
Containerized HPCC Systems®
Platform
Boca Raton Documentation Team

Containerized HPCC Systems® Platform

Containerized HPCC Systems® Platform
Boca Raton Documentation Team
Copyright © 2023 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2023 Version 8.10.18-1

© 2023 HPCC Systems®. All rights reserved
2

Containerized HPCC Systems® Platform

Containerized HPCC Overview ... 4
Bare-metal vs Containers .. 5

Local Deployment (Development and Testing) ... 7
Prerequisites ... 7
Add a Repository .. 7
Start a Default System ... 8
Access the Default System .. 10
Terminate (Decommission) the System ... 11
Persistent Storage for a Local Deployment ... 12
Import: Storage Planes and How To Use Them .. 15

Azure Deployment (Development, Testing, and Production) ... 16
Using Azure ... 16

Deploying HPCC Systems® with Terraform ... 24
Interactive Terraform Deployment ... 24

Customizing Configurations .. 31
Customization Techniques ... 31
Container Cost Tracking ... 38

Configuration Values ... 42
The Container Environment .. 42
HPCC Systems Components and the values.yaml File .. 43
The HPCC Systems values.yaml file ... 49
Helm and Yaml Basics ... 56

Containerized Logging ... 59
Logging Background .. 59
Managed Elastic Stack Solution ... 60
Azure Log Analytics Solution .. 64
Controlling HPCC Systems Logging Output .. 68

© 2023 HPCC Systems®. All rights reserved
3

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Containerized HPCC Overview
Starting with version 8.0, the HPCC Systems® Platform is focusing on containerized deployments. This is useful for
cloud-based deployments (large or small) or local testing/development deployments.

Docker containers managed by Kubernetes (K8s) is a new target operating environment, alongside continued support
for traditional “bare metal” installations using .deb or .rpm installer files. Support for traditional installers continues
and that type of deployment is viable for bare metal deployments or manual setups in the Cloud.

This is not a lift and shift type change, where the platform runs its legacy structure unchanged and treat the containers as
just a way of providing virtual machines on which to run, but a significant change in how components are configured,
how and when they start up, and where they store their data.

This book focuses on containerized deployments. The first section is about using Docker containers and Helm charts
locally. Docker and Helm do a lot of the work for you. The second part uses the same techniques in the cloud.

For local small deployments (for development and testing), we suggest using Docker Desktop and Helm. This is useful
for learning, development, and testing.

For Cloud deployments, you can use any flavor of Cloud services, if it supports Docker, Kubernetes, and Helm. This
book, however, will focus on Microsoft Azure for Cloud Services. Future versions may include specifics for other
Cloud providers.

If you want to manually manage your local or Cloud deployment, you can still use the traditional installers and Con-
figuration Manager, but that removes many of the benefits that Docker, Kubernetes, and Helm provide, such as, in-
strumentation, monitoring, scaling, and cost control.

HPCC Systems adheres to standard conventions regarding how Kubernetes deployments are normally configured and
managed, so it should be easy for someone familiar with Kubernetes and Helm to install and manage the HPCC
Systems platform.

Note: The traditional bare-metal version of the HPCC Systems platform is mature and has been heavily used in
commercial applications for almost two decades and is fully intended for production use. The containerized
version is new and is not yet 100% ready for production. In addition, aspects of that version could change
without notice. We encourage you to use it and provide feedback so we can make this version as robust as
a bare-metal installation.

© 2023 HPCC Systems®. All rights reserved
4

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Bare-metal vs Containers
If you are familiar with the HPCC Systems platform, there are a few fundamental changes to note.

Processes and pods, not machines
Anyone familiar with the existing configuration system will know that part of the configuration involves creating
instances of each process and specifying on which physical machines they should run.

In a Kubernetes world, this is managed dynamically by the K8s system itself (and can be changed dynamically as
the system runs).

Additionally, a containerized system is much simpler to manage if you stick to a one process per container paradigm,
where the decisions about which containers need grouping into a pod and which pods can run on which physical nodes,
can be made automatically.

Helm charts
In the containerized world, the information that the operator needs to supply to configure an HPCC Systems environ-
ment is greatly reduced. There is no need to specify any information about what machines are in use by what process,
as mentioned above, and there is also no need to change a lot of options that might be dependent on the operating
environment, since much of that was standardized at the time the container images were built.

Therefore, in most cases, most settings should be left to use the default. As such, the new configuration paradigm
requires only the bare minimum of information be specified and any parameters not specified use the appropriate
defaults.

The default environment.xml that we include in our bare-metal packages to describe the default single-node system
contains approximately 1300 lines and it is complex enough that we recommend using a special tool for editing it.

The values.yaml from the default helm chart is relatively small and can be opened in any editor, and/or modified via
helm’s command-line overrides. It also is self-documented with extensive comments.

Static vs On-Demand Services
In order to realize the potential cost savings of a cloud environment while at the same time taking advantage of the
ability to scale up when needed, some services which are always-on in traditional bare-metal installations are launched
on-demand in containerized installations.

For example, an eclccserver component launches a stub requiring minimal resources, where the sole task is to watch
for workunits submitted for compilation and launch an independent K8s job to perform the actual compile.

Similarly, the eclagent component is also a stub that launches a K8s job when a workunit is submitted and the Thor stub
starts up a Thor cluster only when required. Using this design, not only does the capacity of the system automatically
scale up to use as many pods as needed to handle the submitted load, it scales down to use minimal resources (as little
as a fraction of a single node) during idle times when waiting for jobs to be submitted.

ESP and Dali components are always-on as long as the K8s cluster is started--it isn’t feasible to start and stop them on
demand without excessive latency. However, ESP can be scaled up and down dynamically to run as many instances
needed to handle the current load.

Topology settings – Clusters vs queues
In bare-metal deployments, there is a section called Topology where the various queues that workunits can be submitted
to are set up. It is the responsibility of the person editing the environment to ensure that each named target has the

© 2023 HPCC Systems®. All rights reserved
5

Containerized HPCC Systems® Platform
Containerized HPCC Overview

appropriate eclccserver, hThor (or ROXIE) and Thor (if desired) instances set up, to handle workunits submitted to
that target queue.

This setup has been greatly simplified when using Helm charts to set up a containerized system. Each named Thor or
eclagent component creates a corresponding queue (with the same name) and each eclccserver listens on all queues by
default (but you can restrict to certain queues only if you really want to). Defining a Thor component automatically
ensures that the required agent components are provisioned.

© 2023 HPCC Systems®. All rights reserved
6

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Local Deployment (Development and
Testing)

While there are many ways to install a local single node HPCC Systems Platform, this section focuses on using Docker
Desktop locally.

Prerequisites

All third-party tools should be 64-bit versions.

Add a Repository
To use the HPCC Systems helm chart, you must add it to the helm repository list, as shown below:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Expected response:

"hpcc" has been added to your repositories

To update to the latest charts:

helm repo update

You should update your local repo before any deployment to ensure you have the latest code available.

Expected response:

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "hpcc" chart repository
Update Complete. Happy Helming!

© 2023 HPCC Systems®. All rights reserved
7

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Start a Default System
The default helm chart starts a simple test system with Dali, ESP, ECL CC Server, two ECL Agent queues (ROXIE
and hThor mode), and one Thor queue.

To start this simple system:

helm install mycluster hpcc/hpcc --version=8.6.14

Note: The --version argument is optional, but recommended. It ensures that you know which version you are
installing. If omitted, the latest non-development version is installed. This example uses 8.6.14, but you
should use the version you want.

Expected response:

NAME: mycluster
LAST DEPLOYED: Tue Apr 5 14:45:08 2022
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing the HPCC chart version 8.6.14 using image "hpccsystems/platform-core:8.6.14"
**** WARNING: The configuration contains ephemeral planes: [dali sasha dll data mydropzone debug] ****
This chart has defined the following HPCC components:
dali.mydali
dfuserver.dfuserver
eclagent.hthor
eclagent.roxie-workunit
eclccserver.myeclccserver
eclscheduler.eclscheduler
esp.eclwatch
esp.eclservices
esp.eclqueries
esp.esdl-sandbox
esp.sql2ecl
esp.dfs
roxie.roxie
thor.thor
dali.sasha.coalescer
sasha.dfurecovery-archiver
sasha.dfuwu-archiver
sasha.file-expiry
sasha.wu-archiver

Notice the warning about ephemeral planes. This is because this deployment has created temporary, ephemeral storage
to use. When the cluster is uninstalled, the storage will no longer exist. This is useful for a quick test, but for more
involved work, you will want more persistent storage. This is covered in a later section.

To check status:

kubectl get pods

Expected response:

NAME READY STATUS RESTARTS AGE
eclqueries-7fd94d77cb-m7lmb 1/1 Running 0 2m6s
eclservices-b57f9b7cc-bhwtm 1/1 Running 0 2m6s
eclwatch-599fb7845-2hq54 1/1 Running 0 2m6s
esdl-sandbox-848b865d46-9bv9r 1/1 Running 0 2m6s
hthor-745f598795-ql9dl 1/1 Running 0 2m6s

© 2023 HPCC Systems®. All rights reserved
8

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

mydali-6b844bfcfb-jv7f6 2/2 Running 0 2m6s
myeclccserver-75bcc4d4d-gflfs 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-tl7bb 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-xzrtf 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-m22wl 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-xmlmk 1/1 Running 0 2m6s
roxie-toposerver-695fb9c5c7-9lnp5 1/1 Running 0 2m6s
roxie-workunit-d7446699f-rvf2z 1/1 Running 0 2m6s
sasha-dfurecovery-archiver-78c47c4db7-k9mdz 1/1 Running 0 2m6s
sasha-dfuwu-archiver-576b978cc7-b47v7 1/1 Running 0 2m6s
sasha-file-expiry-8496d87879-xct7f 1/1 Running 0 2m6s
sasha-wu-archiver-5f64594948-xjblh 1/1 Running 0 2m6s
sql2ecl-5c8c94d55-tj4td 1/1 Running 0 2m6s
dfs-4a9f12621-jabc1 1/1 Running 0 2m6s
thor-eclagent-6b8f564f9c-qnczz 1/1 Running 0 2m6s
thor-thoragent-56d788869f-7trxk 1/1 Running 0 2m6s

Note: It may take a while before all components are running, especially the first time as the container images need
to be downloaded from Docker Hub.

© 2023 HPCC Systems®. All rights reserved
9

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Access the Default System
Your system is now ready to use. The usual first step is to open ECL Watch.

Note: Some pages in ECL Watch, such as those displaying topology information, are not yet fully functional in
containerized mode.

Use this command to get a list running services and IP addresses:

kubectl get svc

Expected response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclqueries LoadBalancer 10.108.171.35 localhost 8002:31615/TCP 2m6s
eclservices ClusterIP 10.107.121.158 <none> 8010/TCP 2m6s
eclwatch LoadBalancer 10.100.81.69 localhost 8010:30173/TCP 2m6s
esdl-sandbox LoadBalancer 10.100.194.33 localhost 8899:30705/TCP 2m6s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2m6s
mydali ClusterIP 10.102.80.158 <none> 7070/TCP 2m6s
roxie LoadBalancer 10.100.134.125 localhost 9876:30480/TCP 2m6s
roxie-toposerver ClusterIP None <none> 9004/TCP 2m6s
sasha-dfuwu-archiver ClusterIP 10.110.200.110 <none> 8877/TCP 2m6s
sasha-wu-archiver ClusterIP 10.111.34.240 <none> 8877/TCP 2m6s
sql2ecl LoadBalancer 10.107.177.180 localhost 8510:30054/TCP 2m6s
dfs LoadBalancer 10.100.52.9 localhost 8520:30184/TCP 2m6s

Locate the ECL Watch service and identify the EXTERNAL-IP and PORT(S) for eclwatch. In this case, it is local-
host:8010.

Open a browser and access ECLWatch, press the ECL button, and select the Playground tab.

From here you can use the example ECL or enter other test queries and pick from the available clusters available to
submit your workunits.

© 2023 HPCC Systems®. All rights reserved
10

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Terminate (Decommission) the System
To check which Helm charts are currently installed, run this command:

helm list

This displays the installed charts and their names. In this example, mycluster.

To stop the HPCC Systems pods, use helm to uninstall:

helm uninstall mycluster

This stops the cluster, deletes the pods, and with the default settings and persistent volumes, it also deletes the storage
used.

© 2023 HPCC Systems®. All rights reserved
11

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Persistent Storage for a Local Deploy-
ment
When running on a single-node test system such as Docker Desktop, the default storage class normally means that all
persistent volume claims (PVCs) map to temporary local directories on the host machine. These are typically removed
when the cluster is stopped. This is fine for simple testing but for any real application, you want persistent storage.

To persist data with a Docker Desktop deployment, the first step is to make sure the relevant directories exist:

1. Create data directories using a terminal interface:

For Windows, use this command:

mkdir c:\hpccdata
mkdir c:\hpccdata\dalistorage
mkdir c:\hpccdata\hpcc-data
mkdir c:\hpccdata\debug
mkdir c:\hpccdata\queries
mkdir c:\hpccdata\sasha
mkdir c:\hpccdata\dropzone

For macOS, use this command:

mkdir -p /Users/myUser/hpccdata/{dalistorage,hpcc-data,debug,queries,sasha,dropzone}

For Linux, use this command:

mkdir -p ~/hpccdata/{dalistorage,hpcc-data,debug,queries,sasha,dropzone}

Note: If all of these directories do not exist, your pods may not start.

2. Install the hpcc-localfile Helm chart.

This chart creates persistent volumes based on host directories you created earlier.

for a WSL2 deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/run/desktop/mnt/host/c/hpccdata

for a Hyper-V deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/c/hpccdata

for a macOS deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=/Users/myUser/hpccdata

for a Linux deployment:
helm install hpcc-localfile hpcc/hpcc-localfile --set common.hostpath=~/hpccdata

The --set common.hostpath= option specifies the base directory:

The path /run/desktop/mnt/host/c/hpccdata provides access to the host file system for WSL2.

The path /c/hpccdata provides access to the host file system for Hyper-V.

The path /Users/myUser/hpccdata provides access to the host file system for Mac OSX.

The path ~/hpccdata provides access to the host file system for Linux.

Note: The value passed to --set common-hostpath is case sensitive.

© 2023 HPCC Systems®. All rights reserved
12

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

3. Copy the output from the helm install command in the previous step from the word storage: to the end, and save
it to a text file.

