HPCC Systems®. All rights reserved
248

Standard Library Reference
Workunit Services

SetWorkunitAppValue
STD.System.Workunit.SetWorkunitAppValue (app, key, value, [overwrite])

app The application name to set.

key The name of the value to set.

value The value to set.

overwrite A boolean TRUE or FALSE flag indicating whether to allow the value to overwrite an
existing value. Default is TRUE..

Return: SetWorkunitAppValue returns TRUE if the value was set successfully.

The SetWorkunitAppValue function sets an application value in the current workunit. It returns TRUE if
the value was set successfully.

Example:

IMPORT STD;
STD.System.Workunit.SetWorkunitAppValue('MyApp','FirstName','Jim',TRUE);
OUTPUT(STD.System.Workunit.WorkunitList(appvalues := 'MyApp/FirstName='Jim');
//returns a list of workunits with app values where FirstName='Jim'

See Also: WorkunitList

© 2026 HPCC Systems®. All rights reserved
249

Standard Library Reference
Workunit Services

WUIDonDate
STD.System.Workunit.WUIDonDate (year, month, day, hour, minute)

year An unsigned integer containing the year value.

month An unsigned integer containing the month value.

day An unsigned integer containing the day value.

hour An unsigned integer containing the hour value.

minute An unsigned integer containing the minute value.

Return: WUIDonDate returns a VARSTRING value.

The WUIDonDate function returns a valid WorkUnit IDentifier for a workunit that meets the passed para-
meters.

Example:

lowwuid := STD.System.Workunit.WUIDonDate(2008,02,13,13,00);
highwuid := STD.System.Workunit.WUIDonDate(2008,02,13,14,00);
OUTPUT(STD.System.Workunit.WorkunitList(lowwuid,highwuid));
 //returns a list of workunits between 1 & 2 PM on 2/13/08

© 2026 HPCC Systems®. All rights reserved
250

Standard Library Reference
Workunit Services

WUIDdaysAgo
STD.System.Workunit.WUIDdaysAgo (daysago)

daysago An unsigned integer containing the number of days to go back.

Return: WUIDdaysAgo returns a VARSTRING value.

The WUIDdaysAgo function returns a valid WorkUnit IDentifier for a workunit that would have run within
the last daysago days.

Example:

daysago := STD.System.Workunit.WUIDdaysAgo(3);
OUTPUT(STD.System.Workunit.WorkunitList(daysago));
 //returns a list of workunits run in the last 72 hours

© 2026 HPCC Systems®. All rights reserved
251

Standard Library Reference
Workunit Services

WorkunitTimeStamps
STD.System.Workunit.WorkunitTimeStamps (wuid)

wuid A null-terminated string containing the WorkUnit IDentifier.

Return: WorkunitTimeStamps returns a DATASET value.

The WorkunitTimeStamps function returns a DATASET with this format:

EXPORT TimeStampRecord := RECORD
 STRING32 application;
 STRING16 id;
 STRING20 time;
 STRING16 instance;
END;

Each record in the returned dataset specifies a step in the workunit's execution process (creation, compi-
lation, etc.).

Example:

OUTPUT(STD.System.Workunit.WorkunitTimeStamps('W20240801-122755'));

/* produces output like this:
'workunit ','Created ','2024-08-01T16:28:20Z',' '
'workunit ','Modified','2024-08-01T16:32:47Z',' '
'EclServer ','Compiled','2024-08-01T16:28:20Z','172.31.4.17'
'EclAgent ','Started ','2024-08-01T16:32:35Z','172.31.4.17'
'Thor - graph1','Finished','2024-08-01T16:32:47Z','172.31.4.17'
'Thor - graph1','Started ','2024-08-01T16:32:13Z','172.31.4.17'
'EclAgent ','Finished','2024-08-01T16:33:09Z','172.31.4.17'
*/

© 2026 HPCC Systems®. All rights reserved
252

Standard Library Reference
Workunit Services

WorkunitMessages
STD.System.Workunit.WorkunitMessages (wuid)

wuid A null-terminated string containing the WorkUnit IDentifier.

Return: WorkunitMessages returns a DATASET value.

