
The ECL Scheduler
Boca Raton Documentation Team

ECL Scheduler

ECL Scheduler
Boca Raton Documentation Team
Copyright © 2026 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2026 Version 10.2.0-1

© 2026 HPCC Systems®. All rights reserved
2

ECL Scheduler

The Ecl Scheduler .. 4
Introduction .. 4

ECL Scheduler Component ... 5
Installation and configuration ... 5
Using the ECL Scheduler ... 6
Interface in ECL Watch .. 7

ECL Scheduler Admin .. 10
Command Line Interface: scheduleadmin .. 10

ECL Usage .. 13
WHEN .. 14
NOTIFY .. 15
EVENT ... 16
CRON .. 17
WAIT .. 18

DFU Monitoring and Events .. 19
MonitorFile ... 20
MonitorLogicalFileName .. 22

© 2026 HPCC Systems®. All rights reserved
3

ECL Scheduler
The Ecl Scheduler

The Ecl Scheduler

Introduction
The ECL Scheduler is a component process installed with the HPCC Systems platform. It typically starts
with the platform.

An interface to the scheduler is available through ECL Watch. The ECL Scheduler interface allows you to
see a list of scheduled workunits. It can also trigger an event. An Event is a case-insensitive string constant
naming the event to trap.

A command line tool, scheduleadmin is available on the server installed in /opt/HPCCSystems/bin.

ECL Scheduling
ECL Scheduling provides a means of automating processes within ECL code or to chain processes together
to work in sequence. For example, you can write ECL code that watches a landing zone for the arrival of a
file, and when it arrives, sprays it to Thor, processes it, builds an index, and then adds it to a superfile.

How it Works
ECL Scheduling is event-based. The ECL Scheduler monitors a Schedule list containing registered Worku-
nits and Events and executes any Workunits associated with an Event when that Event is triggered.

Your ECL Code can execute when an Event is triggered, or can trigger an Event. If you submit code con-
taining a WHEN clause, the Event and Workunit registers in the Schedule list. When that Event triggers,
the Workunit compiles and executes. When the Workunit completes, ECL Scheduler removes it from the
Schedule list.

For example, if you submit a Workunit using WHEN('Event1','MyEvent', COUNT(2)) in the appropriate
place, it will execute twice (the value of COUNT) before the ECL Scheduler removes it from the Schedule
list and the Workunit is marked as completed.

© 2026 HPCC Systems®. All rights reserved
4

ECL Scheduler
ECL Scheduler Component

ECL Scheduler Component

Installation and configuration
The ECL Scheduler installs when you install the HPCC Systems platform. It starts and stops using hpcc-
init, just as all other HPCC Systems platform components.

© 2026 HPCC Systems®. All rights reserved
5

ECL Scheduler
ECL Scheduler Component

Using the ECL Scheduler
ECL Language Statements Used
The Following ECL Language Statements are used:

WHEN

The WHEN service executes the action whenever the event is triggered. The optional COUNT option spec-
ifies the number of events to trigger instances of the action.

NOTIFY

The NOTIFY action triggers the event so that the WHEN workflow service can proceed with operations they
are assigned to execute.

EVENT

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the
NOTIFY action. EVENT is not really a statement, rather a parameter to WHEN/NOTIFY to describe what
kind of event it is used for.

CRON

The CRON function defines a timer event for use within the WHEN workflow service. This is synonymous
with EVENT('CRON', time). CRON itself is not a statement, rather a parameter to WHEN/NOTIFY to de-
scribe what kind of event it is used for.

WAIT

The WAIT function is a string constant containing the name of the event to wait for. It is used much like the
WHEN workflow service, but may be used within conditional code.

Monitoring Functions in the Standard Library (STD.File)

MonitorFile

The MonitorFile function creates a file monitor job in the DFU Server for a physical file.

MonitorLogicalFileName

The MonitorLogicalFileName function creates a file monitor job in the DFU Server for a logical file.

DFUPlus: Monitor Option
 dfuplus action=monitor event=MyEvent

Note: DFUServer file monitoring (either using the Standard Library or DFUPlus) creates a DFU Workunit.
While monitoring, the Workunit's state is monitoring and once it triggers the event, it is set to
finished. You can Abort a "monitoring" DFU Workunit to stop monitoring from ECL Watch.

© 2026 HPCC Systems®. All rights reserved
6

ECL Scheduler
ECL Scheduler Component

Interface in ECL Watch
To access the ECL Scheduler interface in ECL Watch, click on the Event Scheduler link in the navigation
sub-menu. The Scheduler interface displays and you can see the scheduled workunits, if any.