In this example, we will call the file mystorage.yaml. The file should look similar to this:

storage:
 planes:
 - name: dali
 pvc: dali-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali
 - name: dll
 pvc: dll-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/queries"
 category: dll
 - name: sasha
 pvc: sasha-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/sasha"
 category: sasha
 - name: debug
 pvc: debug-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/debug"
 category: debug
 - name: data
 pvc: data-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/hpcc-data"
 category: data
 - name: mydropzone
 pvc: mydropzone-hpcc-localfile-pvc
 prefix: "/var/lib/HPCCSystems/dropzone"
 category: lz

sasha:
 wu-archiver:
 plane: sasha
 dfuwu-archiver:
 plane: sasha

4. If you are using Docker Desktop with Hyper-V, add the shared data folder (in this example, C:\hpccdata) in Docker
Desktop's settings by pressing the Add button and typing c:\hpccdata.

This is not needed in a MacOS or WSL 2 environment.

5. Finally, install the hpcc Helm chart, and provide a yaml file that provides the storage information created by the
previous step.

© 2023 HPCC Systems®. All rights reserved
13

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

helm install mycluster hpcc/hpcc --version=8.6.14 -f mystorage.yaml

Note: The --version argument is optional, but recommended. It ensures that you know which version you are
installing. If omitted, the latest non-development version is installed. This example uses 8.6.14, but you
should use the version you want.

6. To test, open a browser and access ECLWatch, press the ECL button, and select the Playground tab, then create
some data files and workunits by submitting to Thor some ECL code like the following:

LayoutPerson := RECORD
 UNSIGNED1 ID;
 STRING15 FirstName;
 STRING25 LastName;
END;
allPeople := DATASET([{1,'Fred','Smith'},
 {2,'Joe','Jones'},
 {3,'Jane','Smith'}],LayoutPerson);
OUTPUT(allPeople,,'MyData::allPeople',THOR,OVERWRITE);

7. Use the helm uninstall command to terminate your cluster, then restart your deployment.

8. Open ECL Watch and notice your workunits and logical files are still there.

© 2023 HPCC Systems®. All rights reserved
14

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Import: Storage Planes and How To Use
Them
Storage planes provide the flexibility to configure where the data is stored within a deployed HPCC Systems platform,
but it doesn't directly address the question of how to get data onto the platform in the first place.

Containerized platforms support importing data in two ways:

• Upload a file to a Landing Zone and Import (Spray)

• Copy a file to a Storage Plane and access it directly

Beginning with version 7.12.0, new ECL syntax was added to access files directly from a storage plane. This is similar
to the file:: syntax used to directly read files from a physical machine, typically a landing zone.

The new syntax is:

~plane::<storage-plane-name>::<path>::<filename>

Where the syntax of the path and filename are the same as used with the file:: syntax. This includes requiring uppercase
letters to be quoted with a ^ symbol. For more details, see the Landing Zone Files section of the ECL Language
Reference.

If you have storage planes configured as in the previous section, and you copy the originalperson file to C:\hpccda-
ta\hpcc-data\tutorial, you can then reference the file using this syntax:

'~plane::data::tutorial::originalperson'

Note: The originalperson file is available from the HPCC Systems Web site (https://cdn.hpccsystems.com/in-
stall/docs/3_8_0_8rc_CE/OriginalPerson).

© 2023 HPCC Systems®. All rights reserved
15

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Azure Deployment (Development,
Testing, and Production)

This section should apply for most Azure subscriptions. You may need to adjust some commands or instructions
according to your subscription's requirements.

Using Azure
Though there are many ways to interact with Azure, this section will use the Azure cloud shell command line interface.

The major advantage to using the cloud shell is that it will also have the other prerequisites installed for you.

Azure Prerequisites
To deploy an HPCC Systems containerized platform instance to Azure, you should have:

• A working computer that supports Linux, MacOS, or Windows OS.

• A web browser, such as Chrome or Firefox.

• An Azure account with sufficient permissions, rights, and credentials. To obtain this, please go to www.azure.com
or talk to your manager if you believe that your employer might have a corporate account.

• A text editor. You can use one of the editors available in the Azure cloud shell (code, vi, or nano) or any other text
editor of your preference.

• At minimum using the 64-bit Helm 3.5 or higher - even if using the Azure cloud shell.

Assuming you have an Azure account with adequate credits, you can make use of Azure's browser-based shell, known
as the Azure cloud shell, to deploy and manage your resources. The Azure cloud shell comes with pre-installed tools,
such as Helm, Kubectl, Python, Terraform, etc.

https://portal.azure.com/

If this is your first time accessing the cloud shell, Azure will likely notify you about the need for storage in order to
save your virtual machine settings and files.

• Click through the prompts to create your account storage.

You should now be presented with an Azure cloud shell which is ready to use. You can now proceed to the next section.

Third Party Tools

Should you decide not to use the Azure cloud shell, you will need to install and configure the Azure CLI on your host
machine in order to deploy and manage Azure resources. In addition, you will also need to install Helm and Kubectl
to manage your Kubernetes packages and clusters respectively.

• Azure Client Interface (CLI)

• Kubectl

• Helm 3.5 or greater

All third-party tools listed above should use the 64-bit architecture.

© 2023 HPCC Systems®. All rights reserved
16

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

The documentation and instructions for how to install and set up the third party tools are available from the respective
vendors on their websites.

Azure Resource Group
An Azure resource group is similar to a folder where a group of related resources are stored. Generally, you should
only use one resource group per deployment. For instance, deploying two Kubernetes clusters in one resource group
can cause confusion and difficulties to manage. Unless you or someone in your organization has already created a
resource group and specified to work in that pre-existing resource group, you will need to create one.

To create a new resource group, you must choose a name and an Azure location. Additionally, you may choose to use
tags for ease of management of your resource groups. Some of the details around this may be subject to you or your
organization's subscriptions, quotas, restrictions or policies. Please ensure that you have a properly configured Azure
subscription with a sufficient access level and credits for a successful deployment.

Run the following command to create a new resource group called rg-hpcc in Azure location eastus:

az group create --name rg-hpcc --location eastus

The following message indicates that the resource group has been successfully created.

{
 "id": "/subscriptions/<my_subscription_id>/resourceGroups/rsg-hpcc",
 "location": "eastus",
 "managedBy": null,
 "name": "rg-hpcc",
 "properties": {
 "provisioningState": "Succeeded"
 },

 "tags": null,
 "type": "Microsoft.Resources/resourceGroups"
 }

Please note that the list of regions available to you might vary based on your company's policies and/or location.

Azure Kubernetes Service Cluster
Next we will create an Azure Kubernetes Service (AKS) cluster. AKS stands for Azure Kubernetes Service. It is a
service provided by Azure that offers serverless Kubernetes, which promotes rapid delivery, scaling, etc.

You can choose any name for your Kubernetes cluster, we will use aks-hpcc. To create a Kubernetes cluster, run the
following command:

az aks create --resource-group rg-hpcc --name aks-hpcc --location <location>

NOTE There are some optional parameters including --node-vm-size and --node-count. Node size refers
to the specs of your VM of choice while node count refers to the number of VMs you wish to use. In
Azure the names VM and node are used interchangeably. For more on node sizes, please visit https://docs.mi-
crosoft.com/en-us/azure/virtual-machines/sizes

This step can take a few minutes. The time it takes for Azure to create and provision the requested resources can vary.
While you wait, for your deployment to complete, you can view the progress in the Azure portal. To view the progress,
open another browser tab to:

https://portal.azure.com/#blade/HubsExtension/BrowseAll

Azure Node Pools
The Azure Kubernetes Service (AKS) automatically creates one node pool. It is a system node pool, by default. There
are two node pool types: system node pools and user node pools. The system node pool is reserved for core Kubernetes

© 2023 HPCC Systems®. All rights reserved
17

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

services and workloads, such as kubelets, kube-proxies, etc. A user node pool should be used to host your application
services and workloads. Additional node pools can be added after the deployment of the AKS cluster.

To follow the recommendations for reserving the system node pool only for the core AKS services and workloads.
You will need to use a node taint on the newly created system node pool. Since you can't add taints to any pre-existing
node pool, swap the default system node pool for the newly created one.

In order to do this, enter the following command (all on one line, if possible, and remove the connectors "\" as they
are only included here for the code to fit on a single page):

az aks nodepool add \
--name sysnodepool \
--cluster-name aks-hpcc \
--resource-group rg-hpcc \
--mode System \
--enable-cluster-autoscaler \
--node-count=2 \
--min-count=1 \
--max-count=2 \
--node-vm-size \
--node-taints CriticalAddonsOnly=true:NoSchedule

Delete the automatically created default pool, which we called "nodepool1" as an example, the actual name may vary.

Once again enter the following command on one line, (without connectors "\" if possible).

az aks nodepool delete \
--name nodepool1 \
--cluster-name aks-hpcc \
--resource-group rg-hpcc

Having at least one user node pool is recommended.

Next add a user node pool which will schedule the HPCC Systems pods. Also remember to do so on a single line
without the connectors, if possible:

az aks nodepool add \
--name usrnodepool1 \
--cluster-name aks-hpcc \
--resource-group rg-hpcc \
--enable-cluster-autoscaler \
--node-count=2 \
--min-count=1 \
--max-count=2 \
--mode User

For more information about Azure virtual machine pricing and types, please visit https://azure.microsoft.com/en-us/
pricing/details/virtual-machines/linux/

Configure Credentials

To manage your AKS cluster from your host machine and use kubectl, you need to authenticate against the cluster. In
addition, this will also allow you to deploy your HPCC Systems instance using Helm. To configure the Kubernetes
client credentials enter the following command:

az aks get-credentials --resource-group rg-hpcc --name aks-hpcc --admin

Installing the Helm charts
This section will demonstrate how to fetch, modify, and deploy the HPCC Systems charts. First we will need to access
the HPCC Systems repository.

© 2023 HPCC Systems®. All rights reserved
18

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Add, or update if already installed, the HPCC Systems Helm chart repository:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

To update the repository:

helm repo update

You should always update the repository before deploying. That allows you to get the latest versions of the chart
dependencies.

Installing the HPCC Systems components

In order for a even a basic installation to succeed, it must have some type of storage enabled. The following steps
will create ephemeral storage using the azstorage utility that will allow the HPCC Systems to start and run but will
not persist. To do this we will deploy the hpcc-azurefile chart which will set up Azure's ephemeral storage for the
HPCC Systems deployment.

To Install the hpcc-azurefile chart:

helm install azstorage hpcc/hpcc-azurefile

The goal here is to get the default values from this azstorage chart and create a customization file that will pass in the
appropriate values to the HPCC Systems instance.

Copy the output from the helm install command that you issued in the previous step, from the storage: parameter
through the end of the file and save the file as mystorage.yaml. The mystorage.yaml file should look very similar to
the following:

storage:
 planes:
 - name: dali
 pvc: dali-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali
 - name: dll
 pvc: dll-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/queries"
 category: dll
 - name: sasha
 pvc: sasha-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/sasha"
 category: sasha
 - name: data
 pvc: data-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/hpcc-data"
 category: data
 - name: mydropzone
 pvc: mydropzone-azstorage-hpcc-azurefile-pvc
 prefix: "/var/lib/HPCCSystems/dropzone"
 category: lz

sasha:
 wu-archiver:
 plane: sasha
 dfuwu-archiver:
 plane: sasha

Note: The indentation, syntax, and characters are very critical, please be sure those are an exact match to the above
sample. A single extra space in this file can cause unnecessary headaches.

© 2023 HPCC Systems®. All rights reserved
19

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

We can now use this mystorage.yaml file to pass in these values when we start up our HPCC Systems cluster.

Enable Access the ESP Services

To access your HPCC Systems cloud instance you must enable the visibility of the ESP services. As delivered the
ESP services are private with only local visibility. In order to enable global visibility, we will be installing the HPCC
Systems cluster using a customization file to override the ESP dictionary. There is more information about customizing
your deployment in the Containerized HPCC Systems documentation.

The goal here is to get the values from this delivered chart and create a customization file that will pass in the values
you want to the HPCC Systems instance. To get the values from that chart, enter the following command:

helm show values hpcc/hpcc > defaultvalues.yaml

IMPORTANT: The indentation, syntax, characters, as well as every single key-value pair are very crit-
ical. Please be sure these are an exact match to the sample below. A single extra space, or missing char-
acter in this file can cause unnecessary headaches.

Using the text editor, open the defaultvalues.yaml file and copy the esp: portion from that file, as illustrated below:

esp:
- name: eclwatch
 ## Pre-configured esp applications include eclwatch, eclservices, and eclqueries
 application: eclwatch
 auth: none
 replicas: 1
Add remote clients to generated client certificates and make the ESP require that one of
r to connect
When setting up remote clients make sure that certificates.issuers.remote.enabled is set
remoteClients:
- name: myclient
organization: mycompany
 service:
 ## port can be used to change the local port used by the pod. If omitted, the default por
 port: 8888
 ## servicePort controls the port that this service will be exposed on, either internally
 servicePort: 8010
 ## Specify visibility: local (or global) if you want the service available from outside
externally, while eclservices is designed for internal use.
 visibility: local
 ## Annotations can be specified on a service - for example to specify provider-specific i
-balancer-internal-subnet
 #annotations:
 # service.beta.kubernetes.io/azure-load-balancer-internal-subnet: "mysubnet"
 # The service.annotations prefixed with hpcc.eclwatch.io should not be declared here. T
 # in other services in order to be exposed in the ECLWatch interface. Similar function c
 # applications. For other applications, the "eclwatch" inside the service.annotations sh
 # their application names.
 # hpcc.eclwatch.io/enabled: "true"
 # hpcc.eclwatch.io/description: "some description"
 ## You can also specify labels on a service
 #labels:
 # mylabel: "3"
 ## Links specify the web links for a service. The web links may be shown on ECLWatch.
 #links:
 #- name: linkname
 # description: "some description"
 # url: "http://abc.com/def?g=1"
 ## CIDRS allowed to access this service.
 #loadBalancerSourceRanges: [1.2.3.4/32, 5.6.7.8/32]
 #resources:
 # cpu: "1"
 # memory: "2G"

© 2023 HPCC Systems®. All rights reserved
20

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

- name: eclservices
 application: eclservices
 auth: none
 replicas: 1
 service:
 servicePort: 8010
 visibility: cluster
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: eclqueries
 application: eclqueries
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8002
 #annotations:
 # hpcc.eclwatch.io/enabled: "true"
 # hpcc.eclwatch.io/description: "Roxie Test page"
 # hpcc.eclwatch.io/port: "8002"
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: esdl-sandbox
 application: esdl-sandbox
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8899
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: sql2ecl
 application: sql2ecl
 auth: none
 replicas: 1
remoteClients:
- name: sqlclient111
 service:
 visibility: local
 servicePort: 8510
 #domain: hpccsql.com
 #resources:
 # cpu: "250m"
 # memory: "1G"
- name: dfs
 application: dfs
 auth: none
 replicas: 1
 service:
 visibility: local
 servicePort: 8520
 #resources:
 # cpu: "250m"
 # memory: "1G"

Save that ESP portion off into a new file called myesp.yaml. You need to modify that file then use it to override those
default values into your deployment.