The WorkunitMessages function returns a DATASET with this format:

EXPORT WsMessage_v2 := RECORD
 UNSIGNED4 severity;
 INTEGER4 code;
 STRING32 location;
 UNSIGNED4 row;
 UNSIGNED4 col;
 STRING16 source;
 STRING20 time;
 UNSIGNED4 priority;
 REAL8 cost;
 STRING message{MAXLENGTH(1024)};
END;

This function returns all messages in the workunit. Each record in the returned dataset specifies a message
in the workunit.

The severity value can be 1 for Warning, 2 for Error, or 3 for Information.

Note: The DATASET structure returned by WorkunitMessages added two fields (priority and cost) in
version 9.10.0.

Example:

IMPORT STD;
OUTPUT(STD.System.Workunit.WorkunitMessages('W20250602-164946'));

© 2026 HPCC Systems®. All rights reserved
253

Standard Library Reference
Workunit Services

WorkunitFilesRead
STD.System.Workunit.WorkunitFilesRead (wuid)

wuid A null-terminated string containing the WorkUnit IDentifier.

Return: WorkunitFilesRead returns a DATASET value.

The WorkunitFilesRead function returns a DATASET with this format:

EXPORT WsFileRead := RECORD
 STRING name{MAXLENGTH(256)};
 STRING cluster{MAXLENGTH(64)};
 BOOLEAN isSuper;
 UNSIGNED4 usage;
END;

Each record in the returned dataset specifies a file read by the workunit.

Example:

OUTPUT(STD.System.Workunit.WorkunitFilesRead('W20070308-164946'));
/* produces results that look like this
'rttest::difftest::superfile','thor','true','1'
'rttest::difftest::base1','thor','false','1'
*/

© 2026 HPCC Systems®. All rights reserved
254

Standard Library Reference
Workunit Services

WorkunitFilesWritten
STD.System.Workunit.WorkunitFilesWritten (wuid)

wuid A null-terminated string containing the WorkUnit IDentifier.

Return: WorkunitFilesWritten returns a DATASET value.

The WorkunitFilesWritten function returns a DATASET with this format:

EXPORT WsFileRead := RECORD
 STRING name{MAXLENGTH(256)};
 STRING10 graph;
 STRING cluster{MAXLENGTH(64)};
 UNSIGNED4 kind;
END;

Each record in the returned dataset specifies a file written by the workunit.

Example:

OUTPUT(STD.System.Workunit.WorkunitFilesWritten('W20070308-164946'));
/* produces results that look like this
'rttest::testfetch','graph1','thor','0'
*/

© 2026 HPCC Systems®. All rights reserved
255

Standard Library Reference
Workunit Services

WorkunitTimings
STD.System.Workunit.WorkunitTimings (wuid)

wuid A null-terminated string containing the WorkUnit IDentifier.

Return: WorkunitTimings returns a DATASET value.

The WorkunitTimings function returns a DATASET with this format:

EXPORT WsTiming := RECORD
 UNSIGNED4 count;
 UNSIGNED4 duration;
 UNSIGNED4 max;
 STRING name{MAXLENGTH(64)};
END;

Each record in the returned dataset specifies a timing for the workunit.

Example:

OUTPUT(STD.System.Workunit.WorkunitTimings('W20070308-164946'));
/* produces results that look like this
'1','4','4','EclServer: tree transform'
'1','0','0','EclServer: tree transform: normalize.scope'
'1','1','1','EclServer: tree transform: normalize.initial'
'1','18','18','EclServer: write c++'
'1','40','40','EclServer: generate code'
'1','1010','1010','EclServer: compile code'
'1','33288','33288','Graph graph1 - 1 (1)'
'1','33629','33629','Total thor time: '
'2','1','698000','WorkUnit_lockRemote'
'1','2','2679000','SDS_Initialize'
'1','0','439000','Environment_Initialize'
'1','33775','3710788928','Process'
'1','1','1942000','WorkUnit_unlockRemote'
*/

© 2026 HPCC Systems®. All rights reserved
256

Standard Library Reference
BLAS Support

BLAS Support
This section provides support tor Basic Linear Algebra Subprogram support.

The BLAS functions use the column major mapping for the storage of a matrix. This is the mapping used
in Fortran, and has the entries of the first column followed by the entries of the second column. This is the
transpose of the row major form commonly used in the C language where the entries of the first row are
followed by the entries of the second row.