The list of scheduled workunits has two significant columns, the EventName and the EventText.

Figure 1. ECL Scheduler Interface

The EventName is a created when scheduling a workunit. The EventText is an accompanying sub event.

You can trigger an event by entering the EventName and Event Text in the entry boxes and then pressing
the PushEvent button. This is the same as triggering an event using NOTIFY.

Scheduler Workunit List
You can search scheduled workunits by cluster or event name. To filter by cluster or event name, click on the
Filter Action button. The Filter sub-menu displays. Fill in values for the filter criteria, Eventname or Cluster,
then press the Apply button. When you specify any Filter options, the Filter Action button displays Filter Set.

Figure 2. Workunits in the Scheduler Interface

© 2026 HPCC Systems®. All rights reserved
7

ECL Scheduler
ECL Scheduler Component

You can sort the workunits by clicking on the column header.

To view the workunit details, click on the workunit ID (WUID) link for the workunit.

You can modify scheduled workunits from the workunit details page in ECL Watch. Select the workunit de-
tails page, then press the Reschedule button to reschedule a descheduled workunit. Press the Desched-
ule button to stop a selected scheduled workunit from running. You can also access the Reschedule and
Deschedule options from the context menu when you right click on a workunit.

If you are using a WHEN clause and it contains a COUNT number, when rescheduled the workunit will
continue the COUNT from the point where it stopped and resumes the remaining COUNT. Once a workunit
completes the COUNT, there is no reschedule option.

© 2026 HPCC Systems®. All rights reserved
8

ECL Scheduler
ECL Scheduler Component

Pushing Events
The Event Scheduler allows you to trigger or "push" an event to help manage and test your scheduled jobs.

1. Press the PushEvent action button.

The Push Event dialog opens.

2. Enter the EventName:

The EventName is a case-insensitive string constant naming the event to trap.

See Also: EVENT

3. Enter the EventText:

The EventText is case-insensitive string constant naming the specific type of event to trap. It may contain
* and ? to wildcard-match.

See Also: EVENT

4. Press the Apply button

This is the equivalent of

 NOTIFY(EVENT(EventName,EventText));

See Also: NOTIFY, EVENT

Figure 3. PushEvent

© 2026 HPCC Systems®. All rights reserved
9

ECL Scheduler
ECL Scheduler Admin

ECL Scheduler Admin

Command Line Interface: schedulead-
min
The scheduleadmin is the command line interface to the ECL Scheduler. The scheduleadmin is located
by default in /opt/HPCCSystems/bin/ on your HPCC Systems platform.

scheduleadmin daliserver operation [options]

daliserver The URL (http:// or https://) and/or IP address of the Dali server. The port may
also be included.

operation One of the following actions:

 servers
 add
 remove
 removeall
 list
 monitor
 cleanup
 push

options Optional. A space-delimited list of optional items (listed below) appropriate to
the operation being executed.

The scheduleadmin application accepts command line parameters to maintain the list of workunits the
ECL Scheduler monitors.

Support Operations
The following operations are supported.

Servers

The server operation returns a list of the ECL Server queues attached to the specifed daliserver that have
events being monitored.

Example:

 scheduleadmin 10.150.50.11:7070 servers

 //returns data that looks like this:
 eclserver_training

Add wuid

The add operation allows you to re-add the specified wuid after having removed it from the monitor list.

These options are used by the add operation:

wuid A workunit identifier that contains an action with a WHEN workflow service.

© 2026 HPCC Systems®. All rights reserved
10

ECL Scheduler
ECL Scheduler Admin

Example:

 scheduleadmin 10.150.50.11 add W20120303-100635

Remove wuid

The remove operation allows you to remove the specified wuid from the monitor list.

These options are used by the remove operation:

wuid A workunit identifier that contains an action with a WHEN workflow service.

Example:

 scheduleadmin 10.150.50.11 remove W20120303-100635

Removeall

The removeall operation allows you to remove all workunits that contain actions with WHEN workflow ser-
vices from the monitor list.

Example:

 scheduleadmin 10.150.50.11 removeall

List [eclserver | event]

The list operation displays the list of monitored workunits and the events that they are waiting to occur.

These options are used by the List operation.

eclserver The name of an ECL Server queue attached to the daliserver.

event Optional. The name of an event. If omitted, all events are displayed.