In order to access the HPCC Systems services you must override these default settings to make them visible. We will
now set the visibility for eclwatch and eclqueries from local to global as in the below example. Edit the myesp.yaml
file and change the two sections highlighted in the code examples below:

© 2023 HPCC Systems®. All rights reserved
21

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

esp:
- name: eclwatch
 ## Pre-configured esp applications include eclwatch, eclservices, and eclqueries
 application: eclwatch
 auth: none
 replicas: 1
 service:
 ## port can be used to change the local port used by the pod. If omitted, the default por
 port: 8888
 ## servicePort controls the port that thi cesps service will be exposed on, either intern
 servicePort: 8010
 ## Specify visibility: local (or global) if you want the service available from outside t
externally, while eclservices is designed for internal use.
 visibility: global
 ## Annotations can be specified on a service - for example to specify provider-specific i

- name: eclqueries
 application: eclqueries
 auth: none
 replicas: 1
 service:
 visibility: global
 servicePort: 8002

Save that modified myesp.yaml customization file.

We can now use this myesp.yaml file to pass in these values when we start up our HPCC Systems cluster.

Install the customized HPCC Systems chart

This section will install the delivered HPCC Systems chart where we supply the myesp.yaml and mystorage.yaml
customization files created in the previous section. You should create or add your own additional customizations in one
of these or even another customization yaml file specific to your requirements. Creating and using customized versions
of the HPCC Systems values.yaml file are described in the Customizing Configurations section of the Containerized
HPCC Systems docs. To install your customized HPCC Systems charts:

helm install myhpcccluster hpcc/hpcc -f myesp.yaml -f mystorage.yaml

Where the -f option forces the system to merge in the values set in the myesp.yaml and mystorage.yaml files.

Note: You can also use the --values option as a substitute for -f

If successful, your output will be similar to this:

NAME: myhpcccluster
LAST DEPLOYED: Wed Dec 15 09:41:38 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

At this point, Kubernetes should start provisioning the HPCC Systems pods. To check their status run:

kubectl get pods

Note: If this is the first time helm install has been run, it will take some time for the pods to get to a Running state,
since Azure will need to pull the container images from Docker. Once all the pods are running, the HPCC
Systems Cluster is ready to be used.

© 2023 HPCC Systems®. All rights reserved
22

Containerized HPCC Systems® Platform
Azure Deployment (Development, Testing, and Production)

Accessing ECLWatch
To access ECLWatch, an external IP to the ESP service running ECLWatch is required. If you successfully deployed
your cluster with the proper visibility settings, then this will be listed as the eclwatch service. The IP address can be
obtained by running the following command:

kubectl get svc

Your output should be similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclservices ClusterIP 10.0.44.11 <none> 8010/TCP 11m
eclwatch LoadBalancer 10.0.21.16 12.87.156.228 8010:30190/TCP 11m
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4h28m
mydali ClusterIP 10.0.195.229 <none> 7070/TCP 11m

Use the EXTERNAL-IP address listed for the ECLWatch service. Open a browser and go to http://<external-ip>:8010/.
For example in this case, go to http://12.87.156.228:8010. If everything is working as expected, the ECLWatch landing
page will be displayed.

Uninstall Your Cluster
When you are done using your HPCC Systems cluster, you may destroy it to avoid incurring charges for unused
resources. A storage account is recommended to save your HPCC Systems data outside of the Azure Kubernetes
Service. That allows you to destroy the service without losing your data.

The various storage options and strategies are discussed elsewhere in addition to the HPCC Systems documentation.

Stopping Your HPCC Systems Cluster

This will simply stop your HPCC Systems instance. If you are deleting the resource group, as detailed in the following
section, that will destroy everything in it, including your HPCC Systems cluster. Uninstalling the HPCC Systems
deployment in that case, is redundant. You will still be charged for the AKS. If, for whatever reason, you can't destroy
the resource group, then you may follow the steps in this section to shut down your HPCC Systems cluster.

To shut down your HPCC Systems cluster, you would issue the helm uninstall command.

Using the Azure cloud shell, enter:

helm list

Enter the helm uninstall command using your clusters name as the argument, for example:

helm uninstall myhpcccluster

This will remove the HPCC Systems cluster named <myhpcccluster> you had previously deployed.

Removing the Resource Group

Removing the resource group will irreversibly destroy any pods, clusters, contents, or any other work stored on there.
Please carefully consider these actions, before removing the resource group. Once removed it can not be undone.

To remove the entire resource group rg-hpcc which we created earlier, and all the entirety of its contents, issue the
following command:

az group delete --name rg-hpcc

It will prompt you if you are sure you want to do this, and if you confirm it will delete the entire resource group.

© 2023 HPCC Systems®. All rights reserved
23

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Deploying HPCC Systems® with
Terraform

Manual deployments can be error-prone and inconsistent. As your deployments become more customized and your
need for additional resources grows it can become exponentially more difficult and time consuming.

Fortunately, there are multiple IaC (infrastructure as code) orchestration tools available that can simplify the deploy-
ment process. One of those orchestration tools is Terraform. This chapter provides instructions on using Terraform
modules to deploy an HPCC Systems instance specifically on the Azure Cloud.

These modules were developed by the HPCC Systems platform team for general open-source community usage. You
may require specific customizations for your particular needs. For example, your organization may require opinionated
modules for production systems. You can develop your own customized modules, per your requirements and utilize
them in the same manner outlined here.

Interactive Terraform Deployment
This section details deploying the containerized HPCC Systems platform onto Azure using Terraform. Using the open
source and additional modules from the HPCC Systems Terraform open-source repository. No previous knowledge
of Terraform, Kubernetes, or Azure is required.

The steps to deploy an HPCC Systems instance using our provided Terraform modules are detailed in the subsequent
sections. A short summary of these steps is as follows.

1. Clone the HPCC Systems Terraform module repository

2. Copy the configuration files (admin.tfvars) from the /examples directory to the corresponding module directory

3. Modify the configuration files for each module

4. Initialize the modules

5. Apply the initialized modules

The strength of using Terraform modules to deploy your system, you only need to set them up once. After they are in
place and configured, you can reuse them to stand up an identical instance of your system. You can do so by initializing
and then applying them.

Requirements
What you will need in order to deploy an HPCC Systems instance with Terraform:

• A Linux, MacOS, or Windows OS computer system.

• A browser. Such as Chrome or Firefox.

• Git and a Github account that you can access and clone the repository.

• An Azure account with sufficient permissions, rights, credits, and credentials. To obtain one, go to www.azure.com
or talk to your manager if you believe that your employer might have a corporate account.

• A code editor of your choice. There are a few editors integrated with Azure such as VS Code, vi the Visual Editor,
Nano, or you can choose to use any another.

© 2023 HPCC Systems®. All rights reserved
24

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

The easiest option which also ensures you have all the tools required is to use Azure is the command portal. Assuming
you have an Azure account with all the appropriate credentials you can just go to the Azure command portal

https://portal.azure.com/

If this is the first time you have accessed the cloud shell, Azure will prompt you that storage is required for the cloud
shell to persist account settings and files. Click through the prompts to create the storage. You should be presented
with a shell. At this point, the cloud shell should already be logged into to your Azure account. The major advantage
to using the cloud shell is that It will also have other prerequisites installed for you, namely, git, kubectl, helm, and
even an editor. Otherwise in addition to installing the Azure CLI you would also need to install the other prerequisites.

Terraform Repository
The HPCC Systems Terraform Repository, terraform-azurerm-hpcc is a code repository where the HPCC Systems
Terraform modules are stored. The Terraform repository contains three independent modules required to instantiate an
HPCC Systems cluster. These are the network, storage, and AKS (Azure Kubernetes Service) modules. The network
module must be deployed first, followed by the storage module. Only then can the AKS or root module, be deployed.
These modules automatically call other dependent modules upon initialization. There are dependencies which must
be in place in order for all the modules to work appropriately.

Cloning the Terraform Repository

Clone the Terraform Repository, terraform-azurerm-hpcc hosted on the HPCC Systems GitHub account.

https://github.com/hpcc-systems/terraform-azurerm-hpcc.git

To clone the repository:

1. Open your command line or terminal

2. Determine where to store the repository. Choose a location that is easy to find and remember. This will become
the Terraform root directory.

3. Change directory to your chosen location.

4. Run the following command :

git clone https://github.com/hpcc-systems/terraform-azurerm-hpcc.git

Once the repository is cloned, you will traverse into each module's directory, and configure/modify the admin.tfvars
file there, and then apply it.

The Modules to Modify
Once in place these modules can be reused to stand up an exact copy of the instance.

The order of deployment for these Terraform modules is in fact important.

The order of deployment that you must follow is:

1. Virtual network

2. Storage accounts

3. Root module (AKS)

© 2023 HPCC Systems®. All rights reserved
25

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Modules Location

Virtual network terraform-azurerm-hpcc/modules/virtual_network

Storage accounts terraform-azurerm-hpcc/modules/storage_accounts

AKS terraform-azurerm-hpcc

These modules must be applied in that order since they build on the resources raised by the previous module.

After you clone the terraform-azurerm-hpcc repository you have access to the modules in that repository.

Modify the Modules
First you will copy the configuration file, admin.tfvars from the examples subdirectory into that modules directory.
Then you will modify that file you just copied. You must repeat this step for each module.

1. Change directory to the virtual network directory first.

cd terraform-azurerm-hpcc/modules/virtual_network

2. Copy the admin.tfvars files from ./examples to ./virtual_network.

cp examples/admin.tfvars ./admin.tfvars

To modify the module you can enter the following command (Note using the code editor in the example, if you prefer
you can use nano, vi, or any text editor):

code terraform-azurerm-hpcc/modules/virtual_network/examples/admin.tfvars

With the admin.tfvars file open, you can go through each object block or argument and set it to your preferred values.
More information about the module files available in the README.md in HPCC Systems terraform-azurerm-hpcc
repository.

admin = {
 name = "YourName"
 email = "YourEmail@example.com"
 }

 metadata = {
 project = "hpccdemo"
 product_name = "vnet"
 business_unit = "commercial"
 environment = "sandbox"
 market = "us"
 product_group = "contoso"
 resource_group_type = "app"
 sre_team = "hpccplatform"
 subscription_type = "dev"
 }

 tags = { "justification" = "testing" }

 resource_group = {
 unique_name = true
 location = "eastus2"
 }

1. Modify this file and replace the values for the name and email fields with your user name and your email address.

2. Save the File as admin.tfvars in the module's directory.

© 2023 HPCC Systems®. All rights reserved
26

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

Modifying the AKS Module

The AKS Module is a little different from the other modules. It is not in the modules subdirectory, it is in the base root
directory where you previously cloned the Terraform repository. You still need to copy the admin.tfvars file from the
examples directory into that root directory, just as you did for the other modules. However, there are a few additional
modifications you need to make to this file.

1. Copy the admin.tfvars files from ./examples to the AKS directory.

cp examples/admin.tfvars ./admin.tfvars

2. Modify the admin.tfvars file, once again add your user name and your email.

3. If you are using the Azure Cloud Shell, find the setting for auto_launch_eclwatch and set it to false as follows:

auto_launch_eclwatch = false

4. Additionally there is a setting for version which by default is commented out. Optionally, uncomment the version
setting and set to a specific version.

5. Make any other configuration changes and save the admin.tfvars file.

Note: You can create multiple configuration files for different deployments. Such as the multiple versions which
we just described. In that case you may want to save each configuration with a different name.

Initializing the Terraform Modules
After configuring the modules, the next step is to initialize. The Terraform init command declares the current working
directory as the root or the calling module. During this operation, Terraform downloads all the child modules from
their sources and place them in the appropriate relative directories.

Once again, the order is important. Initialize the modules in the same order of precedence, virtual network first, the
storage account second, and then the AKS, or root.

Note: Whilst the order the files are applied is important, you can perform the initialization and apply steps after
you modify the files while already in the respective directory.

To Initialize the Modules

1. Change directory to the modules directory.

© 2023 HPCC Systems®. All rights reserved
27

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

2. Run terraform init in that directory:

terraform init

3. Confirm the module has been successfully initialized.

4. Apply the Module

Applying the Terraform Modules
This step generates a Terraform Plan to confirm your configuration choices. A Terraform plan displays exactly what
it is going to do so you can review it before applying it. You can review and either approve to implement the plan or
abort the plan and review your configuration modules for further changes.

When you issue the Terraform apply command it will validate the Terraform code and generate the plan, which you
will then accept or reject to proceed. As with the previous steps, the order the modules are applied is important. You
must apply the virtual network first, then the storage, and finally the root.

Note: Whilst the order the files are applied is important, you can perform the initialization and apply steps after
you modify the files while already in the respective directory.

To Generate a Plan and Apply the Modules:

1. Change directory to that modules directory.

2. Run Terraform apply, specifying to use the admin.tfvars file you configured previously.

terraform apply –var-file=admin.tfvars

Note: If you created multiple configuration files as described in the previous section (for the AKS module) you
can specify to use that specific var-file.

3. The Terraform plan displays, review the plan and if it aligns with what you expected, approve the plan and enter yes.

Note: If something does not look correct, do not enter yes. Anything other than yes will abort the application. You
can then go and re-examine the admin.tfvars files from the previous steps and make any necessary changes.

4. Terraform initializes all the declared resources until they are all in a ready state. This can take a little time, as it
is initializing several resources.

Successful completion displays a message similar to the following:

Apply complete! Resources: 11 added, 0 changed, 0 destroyed.

Note: The number of resources added, changed, or destroyed should match what the plan indicated in the previous
step.

5. Repeat these steps for the storage_accounts directory and then for the root module directory.

Once Terraform successfully applies all the modules in the correct sequence, and they all initialize and enter a ready
state, your HPCC Systems cluster is up and running.

Verify the Installation

With your successful Terraform deployment Kubernetes has provisioned all the required HPCC Systems pods. To
check their status run:

© 2023 HPCC Systems®. All rights reserved
28

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

kubectl get pods

Note: If this is the first time helm install has been run, it may take some time for the pods to all get into a Running
state. Azure needs to pull container images from Docker, bring each component online, etc.

Once all the pods STATUS is Running, the HPCC Systems cluster is ready to be use.