© 2026 HPCC Systems®. All rights reserved
257

Standard Library Reference
BLAS Support

Types
STD.BLAS.Types

value_t REAL8

dimension_t UNSIGNED4

matrix_t SET OF REAL8

Triangle ENUM(UNSIGNED1, Upper=1, Lower=2)

Diagonal ENUM(UNSIGNED1, UnitTri=1, NotUnitTri=2)

Side ENUM(UNSIGNED1, Ax=1, xA=2)

Types for the Block Basic Linear Algebra Sub-programs support

© 2026 HPCC Systems®. All rights reserved
258

Standard Library Reference
BLAS Support

ICellFunc
STD.BLAS.ICellFunc(v, r , c);

v The value

r The row ordinal

c The column ordinal

Return: The updated value

ICellFunc is the function prototype for Apply2Cells.

Example:

IMPORT STD;
REAL8 my_func(STD.BLAS.Types.value_t v, STD.BLAS.Types.dimension_t x, STD.BLAS.Types.dimension_t y)
 := 1/v; //set element to the reciprocal value

See Also: Apply2Cells

© 2026 HPCC Systems®. All rights reserved
259

Standard Library Reference
BLAS Support

Apply2Cells
STD.BLAS.Apply2Cells(m, n , x, f);

m Number of rows

n Number of columns

x Matrix

f Function to apply

Return: The updated matrix

The Apply2Cells function iterates a matrix and applies a function to each cell.

Example:

IMPORT STD;
STD.BLAS.Types.value_t example_1(STD.BLAS.Types.value_t v,
 STD.BLAS.Types.dimensiopn_t x,
 STD.BLAS.Types.dimension_t y) := FUNCTION
 RETURN IF(x=y, 1.0, 1/v);
END;

init_mat := [1, 2, 4, 4, 5, 10, 2, 5, 2];
new_mat := STD.BLAS.Apply2Cells(3, 3, init_mat, example_1);

// The new_mat matrix will be [1, .5, .25, .25, 1, .1, .5, .2, 1]

See Also: ICellFunc

© 2026 HPCC Systems®. All rights reserved
260

Standard Library Reference
BLAS Support

dasum
STD.BLAS.dasum(m, x, incx, skipped);

m Number of entries

x The column major matrix holding the vector

incxx The increment for x, 1 in the case of an actual vector

skipped The number of entries stepped over. Default is zero.

Return: The sum of the absolute values

The dasum function gets the absolute sum, the 1 norm of a vector.

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t test_data := [2, -2, -3, 3, 1, 3, -1, -1, 1];
STD.BLAS.dasum(9, test_data, 1); //sums the absolute values of the matrix, and returns 17

© 2026 HPCC Systems®. All rights reserved
261

Standard Library Reference
BLAS Support

daxpy
STD.BLAS.daxpy(N, alpha, X, incX, Y, incY, x_skipped,y_skipped);

N Number of entries

alpha The column major matrix holding the vector

X The column major matrix holding the vector X

incX The increment for x, 1 in the case of an actual vector

Y The column major matrix holding the vector Y

incY The increment or stride of Y

x_skipped The number of entries stepped over. to get to the first X .

y_skipped The number of entries stepped over. to get to the first Y .

Return: The updated matrix

The daxpy function is used to sum two vectors or matrices with a scalar multiplier applied during the sum
operation..

Example:

IMPORT STD;
STD.BLAS.Types.t_matrix term_1 := [1, 2, 3];
STD.BLAS.Types.t_matrix term_2 := [3, 2, 1].
STD.BLAS.daxpy(3, 2, term_1, 1, term_2, 1); // result is [5, 6, 7]

© 2026 HPCC Systems®. All rights reserved
262

Standard Library Reference
BLAS Support

dgemm
STD.BLAS.dgemm(transposeA, transposeB, M, N, K, alpha, A, B, beta, C);

transposeA True when transpose of A is used

transposeB True when transpose of B is used

M Number of rows in product

N Number of columns in product

K Number of columns/rows for the multiplier/multiplicand

alpha Scalar used on A

A Matrix A

B Matrix B

beta Scalar for matirx C

C Matrix C (or empty)

Return: The updated matrix

The dgemm function is used to multiply two matrices and optionally add that product to another matrix.