Example:

 scheduleadmin 10.150.50.11 list eclserver_training

 //returns data that looks like this:
 2012-03-16T19:18:40

 CRON
 10 19 * * *
 W20120316-130812

 MyEvent
 *
 W20120316-133145

Monitor[eclserver| event]

The monitor operation blocks and updates the display of the list of monitored workunits as changes occur.
Press the ENTER key to return to the command prompt.

These options are used by the monitor operation.

© 2026 HPCC Systems®. All rights reserved
11

ECL Scheduler
ECL Scheduler Admin

eclserver The name of an ECL Server queue attached to the daliserver.

event Optional. The name of an event. If omitted, all events are displayed.

Example:

 scheduleadmin 10.150.50.11 monitor eclserver_training

 //returns data that looks like this:
 2012-03-16T19:07:22

 CRON
 40 18 * * *
 W20120316-124216
 10 19 * * *
 W20120316-130812
 monitoring...

Cleanup

The cleanup operation trims unused branches from the tree list of monitored workunits.

Example:

 scheduleadmin 10.150.50.11 cleanup

Push [eclserver| event]

The push operation posts the specified event as having occurred. This allows you to "fake" an event occur-
rence for testing purposes.

These options are used by the push operation.

event The name of a user-defined event (this must NOT be "CRON").

subtype The string value to match the second parameter to the EVENT function.

Example:

 scheduleadmin 10.150.50.11 push MyFileEvent MyFile.d00

© 2026 HPCC Systems®. All rights reserved
12

ECL Scheduler
ECL Usage

ECL Usage
The ECL Scheduler is a tool that can perform a specific action based on a specific event. The following
functions can be viewed or manipulated in the scheduler.

© 2026 HPCC Systems®. All rights reserved
13

ECL Scheduler
ECL Usage

WHEN
WHEN(trigger, action [, BEFORE | SUCCESS | FAILURE])

trigger A dataset or action that launches the action.

action The action to execute.

BEFORE Optional. Specifies an action that should be executed before the input is read.

SUCCESS Optional. Specifies an action that should only be executed on SUCCESS of
the trigger (e.g., no LIMITs exceeded).

FAILURE Optional. Specifies an action that should only be executed on FAILURE of the
trigger (e.g., a LIMIT was exceeded).

The WHEN function associates an action with a trigger (dataset or action) so that when the trigger is exe-
cuted the action is also executed. This allows job scheduling based upon triggers.

Example:

//a FUNCTION with side-effect Action
namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds,O);
END;

z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built
OUTPUT(z);

© 2026 HPCC Systems®. All rights reserved
14

ECL Scheduler
ECL Usage

NOTIFY
[attributename :=] NOTIFY(event [, parm] [, expression])

attributename Optional. The identifier for this action.

event The EVENT function, or a case-insensitive string constant naming the event to generate.

parm A case-insensitive string constant containing the event's parameter as either a single
asterisk ('*') or an XML string beginning and ending with "Event" tags and user-defined
tags within those to contain the specific extra information to pass along with the event.

expression Optional. A case-insensitive string constant allowing simple message passing, to restrict
the event to a specific workunit.

The NOTIFY action fires the event so that the WAIT function or WHEN workflow service can proceed with
operations they are defined to perform.

The expression parameter allows you to define a service in ECL that is initiated by an event, and only
responds to the workunit that initiated it.

Example:

//run this first
doMyService := FUNCTION
 O := OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 N := NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN WHEN(EVENTEXTRA('returnTo'),ORDERED(O,N));
END;
OUTPUT(doMyService) : WHEN('MyService');

Then:

// run this in a separate workunit after the first part above completes:
NOTIFY('MyService',
 '<Event><returnTo>'+ WORKUNIT + '</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

© 2026 HPCC Systems®. All rights reserved
15

ECL Scheduler
ECL Usage

EVENT
EVENT(event , subtype)

event A case-insensitive string constant naming the event to trap.

subtype A case-insensitive string constant naming the specific type of event to trap. This may
contain * and ? to wildcard-match the event's sub-type.

Return: EVENT returns a single event.

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the
WAIT and NOTIFY actions.