Accessing ECLWatch
To access ECLWatch, an external IP for the ESP running ECLWatch is required. This will be listed as the eclwatch
service, and can be obtained by running the following command:

kubectl get svc

Your output should be similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclservices ClusterIP 10.0.44.11 <none> 8010/TCP 11m
eclwatch LoadBalancer 10.0.21.16 12.87.156.228 8010:30190/TCP 11m
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 4h28m
mydali ClusterIP 10.0.195.229 <none> 7070/TCP 11m

Use the EXTERNAL-IP listed for the ECLWatch service. Open a browser and go to http://<external-ip>:8010/, for
example in this case, http://12.87.156.228:8010. If everything is working as expected, the ECLWatch landing page
displays.

Taking Down The AKS Cluster
Destroying the AKS Cluster will do just that - completely destroy it. That is the Terraform term for taking down and
removing all resources and processes Terraform deployed.

Just as with the installation, the order that modules are destroyed is also important. Keep in mind that the AKS module
must be destroyed before the Virtual network module. Attempting to destroy resources in the wrong order could
leave your deployment in an odd state and may incur unnecessary costs. To help reduce your total costs, always destroy
your AKS when you do not intend on using it further.

Once configured the persisting Terraform modules can easily bring your deployment back up. An exact copy of the
instance, can be raised simply by issuing the Terraform apply step you did earlier. This is the real beauty of the
Terraform modules, once created they can be reused to generate an exact copy of your deployment. You could also
have other configuration options readily available for deployment.

To destroy the Modules

1. Change directory to the root AKS directory: terraform-azurerm-hpcc

2. Run Terraform destroy

© 2023 HPCC Systems®. All rights reserved
29

Containerized HPCC Systems® Platform
Deploying HPCC Systems® with Terraform

terraform destroy –var-file=admin.tfvars

3. The Terraform plan displays, review the plan and if it looks correct approve the plan by entering yes.

Entering anything other than yes aborts.

4. Repeat as necessary for the other modules. However ensure that the virtual network module is the last one to destroy,
if you even choose to destroy it. (Apparently the cost for leaving the virtual network running is minimal, but check
with your provider or manager for confirmation)

Terraform, much like the apply step, may take a few minutes to complete the destruction of all the resources. It will
confirm the results once competed.

© 2023 HPCC Systems®. All rights reserved
30

Containerized HPCC Systems® Platform
Customizing Configurations

Customizing Configurations

Customization Techniques
In this section, we will walk through creating a custom configuration YAML file and deploying an HPCC Systems®

platform using the default configuration plus the customizations. Once you understand the concepts in this chapter,
you can refer to the next chapter for a reference to all configuration value settings.

There are several ways to customize a platform deployment. We recommend using methods that allow you to best
take advantage of the configuration as code (CaC) practices. Configuration as code is the standard of managing con-
figuration files in a version control system or repository.

The following is a list of common customization techniques:

• The first way to override a setting in the default configuration is via the command line using the --set parameter.

This is the easiest, but the least compliant with CaC guidelines. It is also harder to keep track of overrides this way.

• The second way is to modify the default values saved using a command like:

helm show values hpcc/hpcc > myvalues.yaml

This could comply with CaC guidelines if you place that file under version control, but it makes it harder to utilize
a newer default configuration when one becomes available.

• The third way, is the one we typically use. Use the default configuration plus a customization YAML file and
use the -f parameter (or --values parameter) to the helm command. This uses the default configuration and only
overrides the settings specified in the customization YAML. In addition, you can pass multiple YAML files in the
same command, if desired.

For this tutorial, we will use the third method to stand up a platform with all the default settings but add some
customizations. In the first example, instead of one Roxie, it will have two. In the second example, it will add a
second 10-way Thor.

© 2023 HPCC Systems®. All rights reserved
31

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for Two Roxies
1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it tworoxies.yaml and open it in a text editor.

You can use any text editor.

3. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

4. Open the saved file (myvalues.yaml) in a text editor.

5. Copy the entire roxie: section and paste it into the new tworoxies.yaml file.

6. Copy the entire contents of the new tworoxies.yaml file, except the first line (roxie:), and paste it at the end of the file.

7. In the second block, edit the value for name: and change it to roxie2.

8. In the second block, edit the value for prefix: and change it to roxie2.

9. In the second block, edit the value for name: under services: and change it to roxie2.

10.Save the file and close the text editor.

The resulting tworoxies.yaml file should look like this

Note: The comments have been removed to simplify the example:

roxie:
- name: roxie
 disabled: false
 prefix: roxie
 services:
 - name: roxie
 servicePort: 9876
 listenQueue: 200
 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

- name: roxie2
 disabled: false
 prefix: roxie2
 services:
 - name: roxie2
 servicePort: 9876
 listenQueue: 200

© 2023 HPCC Systems®. All rights reserved
32

Containerized HPCC Systems® Platform
Customizing Configurations

 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the tworoxies.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f tworoxies.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Roxie clusters available as Targets -- roxie and roxie2.

Create a Custom Configuration Chart for Two Thors
You can specify more than one custom configuration by repeating the -f parameter.

For example:

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

In this section, we will add a second 10-way Thor.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it twothors.yaml and open it in a text editor.

You can use any text editor.

3. Open the default values file that you saved earlier (myvalues.yaml) in a text editor.

4. Copy the entire thor: section and paste it into the new twothors.yaml file.

5. Copy the entire contents of the new twothors.yaml file, except the first line (thor:), and paste it at the end of the file.

6. In the second block, edit the value for name: and change it to thor10.

7. In the second block, edit the value for prefix: and change it to thor10.

8. In the second block, edit the value for numWorkers: and change it to 10.

9. Save the file and close the text editor.

The resulting twothors.yaml file should look like this

© 2023 HPCC Systems®. All rights reserved
33

Containerized HPCC Systems® Platform
Customizing Configurations

Note: The comments have been removed to simplify the example:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
- name: thor10
 prefix: thor10
 numWorkers: 10
 maxJobs: 4
 maxGraphs: 2

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the twothors.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Thor clusters available as Targets -- thor and thor10.

Create a Custom Configuration Chart for No Thor
In this section, we will create a YAML file to specify a platform deployment with no Thor.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it nothor.yaml and open it in a text editor.

You can use any text editor.

3. Edit the file so it disables Thor as follows:

thor: []

4. Save the file and close the text editor.

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the nothor.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

© 2023 HPCC Systems®. All rights reserved
34

Containerized HPCC Systems® Platform
Customizing Configurations

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f nothor.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f nothor.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should not see any Thor cluster available as a Target.

© 2023 HPCC Systems®. All rights reserved
35

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for No Roxie
In this section, we will create a YAML file to specify a platform deployment with no Roxie. While the outcome is
similar to what we did in the previous section for no Thor, the technique is different.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it noroxie.yaml and open it in a text editor.

You can use any text editor.

3. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

4. Open the saved file (myvalues.yaml) in a text editor.

5. Copy the entire roxie: section and paste it into the new noroxie.yaml file.

6. Copy the entire eclagent: section and paste it into the new noroxie.yaml file.

7. In the roxie block, edit the value for disabled: and change it to true

You can remove everything else from the roxie: block except name.

8. In the eclagent block, delete the entire name: roxie-workunit block.

This removes the instance of a Roxie acting as an ECL Agent.

9. Save the file and close the text editor.

The resulting noroxie.yaml file should look like this:

Note: The comments have been removed to simplify the example:

roxie:
- name: roxie
 disabled: true

eclagent:
- name: hthor
 replicas: 1
 maxActive: 4
 prefix: hthor
 useChildProcesses: false
 type: hthor

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the noroxie.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f noroxie.yaml

© 2023 HPCC Systems®. All rights reserved
36

Containerized HPCC Systems® Platform
Customizing Configurations

3. After you confirm that your deployment is running, open ECL Watch.

You should not see any Roxie cluster available as a Target.

© 2023 HPCC Systems®. All rights reserved
37

Containerized HPCC Systems® Platform
Customizing Configurations

Container Cost Tracking
With the advent of the containerized HPCC Systems platform, we have introduced cost tracking information. This is
particularly useful when using cloud native HPCC Systems platform instances in a cloud setting where some planning
and configuration can help reduce expenses.

Two new columns have been added to the workunits page in ECL Watch. The columns may be sorted by either cost
column, just like the other columns in ECL Watch, by clicking at the top of the column.

Types of Costs

There are three types of costs that are tracked.

• Execution Cost

• Storage Cost

• File Access Cost

NOTE: All cost values calculated and displayed are approximate. There are many variables that can result in inac-
curacies. These cost values are only intended to be used as a guide.

Execution Cost

Execution Cost is the cost of executing the workunit, graph, and subgraphs on the Thor cluster. It includes the cost of
all the nodes directly required to execute the job and includes the cost of:

• Worker nodes

• Compiler nodes

• Agent nodes and the manager node

A workunit's execution cost value is displayed in ECL Watch on its summary page and is broken down at the graph,
subgraph, and activity level. The graph and subgraph cost values are available in the metrics and graph viewer.

Note: The execution cost of ROXIE workunits is not currently implemented.

Job Guillotine

The risk of runaway costs is a concern for potentially uncapped usage-based charging. Thus the job guillotine feature
is provided to manage this risk by setting limits on the costs using the limit and hardlimit values. When a jobs cost
reaches a set amount, the job can be terminated and limit the costs that job may incur.

Note: This feature is only supported for Thor jobs currently.

© 2023 HPCC Systems®. All rights reserved
38

Containerized HPCC Systems® Platform
Customizing Configurations

Storage Cost

This is the cost of hosting the data in the storage plane. It does not include the costs of data operations such as read
or write costs.

Note: Costs are not recorded for temporary or spill files, because the local storage is included in the price of the
VM used to calculate the execution costs.

The storage costs cannot be viewed as a separate value in ECL Watch. They can only be viewed as part of a cost field
in a logical file’s summary page. That cost field includes other file related costs.

File Access Cost

File access costs are the costs of reading and writing to the files. Many storage planes do have a separate charge for
data operations. The cost of reading and writing to the file will be included in the file access cost value. Any other
cost associated with file operations (such as delete or copy) will not be tracked or included as part of file access cost
at this time.

The file access cost displays as part of the cost field on the Logical File’s summary page in ECL Watch.

The costs incurred by a workunit for accessing logical files is also recorded in the workunit’s statistics and attributes.
The read/write cost is recorded at the activity record and cumulated at the graph, the subgraph and the workflow scope
level. The total file access cost for a workunit is recorded with the workunit and displayed in the summary page.

The new cost field is shown in the Logical File summary page. It is the combined cost of storing and accessing the data.

The cost information is currently only generated for Thor and hThor jobs.

© 2023 HPCC Systems®. All rights reserved
39

Containerized HPCC Systems® Platform
Customizing Configurations

Costs Configuration
This section details setting the job costs configuration parameters. Job costs configuration on a cloud native HPCC
Systems instance is done using the helm chart. By default the delivered values.yaml file contains a section for config-
uring costs. The costs are calculated using the default delivered values. Any desired changes can be done as a custom
configuration similar to the customizations in the previous sections.

For example:

1. Create a new text file and name it mycosts.yaml and open it in a text editor.

You can use any text editor.

2. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

3. Open the saved file (myvalues.yaml) in a text editor.

4. Copy the entire cost: section and paste it into the new mycosts.yaml file.

5. Change any desired cost related values as appropriate.

6. Save the file and close the text editor.

7. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f mycosts.yaml

The configuration values provide the pricing information and currency formatting information. The following cost
configuration parameters are supported:

currencyCode Used for currency formatting of cost values.

perCpu Cost per hour of a single cpu.

storageAtRest Storage cost per gigabyte per month.

storageReads Cost per 10,000 read operations.

storageWrites Cost per 10,000 write operations.

Configuring Cloud Costs

The default values.yaml configuration file is configured with the following cost parameters in the global/cost section:

 cost:
 currencyCode: USD
 perCpu: 0.126
 storageAtRest: 0.0135
 storageReads: 0.0485
 storageWrites: 0.0038

The currencyCode attribute should be configured with the ISO 4217 country code. (HPCC Systems platform defaults
to USD if the currency code is missing).

The perCpu from the global/cost section applies to every component that has not been configured with its own perCpu
value.

A perCpu value specific to a component may be set by adding a cost/perCPU attribute under that component section.

© 2023 HPCC Systems®. All rights reserved
40

Containerized HPCC Systems® Platform
Customizing Configurations

For example Dali:

 dali:
 - name: mydali
 cost:
 perCpu: 0.24

Thor Cost Configurations

The Thor components support additional cost parameters which are used for the job guillotine feature:

limit Sets the “soft” cost limit that a workunit may incur. The limit is “soft” in that it may
be overridden by the maxCost ECL option. A node will be terminated if it exceeds its
maxCost value (if set) or the limit attribute value (if the maxCost not set).

hardlimit Sets the absolute maximum cost limit, a limit that may not be overridden by setting
the ECL option. The maxCost value exceeding the hardlimit will be ignored.

The following example sets the jobs cost limits, by adding the attributes to the Thor section of the configuration yaml.

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 cost:
 limit: 10.00 # maximum cost is $10, overridable with maxCost option
 hardlimit: 20.00 # maximum cost is $20, cannot be overridden

Storage Cost Parameters

The storage cost parameters (storageAtRest, storageReads and storageWrites) may be added under the storage plane
cost section to set cost parameters specific to the storage plane.

For example:

storage:
 planes:
 - name: dali
 storageClass: ""
 storageSize: 1Gi
 prefix: "/var/lib/HPCCSystems/dalistorage"
 pvc: mycluster-hpcc-dalistorage-pvc
 category: dali
 cost:
 storageAtRest: 0.01
 storageReads: 0.001
 storageWrites: 0.04

The storage cost parameters under the global section are only used if no cost parameters are specified on the storage
plane.

© 2023 HPCC Systems®. All rights reserved
41

Containerized HPCC Systems® Platform
Configuration Values

Configuration Values
This chapter describes the configuration of HPCC Systems for a Kubernetes Containerized deployment. The following
sections detail how configurations are supplied to helm charts, how to find out what options are available and some
details of the configuration file structure. Subsequent sections will also provide a brief walk through of some of the
contents of the default values.yaml file used in configuring the HPCC Systems for a containerized deployment.

The Container Environment
One of the ideas behind our move to the cloud was to try and simplify the system configuration while also delivering a
solution flexible enough to meet the demands of our community while taking advantage of container features without
sacrificing performance.

The entire HPCC Systems configuration in the container space, is governed by a single file, a values.yaml file, and
its associated schema (values-schema.json) file.