Example:

IMPORT STD;
STD.BLAS.Types.t_matrix term_a := [2, 4, 8];
STD.BLAS.Types.t_matrix term_c := [2, 1, 1];

STD.BLAS.dgemm(TRUE, FALSE, 3, 3, 1, 1, term_a, term_b);
 //the outer product of the term_a and term_b vectors
 //result is [4,8, 16, 2, 4, 8, 2, 4, 8]

© 2026 HPCC Systems®. All rights reserved
263

Standard Library Reference
BLAS Support

dgetf2
STD.BLAS.dgetf2(m, n, a);

m Number of rows of matrix a

n Number of columns of matrix a

a Matrix a

Return: Composite matrix of factors, lower triangle has an implied diagonal of ones. Upper tri-
angle has the diagonal of the composite.

The dgetf2 function produces a combine lower and upper triangular factorization.

Example:

IMPORT STD;
STD.BLAS.Types.t_matrix test := [2,4,6,3,10,25, 9,34,100];
STD.BLAS.dgetf2(3, 3, test); //result is [2,2,3,3,4,4,9,16,25];

© 2026 HPCC Systems®. All rights reserved
264

Standard Library Reference
BLAS Support

dpotf2
STD.BLAS.dpotf2(tri,, r, A, clear);

tri Indicates whether upper or lower triangle is used

r Number of rows/columns in the square matrix

A The square matrix A

clear Clears the unused triangle

Return: The triangular matrix requested

The dpotf2 function computes the Cholesky factorization of a real symmetric positive definite matrix A. The
factorization has the form A = U**T*U if the tri parameter is Triangle.Upper, or A = L * L**T if the tri parameter
is Triangle.Lower. This is the unblocked version of the algorithm, calling Level 2 BLAS.

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t symmetric_pos_def := [4, 6, 8, 6, 13, 18, 8, 18, 29];
Lower_Triangle := BLAS.dpotf2(STD.BLAS.Types.Triangle.lower, 3, symmetric_pos_def);

© 2026 HPCC Systems®. All rights reserved
265

Standard Library Reference
BLAS Support

dscal
STD.BLAS.dscal(N, alpha, X, incX, skipped);

N Number of elements in the vector

alpha The scaling factor

X The column major matrix holding the vector

incX The stride to get to the next element in the vector

skipped The number of elements skipped to get to the first element

Return: The updated matrix

The dscal function scales a vector alpha.

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t test := [1, 1, 1, 2, 2, 2, 3, 3, 3];
result := STD.BLAS.dscal(9, 2.0, test, 1); // multiply each element by 2

© 2026 HPCC Systems®. All rights reserved
266

Standard Library Reference
BLAS Support

dsyrk
STD.BLAS.dsyrk(tri, transposeA, N, K, alpha, A, beta, C, clear);

tri Indicates whether upper or lower triangle is used

transposeA Transpose the A matrix to be NxK

N Number of rows

K Number of columns in the update matrix or transpose

alpha The alpha scalar

A The update matrix, either NxK or KxN

beta The beta scalar

C The matrix to update

clear Clear the triangle that is not updated. BLAS assumes that symmetric matrices have only
one of the triangles and this option lets you make that true.

Return: The updated matrix

The dsyrk function implements a symmetric rank update C <- alpha A**T A + beta C or c <- alpha A A**T
+ beta C. C is N x N.

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t initC := [1, 1, 1, 2, 2, 2, 3, 3, 3];
STD.BLAS.Types.matrix_t initA := [1, 1, 1];
Test1_mat := STD.BLAS.dsyrk(STD.BLAS.Types.Triangle.upper, FALSE, 3, 1, 1, initA, 1, initC, TRUE)

© 2026 HPCC Systems®. All rights reserved
267

Standard Library Reference
BLAS Support

dtrsm
STD.BLAS.dtrsm(side, tri, transposeA, diag, M, N, lda, alpha, A, B);

side Side for A, Side.Ax is op(A) X = alpha B

tri Indicates whether upper or lower triangle is used

transposeA Is op(A) the transpose of A

diag The diagonal (an implied unit diagonal or supplied)

M Number of rows

N Number of columns

lda The leading dimension of the A matrix, either M or N

alpha The scalar multiplier for B

A A triangular matrix

B The matrix of values for the solve

Return: The matrix of coefficients to get B

The dtrsm function is a triangular matrix solver. op(A) X = alpha B or X op(A) = alpha B * where op is
Transpose, X and B is MxN

Example:

IMPORT STD;
Side := STD.BLAS.Types.Side;
Diagonal := STD.BLAS.Types.Diagonal;
Triangle := STD.BLAS.Types.Triangle;
STD.BLAS.Types.matrix_t left_a0 := [2, 3, 4, 0, 2, 3, 0, 0, 2];
STD.BLAS.Types.matrix_t mat_b := [4, 6, 8, 6, 13, 18, 8, 18, 29];

Test1_mat := STD.BLAS.dtrsm(Side.Ax, Triangle.Lower, FALSE, Diagonal.NotUnitTri,
 3, 3, 3, 1.0, left_a0, mat_b);

© 2026 HPCC Systems®. All rights reserved
268

Standard Library Reference
BLAS Support

extract_diag
STD.BLAS.extract_diag (m.n.x);

m Number of rows

n Number of columns

x The matrix from which to extract the diagonal

Return: Diagonal matrix

The extract_diag function extracts the diagonal of he matrix

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t x := [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0];
diagonal_only := := STD.BLAS.extract_diag(3, 3, x);

© 2026 HPCC Systems®. All rights reserved
269

Standard Library Reference
BLAS Support

extract_tri
STD.BLAS.extract_tri (m, n, tri, dt, a);

m Number of rows

n Number of columns

tri Indicates whether upper or lower triangle is used

dt Use Diagonal.NotUnitTri or Diagonal.UnitTri

a The matrix, usually a composite from factoring

Return: Triangle

The extract_tri function extracts the upper or lower triangle. The diagonal can be the actual or implied
unit diagonal.

Example:

IMPORT STD;
Diagonal := STD.BLAS.Types.Diagonal;
Triangle := STD.BLAS.Types.Triangle;
STD.BLAS.Types.matrix_t x := [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0];
triangle := STD.BLAS.extract_tri(3, 3, Triangle.upper, Diagonal.NotUnitTri, x);

© 2026 HPCC Systems®. All rights reserved
270

Standard Library Reference
BLAS Support

make_diag
STD.BLAS.make_diag (m, v, X);

m Number of diagonal entries

v Option value, default is 1

X Optional input of diagonal values, multiplied by v

Return: A diagonal matrix

The make_diag function generates a diagonal matrix.

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t init1 := [1.0, 2.0, 3.0, 4.0];
Square := STD.BLAS.make_diag(4, 1, init1); //4x4 with diagonal 1, 2, 3, 4

© 2026 HPCC Systems®. All rights reserved
271

Standard Library Reference
BLAS Support

make_vector
STD.BLAS.make_vector (m, v);

m Number of elements

v The values, default is 1

Return: The vector

The make_vector function generates a vector of dimension n

Example:

IMPORT STD;
twos_vector := STD.BLAS.make_vector(4, 2); // a vector of [2, 2, 2, 2]

© 2026 HPCC Systems®. All rights reserved
272

Standard Library Reference
BLAS Support

trace
STD.BLAS.trace (m, n, x);

m Number of rows

n Number of columns

x The matrix

Return: The trace (sum of the diagonal entries)

The trace function computes the trace of the input matrix

Example:

IMPORT STD;
STD.BLAS.Types.matrix_t x := [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 4.0, 4.0, 4.0];
trace_of_x := STD.BLAS.trace(3,3,x); // the trace is 7

© 2026 HPCC Systems®. All rights reserved
273

Standard Library Reference
Math Support

Math Support
This section covers the common math functions in the Standard Library.

© 2026 HPCC Systems®. All rights reserved
274

Standard Library Reference
Math Support

Infinity
STD.Math.Infinity;

Return: Returns a REAL "infinity" value.

Infinity returns an "infinity" value.

Example:

IMPORT STD;
myValue := STD.Math.Infinity;
myValue;

See Also: isInfinite

© 2026 HPCC Systems®. All rights reserved
275

Standard Library Reference
Math Support

NaN
STD.Math.NaN;

Return: Returns a non-signalling NaN (Not a Number)value.

The NaN function returns a non-signalling NaN (Not a Number) value..

Example:

IMPORT STD;
myValue := STD.Math.NaN;
myValue;

See Also: IsNan

© 2026 HPCC Systems®. All rights reserved
276

Standard Library Reference
Math Support

isInfinite
STD.Math.isInfinite(val);

val The value to test

Return: Returns a BOOLEAN indicating whether a real value is infinite (positive or negative).

The isInfinite function returns whether a real value is infinite (positive or negative).