Example:

IMPORT STD;
MyEventName := 'MyFileEvent';
MyFileName := 'test::myfile';

IF (STD.File.FileExists(MyFileName),
 STD.File.DeleteLogicalFile(MyFileName));
 //deletes the file if it already exists

STD.File.MonitorLogicalFileName(MyEventName,MyFileName);
 //sets up monitoring and the event name
 //to fire when the file is found

OUTPUT('File Created') : WHEN(EVENT(MyEventName,'*'),COUNT(1));
 //this OUTPUT occurs only after the event has fired

afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
OUTPUT(afile,,MyFileName);
 //this creates a file that the DFU file monitor will find
 //when it periodically polls

//**********************************
EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
END;
BUILD(teenagers): WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));

© 2026 HPCC Systems®. All rights reserved
16

ECL Scheduler
ECL Usage

CRON
CRON(time)

time A string expression containing a unix-standard cron time.

Return: CRON defines a single timer event.

The CRON function defines a timer event for use within the WHEN workflow service or WAIT function. This
is synonymous with EVENT('CRON', time).

The time parameter is unix-standard cron time, expressed in UTC (aka Greenwich Mean Time) as a string
containing the following, space-delimited components:

minute hour dom month dow

minute An integer value for the minute of the hour. Valid values are from 0 to 59.

hour An integer value for the hour. Valid values are from 0 to 23 (using the 24 hour clock).

dom An integer value for the day of the month. Valid values are from 1 to 31.

month An integer value for the month. Valid values are from 1 to 12.

dow An integer value for the day of the week. Valid values are from 0 to 6 (where 0 represents
Sunday).

Any time component that you do not want to pass is replaced by an asterisk (*). You may define ranges of
times using a dash (-), lists using a comma (,), and 'once every n' using a slash (/). For example, 6-18/3
in the hour field will fire the timer every three hours between 6am and 6pm, and 18-21/3,0-6/3 will fire the
timer every three hours between 6pm and 6am.

Example:

EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
 EXPORT EveryThreeHours := CRON('0 0-23/3 * * *');
END;

BUILD(teenagers) : WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));
BUILD(NewStuff) : WHEN(events.EveryThreeHours);

© 2026 HPCC Systems®. All rights reserved
17

ECL Scheduler
ECL Usage

WAIT
WAIT(event)

event A string constant containing the name of the event to wait for.

The WAIT action is similar to the WHEN workflow service, but may be used within conditional code.

Example:

//You can either do this:
action1;
action2 : WHEN('expectedEvent');
//can also be written as:
SEQUENTIAL(action1,WAIT('expectedEvent'),action2);

© 2026 HPCC Systems®. All rights reserved
18

ECL Scheduler
DFU Monitoring and Events

DFU Monitoring and Events
The following are supported methods for the ECL Scheduler included in the ECL Standard Library Refer-
ence.

© 2026 HPCC Systems®. All rights reserved
19

ECL Scheduler
DFU Monitoring and Events

MonitorFile
STD.File.MonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport])

dfuwuid := STD.File.fMonitorFile(event, [ip] , filename, [,subdirs] [,shotcount] [,espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the
filenameappears. This value is used as the first parameter to the EVENT function.

ip Optional. A null-terminated string containing the ip address for the file to monitor. This
is typically a landing zone. This may be omitted only if the filenameparameter contains
a complete URL.

filename A null-terminated string containing the full path to the file to monitor. This may contain
wildcard characters (* and ?).

subdirs Optional. A boolean value indicating whether to include files in sub-directories that match
the wildcard mask when the filename contains wildcards. If omitted, the default is false.

shotcount Optional. An integer value indicating the number of times to generate the event before
the monitoring job completes. A negative one (-1) value indicates the monitoring job
continues until manually aborted. If omitted, the default is 1.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorFile returns a null-terminated string containing the DFU workunit ID (DFUWUID).

The MonitorFile function creates a file monitor job in the DFU Server. Once the job is received it goes into
a 'monitoring' mode (which can be seen in the ECL Watch DFU Workunit display), which polls at a fixed
interval. This interval is specified in the DFU Server's monitorinterval configuration setting. The default
interval is 900 seconds (15 minutes). If an appropriately named file arrives in this interval it will fire the event
with the name of the triggering object as the event subtype (see the EVENT function).

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for
the DFU job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) Events are only generated when the monitor job starts or subsequently on the polling interval.

2) Note that the event is generated if the file has been created since the last polling interval. Therefore, the
event may occur before the file is closed and the data all written. To ensure the file is not subsequently read
before it is complete you should use a technique that will preclude this possibility, such as using a separate
'flag' file instead of the file, itself or renaming the file once it has been created and completely written.