The values.yaml and how it is used
The supplied stock values.yaml file provided in the HPCC Systems repository is the delivered configuration values
for the "hpcc" Helm chart. The values.yaml file is used by the Helm chart to control how HPCC Systems is deployed
to the cloud. This values.yaml file is a single file used to configure and get an HPCC Systems instance up and running
on Kubernetes. The values.yaml file defines everything that happens to configure and/or define your system for a
containerized deployment. You should use the values file provided as a basis for modeling customizations for your
deployment specific to your requirements.

The HPCC Systems values.yaml file can be found in the HPCC Systems github repository. To use the HPCC Systems
Helm chart, first add the hpcc chart repository using Helm, then access the Helm chart values from the charts in that
repository.

For example, when you add the "hpcc" repository, as recommended prior to installing the Helm chart with the following
command:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart

You can now view the HPCC Systems delivered charts and see the values there by issuing:

helm show values hpcc/hpcc

You can capture the output of this command, look at how the defaults are configured and use it as a basis for your
customization.

© 2023 HPCC Systems®. All rights reserved
42

Containerized HPCC Systems® Platform
Configuration Values

The values-schema.json

The values-schema.json is a JSON file that declares what is valid and what is not within the sum total of the merged
values that are passed into Helm at install time. It defines what values are allowed, and validates the values file against
them. All the core items are declared in the schema file, which contains comments and descriptions. While the default
values.yaml file also contains comments on the most important elements.

If you wanted to know what options are available for any particular component then the schema is a good place to
start. If the value exists and is allowed per the schema it can then be added when you install.

The schema file typically contains (for a property) a name and a description. It will often include details of the type,
and items it can contain, or if it is a list or dictionary. For instance:

 "roxie": {
 "description": "roxie process",
 "type": "array"
 "items": { "$ref": "#/definitions/roxie" }
 },

Each plane, in the schema file has a list of properties generally containing a prefix (path), a subpath (subpath), and
additional properties. For example, for a storage plane the schema file has a list of properties including the prefix. The
"planes" in this case are a reference ($ref) to another section. The schema file is complete, and contains everything
required including descriptions which should be relatively self-explanatory.

 "storage": {
 "type": "object",
 "properties": {
 "hostGroups": {
 "$ref": "#/definitions/hostGroups"
 },
 "planes": {
 "$ref": "#/definitions/storagePlanes"
 }
 },
 "additionalProperties": false

Note the additionalProperties value typically at the end of each section in the schema. It specifies whether the values
allow for additional properties or not. If that additionalProperties value is present and set to false, then no other
properties are allowed and the property list is complete.

In working with the HPCC Systems values.yaml, the values file must validate against this schema. If there is a value
that is not allowed as defined in the schema file it will not start and instead generate an ERROR.

HPCC Systems Components and the
values.yaml File
The HPCC Systems Helm charts all ship with stock/default values. These Helm charts have a set of default values
ideally to be used as a guide in configuring your deployment. Generally, every HPCC Systems component is a list.
That list defines the properties for each instance of the component.

This section will provide additional details and any noteworthy insight for the HPCC Systems components defined
in the values.yaml file.

© 2023 HPCC Systems®. All rights reserved
43

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems Components
One of the key differences between the bare metal and container/cloud is that in bare metal storage is directly tied to
the Thor or the Thor worker nodes, and the Roxie worker nodes, or even in the case of the ECLCC Server the DLLs.
In containers these are completely separate and anything having to do with files is defined in the values.yaml.

In containers component instances run dynamically. For instance, if you have configured your system to use a 50-way
Thor, then a 50-way Thor will be spawned when a job is queued to it. When that job is finished that Thor instance will
disappear. This is the same pattern for the other components as well.

Every component should have a resources entry, in the delivered values.yaml file the resources are present but com-
mented out as indicated here.

 #resources:
 # cpu: "1"
 # memory: "4G"

The stock values file will work and allow you to stand up a functional system, however you should define the compo-
nent resources in a manner that corresponds best to your operational strategy.

The Systems services

Most of the HPCC Systems components have a service definition entry, similar to the resources entry. All the compo-
nents that have service definitions follow this same pattern.

Any service related info needs to be under a service object, for example:

 service:
 servicePort: 7200
 visibility: local

This applies to most all of the HPCC Systems components, ESP, Dali, dafilesrv, and Sasha. Roxie's specification is
slightly different, in that it has its service defined under "roxieservice". Each Roxie can then have multiple "roxieser-
vice" definitions. (see schema).

© 2023 HPCC Systems®. All rights reserved
44

Containerized HPCC Systems® Platform
Configuration Values

Dali

When configuring Dali, which also has a resources section, it is going to want plenty of memory and a good amount of
CPU as well. It is very important to define these carefully. Otherwise Kubernetes could assign all the pods to the same
virtual machine and components fighting for memory will crush them. Therefore more memory assigned the better. If
you define these wrong and a process uses more memory than configured, Kubernetes will kill the pod.

Components: dafilesvrs, dfuserver

The HPCC Systems components of dafilesvrs, eclccservers, dfuserver, are declared as lists in the YAML file, as is
the ECL Agent.

Consider the dfuserver which is in the delivered HPCC Systems values.yaml as:

dfuserver:
- name: dfuserver
 maxJobs: 1

If you were to add a mydfuserver as follows

dfuserver:
- name: dfuserver
 maxJobs: 1
- name: mydfuserver
 maxJobs: 1

In this scenario you would have another item here named mydfuserver and it would show up in ECLWatch and you
can submit items to that.

If you wanted to add another dfuserver, you can add that to the list similarly. You can likewise instantiate other
components by adding them to their respective lists.

ECL Agent and ECLCC Server

Values of note for the ECL Agent and ECLCC Server.

useChildProcess -- As defined in the schema, launches each workunit compile as a child process rather than in its own
container. When you submit a job or query to compile it gets queued and processed, with this option set to true it will
spawn a child process utilizing almost no additional overhead in starting. Ideal for sending many small jobs to compile.
However, because each compile job is no longer executed as an independent pod with it's own resource specifications,
but instead runs as a child process within the ECLCC Server pod itself, the ECLCC Server pod must be defined with
adequate resources for itself (minimal for listening to the queue etc.) and all the jobs it may have to run in parallel.

For example, imagine maxJobs is set to 4, and 4 large queries are queued rapidly, that will mean 4 child processes
are launched each consuming cpu and memory within the ECLCC Server pod. With the component configured with
useChildProcesses set to true, each job will run in the same pod (up to the value of maxJobs in parallel). Therefore
with useChildProcesses enabled, the component resources must be defined such that the pod has enough resources to
handle the resource demands of all those jobs to be able to run in parallel.

With useChildProcess enabled it could be rather expensive in most cloud pricing models, and rather wasteful if there
aren't any jobs running. Instead you can set this useChildprocess to false (the default) to start a pod to compile each
query with only the required memory for the job which will be disposed of when done. Now this model also has
overheard, perhaps 20 seconds to a minute to spawn the Kubernetes cluster to process the job. Which may not be ideal
for an environment which is sending several small jobs, but rather larger jobs which would minimize the effect of the
overhead in starting the Kubernetes cluster.

Setting useChildProcess to false better allows for the possibility of dynamic scaling. For jobs which would take a long
while to compile, the extra (start up) overhead is minimal, and that would be the ideal case to have the useChildProcess

© 2023 HPCC Systems®. All rights reserved
45

Containerized HPCC Systems® Platform
Configuration Values

as false. Setting useChildProcess to false only allows 1 pod per compile, though there is an attribute for putting a time
limit on that compilation.

ChildProcessTimeLimit is the time limit (in seconds) for child process compilation before aborting and using a
separate container, when the useChildProcesses is false.

maxActive -- The maximum number of jobs that can be run in parallel. Again use caution because each job will need
enough memory to run. For instance, if maxActive is set to 2000, you could submit a very big job and in that case
spawn some 2000 jobs using a considerable amount of resources, which could potentially run up a rather expensive
compilation bill, again depending on your cloud provider and your billing plan.

Sasha

The configuration for Sasha is an outlier as it is a dictionary type structure and not a list. You can't have more than
one archiver or dfuwu-archiver as that is a value limitation, you can choose to either have the service or not (set the
'disabled' value to true).

Thor

Thor instances run dynamically, as do the other components in containers. The configuration for Thor also consists of
a list of Thor instances. Each instance dynamically spawns a collection of pods (manager + N workers) when jobs are
queued to it. When idle there are no worker (or manager) pods running.

If you wanted a 50-way Thor you set the number of workers, the numWorkers value to 50 and you would have a 50-
way Thor. As indicated in the following example:

thor:
- name: thor
 prefix: thor
 numWorkers: 50

In doing so, ideally you should rename the resource to something which clearly describes it, such as thor_50 as in
the following example.

-name: thor_50

Updating the numWorkers value will restart the Thor agent listening to the queue, causing all new jobs to use the
new configuration.

maxJobs -- Controls the number of jobs, specifically maxJobs sets the maximum number of jobs.

maxGraphs -- Limits the maximum amount of graphs. It generally makes sense to keep this value below or at the
same number as maxJobs, since not all jobs submit graphs and when they do the Thor jobs are not executing graphs all
the time. If there are more than 2 submitted (Thor) graphs, the second would be blocked until the next Thor instance
becomes available.

The idea here is that jobs may spend significant amount of time outside of graphs, such as waiting on a workflow state
(outside of the Thor engine itself), blocked on a persist, or updating super files, etc. Then it makes sense for Thor to have
a higher limit of concurrent jobs (maxJobs) than graphs (maxGraphs / Thor instances). Since Thor instances (graphs)
are relatively expensive (lots of pods/higher resource use), while workflow pods (jobs) are comparatively cheap.

Thus, the delivered (example) chart values defines maxJobs to be greater than maxGraphs. Jobs queued to a Thor
aren't always running graphs. Therefore it can make sense to have more of these jobs, which are not consuming a large
Thor and all its resources, but restrict the max number of Thor instances running.

Thor has 3 components (that correspond to the resource sections).

1. Workflow

© 2023 HPCC Systems®. All rights reserved
46

Containerized HPCC Systems® Platform
Configuration Values

2. Manager

3. Workers

The Manager and Workers are launched together and consume quite a bit of resoures (and nodes) typically. While
the Workflow is inexpensive and usually doesn't require as many resources. You might expect in a Kubernetes world,
many of them would co-exist on the same node (and therefore be inexpensive). So it makes sense for maxJobs to be
higher, and maxGraphs to be lower

In Kubernetes, jobs run independently in their own pods. While in bare metal we can have jobs that could effect other
jobs because they are running in the same process space.

Thor and hThor Memory

The Thor and hThor memory sections allow the resource memory of the component to be refined into different areas.

For example, the "workerMemory" for a Thor defined as:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
 managerResources:
 cpu: "1"
 memory: "2G"
 workerResources:
 cpu: "4"
 memory: "4G"
 workerMemory:
 query: "3G"
 thirdParty: "500M"
 eclAgentResources:
 cpu: "1"
 memory: "2G"

The "workerResources" section will tell Kubernetes to resource 4G per worker pod. By default Thor will reserve 90%
of this memory to use for HPCC query memory (roxiemem). The remaining 10% is left for all other non-row based
(roxiemem) usage, such as general heap, OS overheads, etc. There is no allowance for any 3rd party library, plugins,
or embedded language usage within this default. In other words, if for example embedded Python allocates 4G, the
process will soon fail with an out of memory error, when it starts to use any memory, since it was expecting 90% of
that 4G to be freely available to use for itself.

These defaults can be overridden by the memory sections. In this example, workerMemory.query defines that 3G of
the available resourced memory should be assigned to query memory, and 500M to "thirdParty" uses.

This limits the HPCC Systems memory roxiemem usage to exactly 3G, leaving 1G free other purposes. The "thirdParty"
is not actually allocated, but is used solely as part of the running total, to ensure that the configuration doesn't specify
a total in this section larger than the resources section, e.g., if "thirdParty" was set to "2G" in the above section, there
would be a runtime complaint when Thor ran that the definition exceeded the resource limit.

It is also possible to override the default recommended percentage (90% by default), by setting maxMemPercentage.
If "query" is not defined, then it is calculated to be the recommended max memory minus the defined memory (e.g.,
"thirdParty").

In Thor there are 3 resource areas, eclAgent, ThorManager, and ThorWorker(s). Each has a *Resource area that defines
their Kubernetes resource needs, and a corresponding *Memory section that can be used to override default memory
allocation requirements.

© 2023 HPCC Systems®. All rights reserved
47

Containerized HPCC Systems® Platform
Configuration Values

These settings can also be overridden on a per query basis, via workunit options following the pattern: <memory-sec-
tion-name>.<property>. For example: #option('workerMemory.thirdParty', "1G");

Note: Currently there is only "query" (HPCC roxiemem usage) and "thirdParty" for all/any 3rd party usage. It's possible
that further categories will be added in future, like "python" or "java" - that specifically define memory uses for those
targets.

© 2023 HPCC Systems®. All rights reserved
48

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems values.yaml file
The delivered HPCC systems values.yaml file is more of an example providing a basic type configuration which should
be customized for your specific needs. One of the main ideas behind the values file is to be able to relatively easily
customize it to your specific scenario. The delivered chart is set up to be sensible enough to understand, while also
allowing for relatively easy customization to configure a system to your specific requirements. This section will take
a closer look at some aspects of the delivered values.yaml.

The delivered HPCC Systems Values file primarily consists of the following areas:

global storage visibilities

data planes certificates security

secrets components

The subsequent sections will examine some of these more closely and why each of them is there.

Storage
Containerized Storage is another key concept that differs from bare metal. There are a few differences between con-
tainer and bare metal storage. The Storage section is fairly well defined between the schema file, and the values.yaml.
A good approach towards storage is to clearly understand your storage needs, and to outline them, and once you have
that basic structure in mind the schema can help to fill in the details. The schema should have a decent description
for each attribute. All storage should be defined via planes. There is a relevant comment in the values.yaml further
describing storage.

storage:
##
1. If an engine component has the dataPlane property set,
then that plane will be the default data location for that component.
2. If there is a plane definition with a category of "data"
then the first matching plane will be the default data location
##
If a data plane contains the storageClass property then an implicit pvc
will be created for that data plane.
##
If plane.pvc is defined, a Persistent Volume Claim must exist with that name,
storageClass and storageSize are not used.
##
If plane.storageClass is defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic provisioning
If set to "", choosing the default provisioner.
(gp2 on AWS, standard on GKE, AWS & OpenStack)
##
plane.forcePermissions=true is required by some types of provisioned
storage, where the mounted filing system has insufficient permissions to be
read by the hpcc pods. Examples include using hostpath storage (e.g. on
minikube and docker for desktop), or using NFS mounted storage.