Example:

IMPORT STD;
a := STD.Math.Infinity ;
b := 42.1;
STD.Math.isInfinite(a); //true
STD.Math.isInfinite(b); //false

See Also: Infinity, isFinite

© 2026 HPCC Systems®. All rights reserved
277

Standard Library Reference
Math Support

isNaN
STD.Math.isNaN(val);

val The value to test

Return: Returns a BOOLEAN indicating whether a real value is a NaN (not a number) value.

The isNaN function returns whether a real value is a NaN (not a number) value.

Example:

IMPORT STD;
a := STD.Math.NaN ;
b := 42.1;
STD.Math.isNaN(a); //true
STD.Math.isNaN(b); //false

See Also: NaN, isFinite

© 2026 HPCC Systems®. All rights reserved
278

Standard Library Reference
Math Support

isFinite
STD.Math.isFinite(val);

val The value to test

Return: Returns a BOOLEAN indicating whether a real value is a valid value (neither infinite not
NaN).

The isFinite function returns whether a real value is a valid value (neither infinite not NaN).

Example:

IMPORT STD;
a := STD.Math.Infinity ;
b := STD.Math.NaN;
c := 42.1;
STD.Math.isFinite(a); //false
STD.Math.isFinite(b); //false
STD.Math.isFinite(c); //true

See Also: isNaN ,isInfinite

© 2026 HPCC Systems®. All rights reserved
279

Standard Library Reference
Math Support

FMod
STD.Math.FMod(numer, denom);

numer The numerator

denom The denominator

Return: Returns the floating-point remainder of numer/denom (rounded towards zero).

The FMod function returns the floating-point remainder of numer/denom (rounded towards zero).

If denom is zero, the result depends on the divideByZero flag:

• If set to 'zero' or unset: returns zero.

• If set to 'nan': returns a non-signalling NaN value.

• If set to 'fail': throws an exception.

Example:

#OPTION ('divideByZero', 'nan'); //divide by zero creates a quiet NaN
IMPORT STD;
STD.Math.FMod(5.1, 3.0); // 2.1
STD.Math.FMod(-5.1, 3.0); // -2.1
STD.Math.FMod(5.1, 0); // NaN

© 2026 HPCC Systems®. All rights reserved
280

Standard Library Reference
Math Support

FMatch
STD.Math.FMatch(a, b, epsilon);

a The first value.

b The second value.

epsilon The allowable margin of error.

Return: Returns whether two floating point values are the same, within margin of error epsilon.

The FMatch function returns whether two floating point values are the same, within margin of error epsilon.

Example:

IMPORT STD;
STD.Math.FMatch(2.6,2.2,0.5); //true
STD.Math.FMatch(2.6,2.2,0.3); //false

© 2026 HPCC Systems®. All rights reserved
281

	Standard Library Reference
	Table of Contents
	Logical Files
	CompareFiles
	DeleteLogicalFile
	LogicalFileList
	GetNoCommonDefault
	FileExists
	ForeignLogicalFileName
	GetFileDescription
	GetLogicalFileAttribute
	ProtectLogicalFile
	RenameLogicalFile
	SetFileDescription
	SetReadOnly
	VerifyFile

	SuperFiles
	CreateSuperFile
	SuperFileExists
	DeleteSuperFile
	GetSuperFileSubCount
	GetSuperFileSubName
	LogicalFileSuperOwners
	LogicalFileSuperSubList
	SuperFileContents
	FindSuperFileSubName
	StartSuperFileTransaction
	AddSuperFile
	RemoveSuperFile
	ClearSuperFile
	RemoveOwnedSubFiles
	SwapSuperFile
	ReplaceSuperFile
	PromoteSuperFileList
	FinishSuperFileTransaction

	External Files
	ExternalLogicalFileName
	MoveExternalFile
	DeleteExternalFile
	CreateExternalDirectory
	RemoteDirectory

	File Browsing
	SetColumnMapping
	GetColumnMapping
	AddFileRelationship
	FileRelationshipList
	RemoveFileRelationship

	File Movement
	DfuPlusExec
	AbortDfuWorkunit
	Copy
	DeSpray
	RemotePull
	Replicate
	SprayFixed
	SprayDelimited / SprayVariable
	SprayXML
	SprayJson
	WaitDfuWorkunit
	SetExpireDays
	GetExpireDays
	ClearExpireDays