© 2026 HPCC Systems®. All rights reserved
20

ECL Scheduler
DFU Monitoring and Events

3) The EVENT function's subtype parameter (its 2nd parameter) when monitoring physical files is the full
URL of the file, with an absolute IP rather than DNS/netbios name of the file. This parameter cannot be
retrieved but can only be used for matching a particular value.

Example:

EventName := 'MyFileEvent';
FileName := 'c:\\test\\myfile';
LZ := '10.150.50.14';
STD.File.MonitorFile(EventName,LZ,FileName);
OUTPUT('File Found') : WHEN(EVENT(EventName,'*'),COUNT(1));

© 2026 HPCC Systems®. All rights reserved
21

ECL Scheduler
DFU Monitoring and Events

MonitorLogicalFileName
STD.File.MonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport])

dfuwuid := STD.File.fMonitorLogicalFileName(event, filename, [, shotcount] [, espserverIPport]);

event A null-terminated string containing the user-defined name of the event to fire when the
filename appears. This value is used as the first parameter to the EVENT function.

filename A null-terminated string containing the name of the logical file in the DFU to monitor.

shotcount Optional. An integer value indicating the number of times to generate the event before
the monitoring job completes. A negative one (-1) value indicates the monitoring job
continues until manually aborted. If omitted, the default is 1.

espserverIPport Optional. This should almost always be omitted, which then defaults to the value con-
tained in the lib_system.ws_fs_server attribute. When not omitted, it should be a null-
terminated string containing the protocol, IP, port, and directory, or the DNS equivalent,
of the ESP server program. This is usually the same IP and port as ECL Watch, with
"/FileSpray" appended.

dfuwuid The attribute name to recieve the null-terminated string containing the DFU workunit ID
(DFUWUID) generated for the monitoring job.

Return: fMonitorLogicalFileName returns a null-terminated string containing the DFU workunit
ID (DFUWUID).

The MonitorLogicalFileName function creates a file monitor job in the DFU Server. Once the job is received
it goes into a 'monitoring' mode (which can be seen in the eclwatch DFU Workunit display), which polls at a
fixed interval (default 15 mins). If an appropriately named file arrives in this interval it will fire the event with
the name of the triggering object as the event subtype (see the EVENT function).

This function does not support wildcard characters. To monitor physical files or directories using wildcards,
use the MonitorFile function.

This process continues until either:

1) The shotcount number of events have been generated.

2) The user aborts the DFU workunit.

The STD.File.AbortDfuWorkunit and STD.File.WaitDfuWorkunit functions can be used to abort or wait for
the DFU job by passing them the returned dfuwuid.

Note the following caveats and restrictions:

1) If a matching file already exists when the DFU Monitoring job is started, that file will not generate an
event. It will only generate an event once the file has been deleted and recreated.

2) If a file is created and then deleted (or deleted then re-created) between polling intervals, it will not be
seen by the monitor and will not trigger an event.

3) Events are only generated on the polling interval.

Example:

EventName := 'MyFileEvent';
FileName := 'test::myfile';

© 2026 HPCC Systems®. All rights reserved
22

ECL Scheduler
DFU Monitoring and Events

IF (STD.File.FileExists(FileName),
 STD.File.DeleteLogicalFile(FileName));
STD.File.MonitorLogicalFileName(EventName,FileName);
OUTPUT('File Created') : WHEN(EVENT(EventName,'*'),COUNT(1));

rec := RECORD
 STRING10 key;
 STRING10 val;
END;
afile := DATASET([{ 'A', '0'}], rec);
OUTPUT(afile,,FileName);

© 2026 HPCC Systems®. All rights reserved
23

	The ECL Scheduler
	Table of Contents
	The Ecl Scheduler
	Introduction
	ECL Scheduling
	How it Works

	ECL Scheduler Component
	Installation and configuration
	Using the ECL Scheduler
	ECL Language Statements Used
	WHEN
	NOTIFY
	EVENT
	CRON
	WAIT

	Monitoring Functions in the Standard Library (STD.File)
	MonitorFile
	MonitorLogicalFileName

	DFUPlus: Monitor Option

	Interface in ECL Watch
	Scheduler Workunit List
	Pushing Events

	ECL Scheduler Admin
	Command Line Interface: scheduleadmin
	Support Operations
	Servers
	Add wuid
	Remove wuid
	Removeall
	List [eclserver | event]
	Monitor[eclserver| event]
	Cleanup
	Push [eclserver| event]

	ECL Usage
	WHEN
	NOTIFY
	EVENT
	CRON
	WAIT

	DFU Monitoring and Events
	MonitorFile
	MonitorLogicalFileName