There are different categories of storage, for an HPCC Systems deployment you must have at a minimum a dali
category, a dll category, and at least 1 data category. These types are generally applicable for every configuration in
addition to other optional categories of data.

All storage should be in a storage plane definition. This is best described in the comment in the storage definition
in the values file.

planes:
 # name: <required>

© 2023 HPCC Systems®. All rights reserved
49

Containerized HPCC Systems® Platform
Configuration Values

 # prefix: <path> # Root directory for accessing the plane
 # (if pvc defined),
 # # or url to access plane.
 # category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?
 #
 # For dynamic pvc creation:
 # storageClass: ''
 # storageSize: 1Gi
 #
 # For persistent storage:
 # pvc: <name> # The name of the persistant volume claim
 # forcePermissions: false
 # hosts: [<host-list>] # Inline list of hosts
 # hostGroup: <name> # Name of the host group for bare metal
 # # must match the name of the storage plane..
 #
 # Other options:
 # subPath: <relative-path> # Optional sub directory within <prefix>
 # # to use as the root directory
 # numDevices: 1 # number of devices that are part of the plane
 # secret: <secret-id> # what secret is required to access the files.
 # # This could optionally become a list if required
 # (or add secrets:).

 # defaultSprayParts: 4 # The number of partitions created when spraying
 # (default: 1)

 # cost: # The storage cost
 # storageAtRest: 0.0135 # Storage at rest cost: cost per GiB/month

Each plane has 3 required fields: The name, the category and the prefix.

When the system is installed,using the stock supplied values it will create a storage volume which has 1 GB capacity
via the following properties.

For example:

- name: dali
 storageClass: ""
 storageSize: 1Gi
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali

Most commonly the prefix: defines the path within the container where the storage is mounted. The prefix can be a
URL for blob storage. All pods will use the (prefix:) path to access the storage.

For the above example, when you look at the storage list, the storageSize will create a volume with 1 GB capacity.
The prefix will be the path, the category is used to limit access to the data, and to minimize the number of volumes
accessible from each component.

The dynamic storage lists in the values.yaml file are characterized by the storageClass: and storageSize: values.

storageClass: defines which storage provisioner should be used to allocate the storage. A blank storage class indicates
it should use the default cloud providers storage class.

storageSize: As indicated in the example, defines the capacity of the volume.

Storage Category

Storage category is used to indicate the kind of data that is being stored in that location. Different planes are used
for the different categories to isolate the different types of data from each other, but also because they often require

© 2023 HPCC Systems®. All rights reserved
50

Containerized HPCC Systems® Platform
Configuration Values

different performance characteristics. A named plane may only store one category of data. The following sections look
at the currently supported categories of data used in our containerized deployment.

 category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?

The system itself can write out to any data plane. This is how the data category can help to improve performance. For
example, if you have an index, Roxie would want rapid access to data, versus other components.

Some components may use only 1 category, some can use several. The values file can contain more than one storage
plane definition for each category. The first storage plane in the list for each category is used as the default location to
store that category of data. These categories minimize the exposure of plane data to components that don't need them.
For example the ECLCC Server component does not need to know about landing zones, or where Dali stores its data,
so it only mounts the plane categories it needs.

Ephemeral Storage

Ephemeral storage is allocated when the HPCC Systems cluster is installed and deleted when the chart is uninstalled.
This is helpful in keeping cloud costs down but may not be appropriate for your data.

In your system, you would want to override the delivered stock value(s) with storage appropriate for your specific
needs. The supplied values create ephemeral or temporary persistent volumes that get automatically deleted when
the chart is uninstalled. You probably want the storage to be persistent. You should customize the storage to a more
suitable configuration for your needs.

Persistent Storage

Kubernetes uses persistent volume claims (pvcs) to provide access to data storage. HPCC Systems supports cloud
storage through the cloud provider that can be exposed through these persistent volume claims.

Persistent Volume Claims can be created by overriding the storage values in the delivered Helm chart. The values in
the examples/local/values-localfile.yaml provided override the corresponding entries in the original delivered stock
HPCC Systems helm chart. The localfile chart creates persistent storage volumes. You can use the values-localfile.yaml
directly (as demonstrated in separate docs/tutorials) or you can use it as a basis for creating your own override chart.

To define a storage plane that utilizes a PVC, you must decide on where that data will reside. You create the storage
directories, with the appropriate names and then you can install the localfiles Helm chart to create the volumes to use
the local storage option, such as in the following example:

helm install mycluster hpcc/hpcc -f examples/local/values-localfile.yaml

Note: The settings for the PVC's must be ReadWriteMany, except for Dali which can be ReadWriteOnce.

There are a number of resources, blogs, tutorials, even developer videos that provide step-by-step detail for creating
persistent storage volumes.

Bare Metal Storage

There are two aspects to using bare metal storage in the Kubernetes system. The first is the hostGroups entry in the
storage section which provides named lists of hosts. The hostGroups entries can take one of two forms. This is the
most common form, and directly associates a list of host names with a name:

storage:
 hostGroups:
 - name: <name> "The name of the host group"
 hosts: ["a list of host names"]

© 2023 HPCC Systems®. All rights reserved
51

Containerized HPCC Systems® Platform
Configuration Values

The second form allows one host group to be derived from another:

storage:
 hostGroups:
 - name: "The name of the host group process"
 hostGroup: "Name of the hostgroup to create a subset of"
 count: <Number of hosts in the subset>
 offset: <the first host to include in the subset>
 delta: <Cycle offset to apply to the hosts>

Some typical examples with bare-metal clusters are smaller subsets of the host, or the same hosts, but storing different
parts on different nodes, for example:

storage:
 hostGroups:
 - name: groupABCDE # Explicit list of hosts
 hosts: [A, B, C, D, E]
 - name groupCDE # Subset of the group last 3 hosts
 hostGroup: groupABCDE
 count: 3
 offset: 2
 - name groupDEC # Same set of hosts, but different part->host mapping
 hostGroup: groupCDE
 delta: 1

The second aspect is to add a property to the storage plane definition to indicate which hosts are associated with it.
There are two options:

• hostGroup: <name> The name of the host group for bare metal. The name of the hostGroup must match the name
of the storage plane.

• hosts: <list-of-namesname> An inline list of hosts. Primarily useful for defining one-off external landing zones.

For Example:

storage:
 planes:
 - name: demoOne
 category: data
 prefix: "/home/demo/temp"
 hostGroup: groupABCD # The name of the hostGroup
 - name: myDropZone
 category: lz
 prefix: "/home/demo/mydropzone"
 hosts: ['mylandingzone.com'] # Inline reference to an external host.

Storage Items for HPCC Systems Components

General Data Storage

General data files generated by HPCC are stored stored in data. For Thor, data storage costs could likely be significant.
Sequential access speed is important, but random access is much less so. For ROXIE, speed of random access is likely
to be most important.

LZ

LZ or lz, utilized for landing zone data. This is where we would put raw data coming into the system. A landing
zone where external users can read and write files. HPCC Systems can import from or export files to a landing zone.
Typically performance is less of an issue, it could be blob/s3 bucket storage, accessed either directly or via an NFS
mount.

© 2023 HPCC Systems®. All rights reserved
52

Containerized HPCC Systems® Platform
Configuration Values

dali

The location of the dali metadata store, which needs to support fast random access.

dll

Where the compiled ECL queries are stored. The storage needs to allow shared objects to be directly loaded from it
efficiently.

If you wanted both Dali and dll data on the same plane, it is possible to use the same prefix for both subpath properties.
Both would use the same prefix, but should have different subpaths.

sasha

This is the location where archived workunits, etc are stored and it is typically less speed critical, requiring lower
storage costs.

spill

An optional category where the spill files are written out to. Local NVMe disks are potentially a good choice for this.

temp

An optional category where temp files can be written to.

The Security Values
This section will look at the values.yaml sections dealing with the system security components.

Certificates

The certificates section can be used to enable the cert-manager to generate TLS certificates for each component in
the HPCC Systems deployment.

certificates:
 enabled: false
 issuers:
 local:
 name: hpcc-local-issuer

In the delivered YAML file certificates are not enabled, as illustrated above. You must first install the cert-manager
to use this feature.

Secrets

The Secrets section contains a set of categories, each of which contain a list of secrets. The Secrets section is where to
get info into the system if you don't want it in the source. Such as code with embedded code, you can have that defined
in the code sign sections. If you have information that you don't want public but need to run it you could use secrets.
There is a category named "eclUser" which is where you would put secrets that you want to be readable directly from
ECL code. Other secret categories, including the "ecl" category, are read internally by system components and not
exposed directly to ECL code.

Vaults

Vaults is another way to do Secrets. The vaults section mirrors the secret section but leverages HashiCorp Vault for
the storage of secrets. There is a category for vaults named "eclUser". The intent of the eclUser vault category is to be

© 2023 HPCC Systems®. All rights reserved
53

Containerized HPCC Systems® Platform
Configuration Values

readable directly from ECL code. Only add vault configurations to the "eclUser" category that you want ECL users
to be able to access. Other vault categories, including the "ecl" category, are read internally by system components
and not exposed directly to ECL code.

Visibilities
The visibilities section can be used to set labels, annotations, and service types for any service with the specified
visibility.

Replicas and Resources
Other noteworthy values in the charts that have bearing on HPCC Systems set up and configuration.

Replicas

replicas: defines how many replica nodes come up, how many pods run to balance a load. To illustrate, if you have a
1-way Roxie and set replicas to 2 you would have 2, 1-way Roxies.

Resources

Most all components have a resources section which defines how many resources are assigned to that component. In
the stock delivered values files, the resources: sections are there for illustration purposes only, and are commented
out. Any cloud deployment that will be performing any non-trivial function, these values should be properly defined
with adequate resources for each component, in the same way you would allocate adequate physical resources in a
data center. Resources should be set up in accordance with your specific system requirements and the environment
you would be running them in. Improper resource definition can result in running out of memory and/or Kubernetes
eviction, since the system could use unbound amounts of resources, such as memory, and nodes will get overwhelmed,
at which point Kubernetes will started evicting pods. Therefore if your deployment is seeing frequent evictions, you
may want to adjust your resource allocation.

 #resources:
 # cpu: "1"
 # memory: "4G"

Every component should have a resources entry, but some components such as Thor have multiple resources. The
manager, worker, eclagent components all have different resource requirements.

Taints, Tolerations, and Placements

This is an important consideration for containerized systems. Taints and Tolerations are types of Kubernetes node
constraints also referred to by Node Affinity. Node affinity is a way to constrain pods to nodes. Only one "affinity" can
be applied to a pod. If a pod matches multiple placement 'pods' lists, then only the last "affinity" definition will apply.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate nodes. Tolerations are
applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching taints. Taints are the
opposite -- they allow a node to repel a set of pods.

For example, Thor workers should all be on the appropriate type of VM. If a big Thor job comes along – then the
taints level comes into play.

For more information and examples of our Taints, Tolerations, and Placements please review our developer documen-
tation:

https://github.com/hpcc-systems/HPCC-Platform/blob/master/helm/hpcc/docs/placements.md

© 2023 HPCC Systems®. All rights reserved
54

Containerized HPCC Systems® Platform
Configuration Values

Placements

The Placement is responsible for finding the best node for a pod. Most often placement is handled automatically by
Kubernetes. You can constrain a Pod so that it can only run on particular set of Nodes. Using placements you can
configure the Kubernetes scheduler to use a "pods" list to apply settings to pods. For example:

 placements:
 - pods: [list]
 placement:
 <supported configurations>

The pods: [list] can contain a variety of items.

1. HPCC Systems component types, using the prefix type: this can be: dali, esp, eclagent, eclccserver, roxie, thor.
For example "type:esp"

2. Target; the name of an array item from the above types using prefix "target:" For example "target:roxie" or "tar-
get:thor".

3. Pod, "Deployment" metadata name from the name of the array item of a type. For example, "eclwatch", "mydali",
"thor-thoragent"

4. Job name regular expression: For example "compile-" or "compile-." or exact match "^compile-.$"

5. All: to apply for all HPCC Systems components. The default placements for pods we deliver is [all]

Placements – in Kubernetes the Placement concept allows you to spread your pods across types of nodes with particular
characteristics. Placements would be used to ensure that pods or jobs that want nodes with specific characteristics are
placed on them.

For instance a Thor cluster could be targeted for machine learning using nodes with a GPU. Another job may want
nodes with a good amount more memory or another for more CPU. You can use placements to ensure that pods with
specific requirements are placed on appropriate nodes.

Environment Values

You can define environment variables in a YAML file. The environment values are defined under the global.env
portion of the provided HPCC Systems values.yaml file. These values are specified as a list of name value pairs as
illustrated below.

global:
 env:
 - name: SMTPserver
 value: mysmtpserver

The global.env section of the supplied values.yaml file adds default environment variables for all components. You
can also specify environment variables for the individual components. Refer to the schema for setting this value for
individual components.

To add environment values you can insert them into your customization configuration YAML file when you deploy
your containerized HPCC Systems.

© 2023 HPCC Systems®. All rights reserved
55

Containerized HPCC Systems® Platform
Configuration Values

Helm and Yaml Basics
This section is intended to provide some basic information to help you in getting started with your HPCC Systems
containerized deployment. There are numerous resources available for learning about Kubernetes, Helm, and YAML
files. For more information about using these tools, or for cloud or container deployments, please refer to the respective
documentation.

In the previous section, we touched on the values.yaml file and the values-schema.json file. This section expands on
some of those concepts and how they might be applied when using the containerized version of the HPCC Systems
platform.

The values.yaml file structure
The values.yaml file is a YAML file which is a format frequently used for configuration files. The construct that makes
up the bulk of a YAML file is the key-value pair, sometimes referred to as a dictionary. The key-value pair construct
consists of a key that points to some value(s). These values are defined by the schema.

In these configuration files the indentation used to represent document structure relationship is quite important. Leading
spaces are significant and tabs are not allowed.

YAML files are made up mainly of two types of elements: dictionaries and lists.

Dictionary

Dictionaries are collections of key-value mappings. All keys are case-sensitive and the indentation is also crucial.
These keys must be followed by a colon (:) and a space. Dictionaries can also be nested.

For example:

 logging:
 detail: 80

This is an example of a dictionary for logging.

Dictionaries in passed in values files, such as in the myoverrides.yaml file in the example below, will be merged into the
corresponding dictionaries in the existing values, starting with the default values from the delivered hpcc helm chart.