	String Handling
	CleanAccents
	CleanSpaces
	CommonPrefix
	CommonSuffix
	CompareAtStrength
	CompareIgnoreCase
	Contains
	CountWords
	DecodeBase64
	EditDistance
	EditDistanceWithinRadius
	EncodeBase64
	EndsWith
	EqualIgnoreCase
	ExcludeFirstWord
	ExcludeLastWord
	ExcludeNthWord
	Extract
	ExtractMultiple
	Filter
	FilterOut
	Find
	FindCount
	FindAtStrength
	FindAtStrengthReplace
	FindReplace
	FindWord
	FromHexPairs
	GetNthWord
	RemoveSuffix
	Repeat
	Reverse
	SplitWords
	SubstituteExcluded
	SubstituteIncluded
	StartsWith
	ToHexPairs
	ToLowerCase
	ToTitleCase
	ToUpperCase
	Translate
	Version
	WildMatch
	WordCount

	Metaphone Support
	Primary
	Secondary
	Double

	Cryptography Support
	Cryptographic Library Overview
	SupportedHashAlgorithms
	SupportedSymmetricCipherAlgorithms
	SupportedPublicKeyAlgorithms
	Hashing Module
	Hash
	SymmetricEncryption Module
	Encrypt (Symmetric)
	Decrypt (Symmetric)
	PublicKeyEncryption Module
	Encrypt (PKE)
	Decrypt (PKE)
	Sign (PKE)
	VerifySignature (PKE)
	PublicKeyEncryptionFromBuffer Module
	Encrypt (PKE From Buffer)
	Decrypt (PKE From Buffer)
	Sign (PKE From Buffer)
	VerifySignature (PKE From Buffer)
	PublicKeyEncryptionFromLFN Module
	Encrypt (PKE From LFN)
	Decrypt (PKE From LFN)
	Sign (PKE From LFN)
	VerifySignature (PKE From LFN)

	Date and Time Handling
	Date Data Types
	Time Data Types
	Year
	Month
	Day
	Hour
	Minute
	Second
	DateFromParts
	TimeFromParts
	IsLeapYear
	IsDateLeapYear
	IsValidDate
	IsValidTime
	IsValidGregorianDate
	FromGregorianYMD
	ToGregorianYMD
	FromStringToDate
	Today
	CurrentDate
	CurrentTime
	DayOfWeek
	DayOfYear
	DaysBetween
	MonthsBetween
	AdjustDate
	AdjustCalendar
	MonthWeekNumFromDate
	YearWeekNumFromDate
	TimestampToString
	UniqueTZAbbreviations
	UniqueTZLocations
	TZDataForLocation
	FindTZData
	SecondsBetweenTZ
	AdjustTimeTZ
	ToLocalTime
	ToUTCTime
	AppendTZOffset
	AppendTZAdjustedTime

	Cluster Handling
	Node
	Nodes
	LogicalToPhysical
	DaliServer
	Group
	GetExpandLogicalName

	Job Handling
	WUID
	Target
	Name
	User
	OS
	Platform
	LogString

	File Monitoring
	MonitorFile
	MonitorLogicalFileName

	Logging
	dbglog
	addWorkunitInformation
	addWorkunitWarning
	addWorkunitError
	getGlobalId
	getLocalId
	generateGloballyUniqueID
	getElapsedMs

	Auditing
	Audit

	Utilities
	GetHostName
	ResolveHostName
	GetUniqueInteger
	GetEspUrl
	PlatformVersionCheck

	Debugging
	GetParseTree
	GetXMLParseTree
	Sleep
	msTick

	Email
	SendEmail
	SendEmailAttachData
	SendEmailAttachText

	Workunit Services
	WorkunitExists
	WorkunitList
	SetWorkunitAppValue
	WUIDonDate
	WUIDdaysAgo
	WorkunitTimeStamps
	WorkunitMessages
	WorkunitFilesRead
	WorkunitFilesWritten
	WorkunitTimings

	BLAS Support
	Types
	ICellFunc
	Apply2Cells
	dasum
	daxpy
	dgemm
	dgetf2
	dpotf2
	dscal
	dsyrk
	dtrsm
	extract_diag
	extract_tri
	make_diag
	make_vector
	trace

	Math Support
	Infinity
	NaN
	isInfinite
	isNaN
	isFinite
	FMod
	FMatch