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

Any pre-existing values in a dictionary that are not overridden will continue to be present in the merged result. How-
ever, you can override the contents of a dictionary by setting it to null.

Lists

Lists are groups of elements beginning at the same indentation level starting with a - (a hyphen and a space). Every
element of the list is indented at the same level and starts with a hyphen and a space. Lists can also be nested, and
they can even be lists of dictionaries.

An example of a list of dictionaries, with placement.tolerations as a nested list.:

placements:
- pods: ["all"]
 placement:
 tolerations:
 - key: "kubernetes.azure.com/scalesetpriority"

© 2023 HPCC Systems®. All rights reserved
56

Containerized HPCC Systems® Platform
Configuration Values

The list entry here is denoted using the hyphen, which is an entry item in the list, which itself is a dictionary with
nested attributes. Then the next hyphen (at that same indentation level) is the next entry in that list. A list can be a list
of simple value elements, or the elements can themselves be lists or dictionaries.

Sections of the HPCC Systems Values.yaml

The first section of the values.yaml file describes global values. Global applies generally to everything.

Default values for hpcc.
global:
 # Settings in the global section apply to all HPCC components in all subcharts

In the delivered HPCC Systems values.yaml file excerpt (above) global: is the top level dictionary. As noted in the
comments, the settings in the global section apply to all HPCC Systems components. Note from the indentation level
that the other values are nested in that global dictionary.

Items defined in the global section are shared between all components.

Some examples of global values in the delivered values.yaml file are the storage and security sections.

storage:
 planes:

and also

security:
 eclSecurity:
 # Possible values:
 # allow - functionality is permitted
 # deny - functionality is not permitted
 # allowSigned - functionality permitted only if code signed
 embedded: "allow"
 pipe: "allow"
 extern: "allow"
 datafile: "allow"

In the above examples, storage: and security: are global chart values.

HPCC Systems Values.yaml File Usage
The HPCC Systems values.yaml file is used by the Helm chart to control how HPCC Systems is deployed. The stock
delivered HPCC Systems values.yaml is intended as a quick start type installation guide which is not appropriate for
non-trivial practical usage. You should customize your deployment to one more suited towards your specific needs.

Further information about customized deployments is covered in previous sections, as well as the Kubernetes and
Helm documentation.

Merging and Overriding

Having multiple YAML files, such as one for logging, another for storage, yet another for secrets and so forth, allows
granular configuration. These configuration files can all be under version control. There they can be versioned, checked
in, etc. and have the benefit of only defining/changing the specific area required, while ensuring any non-changing
areas are left untouched.

The rule here to keep in mind where multiple YAML files are applied, the later ones will always overwrite the values
in the earlier ones. They are always merged in in sequence. The values are always merged in the order they are given
on the helm command line.

© 2023 HPCC Systems®. All rights reserved
57

Containerized HPCC Systems® Platform
Configuration Values

Another point to consider, where there is a global dictionary such as root: and its value is redefined in a 2nd file (as a
dictionary) it would not be overwritten. You simply cannot overwrite a dictionary. You can redefine a dictionary and
set it to null, which will effectively wipe out the first.

WARNING: If you had a global definition (such as storage.planes) and merge it where that becomes redefined it
would wipe out every definition in that list.

Another means to wipe out every value in a list is to pass in an empty set denoted by a [] such as this example:

bundles: []

This would wipe out any properties defined for bundles.

Generally applicable

These items are generally applicable for our HPCC Systems Helm YAML files.

• All names should be unique.

• All prefixes should be unique.

• Services should be unique.

• YAML files are merged in sequence.

Regarding the HPCC Systems components, primarily the components are lists. If you have an empty value list denoted
by [], it would invalidate that list elsewhere.

Additional Usage

HPCC Systems components are added or modified by passing in override values. The Helm chart values are overridden,
either by passing in override values file(s) using -f, (for override file) or via --set where you can override a single value.
Those passed in values are always merged in the same order they are given on the helm command line.

For example:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

Overrides any values in the delivered values.yaml by passing in values defined in myoverrides.yaml

You can also use --set as in the following example:

helm install myhpcc hpcc/hpcc --set storage.daliStorage.plane=dali-plane

To override only that one specified value.

It is even possible to combine file and single value overrides, for instance:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml --set storage.daliStorage.plane=dali-plane

In the preceding example, the --set flag overrides the value for the storage.daliStorage.plane (if) set in the myover-
rides.yaml, which would override any values.yaml file settings and results in setting its value to dali-plane.

If the --set flag is used on helm install or helm upgrade, those values are simply converted to YAML on the client side.

You can specify the override flags multiple times. The priority will be given to the last (right-most) file specified.

© 2023 HPCC Systems®. All rights reserved
58

Containerized HPCC Systems® Platform
Containerized Logging

Containerized Logging

Logging Background
Bare-metal HPCC Systems component logs are written to persistent files on local file system, In contrast, container-
ized HPCC logs are ephemeral, and their location is not always well defined. HPCC Systems components provide
informative application level logs for the purpose of debugging problems, auditing actions, and progress monitoring.

Following the most widely accepted containerized methodologies, HPCC Systems component log information is rout-
ed to the standard output streams rather than local files. In containerized deployments there aren't any component logs
written to files as in previous editions.

These logs are written to the standard error (stderr) stream. At the node level, the contents of the standard error and out
streams are redirected to a target location by a container engine. In a Kubernetes environment, the Docker container
engine redirects the streams to a logging driver, which Kubernetes configures to write to a file in JSON format. The
logs are exposed by Kubernetes via the aptly named "logs" command.

For example:

>kubectl logs myesp-6476c6659b-vqckq
>0000CF0F PRG INF 2020-05-12 17:10:34.910 1 10690 "HTTP First Line: GET / HTTP/1.1"
>0000CF10 PRG INF 2020-05-12 17:10:34.911 1 10690 "GET /, from 10.240.0.4"
>0000CF11 PRG INF 2020-05-12 17:10:34.911 1 10690 “TxSummary[activeReqs=22; rcv=5ms;total=6ms;]"

It is important to understand that these logs are ephemeral in nature, and may be lost if the pod is evicted, the container
crashes, the node dies, etc. Due to the nature of containerized systems, related logs are likely to originate from various
locations and need to be collected and processed. It is highly recommended to develop a retention and processing
strategy based on your needs.

Many tools are available to help create an appropriate solution based on either a do-it-yourself approach, or managed
features available from cloud providers.

For the simplest of environments, it might be acceptable to rely on the standard Kubernetes process which forwards
all contents of stdout/stderr to file. However, as the complexity of the cluster grows or the importance of retaining the
logs' content grows, a cluster-level logging architecture should be employed.

Cluster-level logging for the containerized HPCC Systems cluster can be accomplished by including a logging agent
on each node. The task of each of agent is to expose the logs or push them to a log processing back-end. Logging agents
are generally not provided out of the box, but there are several available such as Elasticsearch and Stackdriver Logging.
Various cloud providers offer built-in solutions which automatically harvest all stdout/err streams and provide dynamic
storage and powerful analytic tools, and the ability to create custom alerts based on log data.

It is your responsibility to determine the appropriate solution to process the streaming log data.

Log Processing Solutions
There are multiple log processing solutions available. You could choose to integrate HPCC Systems logging data
with any existing logging solutions, or to implement another one specifically for HPCC Systems data. Starting with
HPCC Systems version 8.4, we provide a lightweight, yet complete log-processing solution for your convenience. The
following sections will look at a couple of the possible solutions.

© 2023 HPCC Systems®. All rights reserved
59

Containerized HPCC Systems® Platform
Containerized Logging

Managed Elastic Stack Solution
HPCC Systems provides a managed Helm chart, elastic4hpcclogs which utilizes the Elastic Stack Helm charts for
Elastic Search, Filebeats, and Kibana. This chart describes a local, minimal Elastic Stack instance for HPCC Systems
component log processing. Once successfully deployed, HPCC component logs produced within the same namespace
should be automatically indexed on the Elastic Search end-point. Users can query those logs by issuing Elastic Search
RESTful API queries, or via the Kibana UI (after creating a simple index pattern).

Out of the box, the Filebeat forwards the HPCC component log entries to a generically named index: 'hpcc-logs'-
<DATE_STAMP> and writes the log data into 'hpcc.log.*' prefixed fields. It also aggregates k8s, Docker, and system
metadata to help the user query the log entries of their interest.

A Kibana index pattern is created automatically based on the default filebeat index layout.

Installing the elastic4hpcclogs chart
Installing the provided simple solution is as the name implies, simple and a convenient way to gather and filter log
data. It is installed via our helm charts from the HPCC Systems repository. In the HPCC-platform/helm directory, the
elastic4hpcclogs chart is delivered along with the other HPCC System platform components. The next sections will
show you how to install and set up the Elastic stack logging solution for HPCC Systems.

Add the HPCC Systems Repository

The delivered Elastic for HPCC Systems chart can be found in the HPCC Systems Helm repository. To fetch and
deploy the HPCC Systems managed charts, add the HPCC Systems Helm repository if you haven't done so already:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Once this command has completed successfully, the elastic4hpcclogs chart will be accessible.

Confirm the appropriate chart was pulled down.

helm list

Issuing the helm list command will display the available HPCC Systems charts and repositories. The elastic4hpcclogs
chart is among them.

Install the elastic4hpcc chart

Install the elastic4hpcclogs chart using the following command:

helm install <Instance_Name> hpcc/elastic4hpcclogs

© 2023 HPCC Systems®. All rights reserved
60

Containerized HPCC Systems® Platform
Containerized Logging

Provide the name you wish to call your Elastic Search instance for the <Instance_Name> parameter. For example, you
could call your instance "myelk" in which case you would issue the install command as follows:

helm install myelk hpcc/elastic4hpcclogs

Upon successful completion, the following message is displayed:

Thank you for installing elastic4hpcclogs.
 A lightweight Elastic Search instance for HPCC component log processing.

This deployment varies slightly from defaults set by Elastic, please review the effective values.

PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit manual removal
 when no longer needed.

IMPORTANT: PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit manual
removal when no longer needed. This can be particularly important for some cloud providers which could
accrue costs even after no longer using your instance. You should ensure no components (such as PVCs)
persist and continue to accrue costs.

NOTE: Depending on the version of Kubernetes, users might be warned about deprecated APIs in the Elastic charts
(ClusterRole and ClusterRoleBinding are deprecated in v1.17+). Deployments based on Kubernetes < v1.22 should
not be impacted.

Confirm Your Pods are Ready

Confirm the Elastic pods are ready. Sometimes after installing, pods can take a few seconds to come up. Confirming
the pods are in a ready state is a good idea before proceeding. To do this, use the following command:

kubectl get pods

This command returns the following information, displaying the status of the of the pods.

elasticsearch-master-0 1/1 Running 0
myelk-filebeat-6wd2g 1/1 Running 0
myelk-kibana-68688b4d4d-d489b 1/1 Running 0

Once all the pods are indicating a 'ready' state and 'Running', including the three components for filebeats, Elastic
Search, and Kibana (highlighted above) you can proceed.

© 2023 HPCC Systems®. All rights reserved
61

Containerized HPCC Systems® Platform
Containerized Logging

Confirming the Elastic Services

To confirm the Elastic services are running, issue the following command:

$ kubectl get svc

This displays the following confirmation information:

...
elasticsearch-master ClusterIP 10.109.50.54 <none> 9200/TCP,9300/TCP 68m
elasticsearch-master-headless ClusterIP None <none> 9200/TCP,9300/TCP 68m
myelk-kibana LoadBalancer 10.110.129.199 localhost 5601:31465/TCP 68m
...

Note: The myelk-kibana service is declared as LoadBalancer for convenience.

Configuring of Elastic Stack Components

You may need or want to customise the Elastic stack components. The Elastic component charts values can be over-
ridden as part of the HPCC System deployment command.

For example:

helm install myelk hpcc/elastic4hpcclogs --set elasticsearch.replicas=2

Please see the Elastic Stack GitHub repository for the complete list of all Filebeat, Elastic Search, LogStash and Kibana
options with descriptions.

Use of HPCC Systems Component Logs in Kibana

Once enabled and running, you can explore and query HPCC Systems component logs from the Kibana user interface.
Kibana index patterns are required to explore Elastic Search data from the Kibana user interface. For more information
about using the Elastic-Kibana interface please refer to the corresponding documentation:

https://www.elastic.co/

and

https://www.elastic.co/elastic-stack/

Configuring logAccess for Elasticstack

The logAccess feature allows HPCC Systems to query and package relevant logs for various features such as the ZAP
report, WorkUnit helper logs, ECLWatch log viewer, etc.

Once the logs are migrated or routed to the elastic stack instance. The HPCC Systems platform needs to be able to
access those logs. The way you direct HPCC Systems to do so is by providing a values file that includes the log
mappings. We have provided a default values file and we provide an example command line that inserts that values
file into your deployment.

These are the Elastic4HPCCLogs values:

Configures HPCC logAccess to target elastic4hpcclogs deployment
global:
 logAccess:
 name: "Elastic4HPCCLogs"
 type: "elasticstack"
 connection:

© 2023 HPCC Systems®. All rights reserved
62

Containerized HPCC Systems® Platform
Containerized Logging

 protocol: "http"
 host: "elasticsearch-master.default.svc.cluster.local"
 port: 9200
 logMaps:
 - type: "global" #These settings apply to all log mappings
 storeName: "hpcc-logs*" #Logs are expected to be housed in ES inde
 searchColumn: "message" #The 'message' field is to be targeted for
 timeStampColumn: "@timestamp" #The '@timestamp' field contains time log
 - type: "workunits" #Search by workunits specific log mapping
 storeName: "hpcc-logs*" # Only needed if differs from global.store
 searchColumn: "hpcc.log.jobid" # Field containing WU information
 - type: "components" #Search by components specific log mapping
 searchColumn: "kubernetes.container.name" # Field containing container information
 - type: "audience" #Search by audience specific log mapping
 searchColumn: "hpcc.log.audience" # Field containing audience information
 - type: "class" #Search by log class specific log mapping
 searchColumn: "hpcc.log.class" # Field containing log class information
 - type: "instance" #Search by log source instance specific ma
 searchColumn: "kubernetes.pod.name" # Field containing source instance informa
 - type: "host" #Search by log source host specific mappin
 searchColumn: "kubernetes.node.hostname" # Field containing source host information

You can use the delivered Elastic4HPCCLogs chart, provided on https://github.com/hpcc-systems/HPCC-Plat-
form/tree/master/helm/managed/logging/elastic or you can add the values there to your customized configuration val-
ues yaml file. You can then install it using a command such as:

helm install mycluster hpcc/hpcc -f elastic4hpcclogs-hpcc-logaccess.yaml

© 2023 HPCC Systems®. All rights reserved
63

Containerized HPCC Systems® Platform
Containerized Logging

Azure Log Analytics Solution
Azure Kubernetes Services (AKS) Azure Log Analytics (ALA) is an optional feature designed to help monitor per-
formance and health of Kubernetes based clusters. Once enabled and associated a given AKS with an active HPCC
System cluster, the HPCC component logs are automatically captured by Log Analytics. All STDERR/STDOUT data
is captured and made available for monitoring and/or querying purposes. As is usually the case with cloud provider
features, cost is a significant consideration and should be well understood before implementation. Log content is writ-
ten to the logs store associated with your Log Analytics workspace.

Enabling Azure Log Analytics
Enable Azure's Log Analytics (ALA) on the target AKS cluster using one of the following options: Direct command
line, Scripted command line, or from the Azure portal.

For more detailed information refer to the Azure documentation:

https://docs.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-onboard

Direct Command Line

To enable the Azure Log Analytics insights from the command line:

You can create a dedicated log analytics workspace manually, or you can skip this step and utilize the default workspace
instead.

To create a dedicated workspace enter this command:

az monitor log-analytics workspace create -g myresourcegroup -n myworkspace --query-access Enabled

To enable Log Analytics feature on a target AKS cluster, reference the workspace resource id created in the previous
step:

az aks enable-addons -g myresourcegroup -n myaks -a monitoring --workspace-resource-id \
 "/subscriptions/xyz/resourcegroups/myresourcegroup/providers/ \
 microsoft.operationalinsights/workspaces/myworkspace"

Scripted Command Line

As a convenience, HPCC Systems provides a script to enable ALA (with a dedicated log analytics workspace) on the
target AKS cluster.

The enable-loganalytics.sh script is located at:

https://github.com/hpcc-systems/HPCC-Platform/tree/master/helm/examples/azure/log-analytics

The script requires populating the following values in the env-loganalytics environment file.

Provide these values in the env-loganalytics environment file order to create a new Azure Log Analytics workspace,
associate it with a target AKS cluster, and enable the processing of logs:

• LOGANALYTICS_WORKSPACE_NAME The desired name for the Azure Log Analytics workspace to be as-
sociated with target AKS cluster. A new workspace is created if this value does not exist

• LOGANALYTICS_RESOURCE_GROUP The Azure resource group associated with the target AKS cluste. A
new workspace will be associated with this resource group.

© 2023 HPCC Systems®. All rights reserved
64

Containerized HPCC Systems® Platform
Containerized Logging

• AKS_CLUSTER_NAME The name of the target AKS cluster to associate the log analytics workspace.

• TAGS The tags associated with the new workspace.

For example: "admin=MyName email=my.email@mycompany.com environment=myenv justification=testing"

• AZURE_SUBSCRIPTION [Optional] Ensures this subscription is set before creating the new workspace

Once these values are populated, the enable-loganalyics.sh script can be executed and it will create the log analytics
workspace and associate it with the target AKS cluster.

Azure Portal

To enable the Azure Log Analytics on the Azure portal:

1. Select Target AKS cluster

2. Select Monitoring

3. Select Insights

4. Enable - choose default workspace

Configure HPCC logAccess for Azure
The logAccess feature allows HPCC Systems to query and package relevant logs for various features such as the ZAP
report, WorkUnit helper logs, ECLWatch log viewer, etc.

Procure Service Principal

Azure requires an Azure Active Directory (AAD) registered application in order to grant Log Analytics API access.
Procure an AAD registered application.

For more information about registering an Azure Active Difrectory see the Azure official documentation:

https://docs.microsoft.com/en-us/power-apps/developer/data-platform/walkthrough-register-app-azure-
active-directory

Depending on your Azure subscription structure, it might be necessary to request this from a subscription administrator.

Provide AAD registered application information

HPCC Systems logAccess requires access to the AAD tenant, client, token, and target workspace ID via secure secret
object. The secret is expected to be in the 'esp' category, and named 'azure-logaccess'.

The following key value pairs are supported

• aad-tenant-id

• aad-client-id

• aad-client-secret

• ala-workspace-id

The 'create-azure-logaccess-secret.sh' script provided at:

© 2023 HPCC Systems®. All rights reserved
65

Containerized HPCC Systems® Platform
Containerized Logging

https://github.com/hpcc-systems/HPCC-Platform/tree/master/helm/examples/azure/log-analytics

The script can be used to create the necessary secret.

Example manual secret creation command (assuming ./secrets-templates contains a file named exactly as the above
keys):

create-azure-logaccess-secret.sh .HPCC-Platform/helm/examples/azure/log-analytics/secrets-templates/

Otherwise, create the secret manually.

Example manual secret creation command (assuming ./secrets-templates contains a file named exactly as the above
keys):

kubectl create secret generic azure-logaccess \
 --from-file=HPCC-Platform/helm/examples/azure/log-analytics/secrets-templates/

Configure HPCC logAccess

The target HPCC Systems deployment should be configured to target the above Azure Log Analytics workspace by
providing appropriate logAccess values (such as ./loganalytics-hpcc-logaccess.yaml). The previously created azure-
logaccess secret must be declared and associated with the esp category, this can be accomplished via secrets value
yaml (such as ./loganalytics-logaccess-secrets.yaml).

Example use:

helm install myhpcc hpcc/hpcc \
 -f HPCC-Platform/helm/examples/azure/log-analytics/loganalytics-hpcc-logaccess.yaml \
 -f HPCC-Platform/helm/examples/az

Accessing HPCC Systems Logs
The AKS Log Analytics interface on Azure provides Kubernetes-centric cluster/node/container-level health metrics
visualizations, and direct links to container logs via "log analytics" interfaces. The logs can be queried via “Kusto”
query language (KQL).

See the Azure documentation for specifics on how to query the logs.

Example KQL query for fetching "Transaction summary" log entries from an ECLWatch container:

let ContainerIdList = KubePodInventory
| where ContainerName =~ 'xyz/myesp'
| where ClusterId =~ '/subscriptions/xyz/resourceGroups/xyz/providers/Microsoft.
 ContainerService/managedClusters/aks-clusterxyz'
| distinct ContainerID;
ContainerLog
| where LogEntry contains "TxSummary["
| where ContainerID in (ContainerIdList)
| project LogEntrySource, LogEntry, TimeGenerated, Computer, Image, Name, ContainerID
| order by TimeGenerated desc
| render table

Sample output

© 2023 HPCC Systems®. All rights reserved
66

Containerized HPCC Systems® Platform
Containerized Logging

More complex queries can be formulated to fetch specific information provided in any of the log columns including
unformatted data in the log message. The Log Analytics interface facilitates creation of alerts based on those queries,
which can be used to trigger emails, SMS, Logic App execution, and many other actions.

© 2023 HPCC Systems®. All rights reserved
67

Containerized HPCC Systems® Platform
Containerized Logging

Controlling HPCC Systems Logging
Output
The HPCC Systems logs provide a wealth of information which can be used for benchmarking, auditing, debugging,
monitoring, etc. The type of information provided in the logs and its format is trivially controlled via standard Helm
configuration. Keep in mind in container mode, every line of logging output is liable to incur a cost depending on the
provider and plan you have and the verbosity should be carefully controlled using the following options.

By default, the component logs are not filtered, and contain the following columns:

MessageID TargetAudience LogEntryClass JobID DateStamp TimeStamp ProcessId ThreadID QuotedLogMessage

The logs can be filtered by TargetAudience, Category, or Detail Level. Further, the output columns can be configured.
Logging configuration settings can be applied at the global, or component level.

Target Audience Filtering
The availble target audiences include operator(OPR), user(USR), programmer(PRO), audit(ADT), or all. The filter is
controlled by the <section>.logging.audiences value. The string value is comprised of 3 letter codes delimited by the
aggregation operator (+) or the removal operator (-).

For example, all component log output to include Programmer and User messages only:

helm install myhpcc ./hpcc --set global.logging.audiences="PRO+USR"

Target Category Filtering
The available target categories include disaster(DIS), error(ERR), information(INF), warning(WRN), progress(PRO),
metrics(MET). The category (or class) filter is controlled by the <section>.logging.classes value, comprised of 3 letter
codes delimited by the aggregation operator (+) or the removal operator (-).

For example, the mydali instance's log output to include all classes except for progress:

helm install myhpcc ./hpcc --set dali[0].logging.classes="ALL-PRO" --set dali[0].name="mydali"

Log Detail Level Configuration
Log output verbosity can be adjusted from "critical messages only" (1) up to "report all messages" (100). The default
log level is rather high (80) and should be adjusted accordingly.

For example, verbosity should be medium for all components:

helm install myhpcc ./hpcc --set global.logging.detail="50"

Log Data Column Configuration
The available log data columns include messageid(MID), audience(AUD), class(CLS), date(DAT), time(TIM),
node(NOD), millitime(MLT), microtime(MCT), nanotime(NNT), processid(PID), threadid(TID), job(JOB),
use(USE), session(SES), code(COD), component(COM), quotedmessage(QUO), prefix(PFX), all(ALL), and stan-
dard(STD). The log data columns (or fields) configuration is controlled by the <section>.logging.fields value, com-
prised of 3 letter codes delimited by the aggregation operator (+) or the removal operator (-).

For example, all component log output should include the standard columns except the job ID column:

© 2023 HPCC Systems®. All rights reserved
68

Containerized HPCC Systems® Platform
Containerized Logging

helm install myhpcc ./hpcc --set global.logging.fields="STD-JOB"

Adjustment of per-component logging values can require assertion of multiple component specific values, which can
be inconvinient to do via the --set command line parameter. In these cases, a custom values file could be used to set
all required fields.

For example, the ESP component instance 'eclwatch' should output minimal log:

helm install myhpcc ./hpcc --set -f ./examples/logging/esp-eclwatch-low-logging-values.yaml

Asychronous logging configuration
By default log entries will be created and logged asynchronously, so as not to block the client that is logging. Log
entries will be held in a queue and output on a background thread. This queue has a maximum depth, once hit, the
client will block waiting for capacity. Alternatively, the behaviour can be be configured such that when this limit is
hit, logging entries are dropped and lost to avoid any potential blocking.

NB: normally it is expected that the logging stack will keep up and the default queue limit will be sufficient to avoid
any blocking.

The defaults can be configured by setting <section>.logging.queueLen and/or <section>.logging.queueDrop.

Setting <section>.logging.queueLen to 0, will disabled asynchronous logging, i.e. each log will block until completed.

Setting <section>.logging.queueDrop to a non-zero (N) value will cause N logging entries from the queue to be dis-
carded if the queueLen is reached.

© 2023 HPCC Systems®. All rights reserved
69

	Containerized HPCC Systems® Platform
	Table of Contents
	Containerized HPCC Overview
	Bare-metal vs Containers
	Processes and pods, not machines
	Helm charts
	Static vs On-Demand Services
	Topology settings – Clusters vs queues

	Local Deployment (Development and Testing)
	Prerequisites
	Add a Repository
	Start a Default System
	Access the Default System
	Terminate (Decommission) the System
	Persistent Storage for a Local Deployment
	Import: Storage Planes and How To Use Them

	Azure Deployment (Development, Testing, and Production)
	Using Azure
	Azure Prerequisites
	Third Party Tools

	Azure Resource Group
	Azure Kubernetes Service Cluster
	Azure Node Pools
	Configure Credentials

	Installing the Helm charts
	Installing the HPCC Systems components
	Enable Access the ESP Services
	Install the customized HPCC Systems chart

	Accessing ECLWatch
	Uninstall Your Cluster
	Stopping Your HPCC Systems Cluster
	Removing the Resource Group

	Deploying HPCC Systems® with Terraform
	Interactive Terraform Deployment
	Requirements
	Terraform Repository
	Cloning the Terraform Repository

	The Modules to Modify
	Modify the Modules
	Modifying the AKS Module

	Initializing the Terraform Modules
	Applying the Terraform Modules
	Verify the Installation

	Accessing ECLWatch
	Taking Down The AKS Cluster

	Customizing Configurations
	Customization Techniques
	Create a Custom Configuration Chart for Two Roxies
	Create a Custom Configuration Chart for Two Thors
	Create a Custom Configuration Chart for No Thor
	Create a Custom Configuration Chart for No Roxie

	Container Cost Tracking
	Types of Costs
	Execution Cost
	Job Guillotine

	Storage Cost
	File Access Cost

	Costs Configuration
	Configuring Cloud Costs
	Thor Cost Configurations
	Storage Cost Parameters

	Configuration Values
	The Container Environment
	The values.yaml and how it is used
	The values-schema.json

	HPCC Systems Components and the values.yaml File
	The HPCC Systems Components
	The Systems services
	Dali
	Components: dafilesvrs, dfuserver
	ECL Agent and ECLCC Server
	Sasha
	Thor
	Thor and hThor Memory

	The HPCC Systems values.yaml file
	Storage
	Storage Category
	Ephemeral Storage
	Persistent Storage
	Bare Metal Storage

	Storage Items for HPCC Systems Components
	General Data Storage
	LZ
	dali
	dll
	sasha
	spill
	temp

	The Security Values
	Certificates
	Secrets
	Vaults

	Visibilities
	Replicas and Resources
	Replicas
	Resources
	Taints, Tolerations, and Placements
	Placements

	Environment Values

	Helm and Yaml Basics
	The values.yaml file structure
	Dictionary
	Lists
	Sections of the HPCC Systems Values.yaml

	HPCC Systems Values.yaml File Usage
	Merging and Overriding
	Generally applicable

	Additional Usage

	Containerized Logging
	Logging Background
	Log Processing Solutions

	Managed Elastic Stack Solution
	Installing the elastic4hpcclogs chart
	Add the HPCC Systems Repository
	Install the elastic4hpcc chart
	Confirm Your Pods are Ready
	Confirming the Elastic Services
	Configuring of Elastic Stack Components
	Use of HPCC Systems Component Logs in Kibana
	Configuring logAccess for Elasticstack

	Azure Log Analytics Solution
	Enabling Azure Log Analytics
	Direct Command Line
	Scripted Command Line
	Azure Portal

	Configure HPCC logAccess for Azure
	Procure Service Principal
	Provide AAD registered application information
	Configure HPCC logAccess

	Accessing HPCC Systems Logs

	Controlling HPCC Systems Logging Output
	Target Audience Filtering
	Target Category Filtering
	Log Detail Level Configuration
	Log Data Column Configuration
	Asychronous logging configuration

