HPCC Systems® HPCC4J Project

Boca Raton Documentation Team

@HPCC

SYSTEMS

HPCC Systems® HPCC4J Project

HPCC Systems® HPCC4J Project

Boca Raton Documentation Team
Copyright © 2025 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docf eedback@pccsyst ens. cont Please include
Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in the
text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license. Other
products, logos, and services may be trademarks or registered trademarks of their respective companies. All names and example
data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2025 Version 9.14.8-1

© 2025 HPCC Systems®. All rights reserved
2

HPCC Systems® HPCC4J Project

[OO N @ YT V1= ORI 4
e goTo [N Tei o] oI (o T o | = O O N PPN 4
L0 LI O TS PPN 5
2T T £ PP 8
Using HPCC4J with HPCC on a Kubernetes CIUSTENccuuiiiiiiiiiei e 9
Certificate MaNAQEr SEIUPuuiiiiiei e e et e e e e et e et e e e e et e e et e e aan e e et eeaaeeatnaaes 9
Configuring the HPCC Systems CertifiCatescouuiiiiiiiiiiiiiiie e e e 10
Trusting Generated CertifiCAtESiiiiiiiii e e e e e e e e 11
Resolving Certificate Domain Name LocCallyooiviiiiiiii e, 12
=15 (1 o 12
Using HPCC4J with HPCC 0N Bare MEalcovuuiiiiiiiii it e e e 13
Configuring Rowservice Signing Keys in HPCC SYSEMSoiiiiiiiiiieiii e v e v e 13

© 2025 HPCC Systems®. All rights reserved
3

HPCC Systems® HPCC4J Project
HPCC4J Overview

HPCC4J Overview
Introduction to HPCC4J

The HPCC Systems for Java is a collection of Java based APIs and tools which help developers interact
with HPCC Systems servers and tools in a relatively simple, and standardized fashion.

The project houses multiple HPCC Systems centric Java based APIs and tools.
The project is available on Github in the hpcc4j repository.

https://github.com/hpcc-systems/hpccéj

The API which standardizes and facilitates interaction with HPCC Systems Web based Services (ESP Web
services).

The project is based on stub code generated from WSDL using Eclipse tools based on Apache Axis.

Provides a mechanism for actuating HPCC Systems web service methods.

Java based interface to HPCC Systems client tools. Currently only interfaces with the ECLCC Server.

RDF data ingestion tool to HPCC.Systems Based on Apache Jena and is dependent on wsclient.

Distributed data ingestion & extraction library. Uses internal HPCC Systems binaries to efficiently read
and write data remotely in parallel. Supports generic and custom dataset creation and translation through
IRecordBuilder & IRecordAccessor interfaces

Set of common use libraries used in conjunction with a wide array of HPCC Systems related java clients.

As is common in Java client communication over TLS, HPCC4J based clients targeting an
@ HPCC cluster over TLS will need to import the appropriate certificates to its local Java keystore.

*One way to accomplish this is to use the keytool packaged with Java installations. Refer to
the keytool documentation for usage.

© 2025 HPCC Systems®. All rights reserved
4

HPCC Systems® HPCC4J Project
HPCC4J Overview

Use Cases

This section provides examples that illustrate typical Java client and HPCC Systems® interaction.

Example: User wants to submit and execute an ECL query from a Java client;

Use the wsclient package to connect to the target HPCC system.

/] Fetch platform object based on connection settings
/1 Provide the connection type, http|https, the ecl watch ip, and port,
[[your ESP usernane and password (if required)

Platformplatform= Platformget("http", "ip", 8010, "usernane", "password");
HPCCWEC! i ent connector = pl atform get HPCCWSO i ent () ;

Create a Workunitinfo object with the ECL code and submit that object to the WECL workunit web service.

The Workunitinfo object contains all the information needed by HPCC to compile and execute an ECL query
correctly.

Wor kuni t I nfo wu=new Wor kuni t 1l nfo();!
wu. set ECL("OQUTPUT(' Hel lo World');"); // The ECL to execute.
wu. set Cl ust er (" myt hor"); /1 This can be hardcoded to a known cl uster,
/] or can be selected from
/1 valid cluster nanes cl uster G oups[0] (above)

This is just one way to submit ECL, you can also submit ECL, and receive the WUID, which can later be
used to fetch results. The results (if successful) are returned as a List of Object Lists.

Li st <Li st <Cbj ect >> results = connector. subm t ECLandGet Resul t sLi st (wu) ;

//logic to anal yze results would need to be inpl enented.
int currentrs = 1;

for (List<Object> list : results)

{

Uils.print(Systemout, "Resultset " + currentrs +":", false, true);
for (Object object : list)
{

Systemout.print("[" + object.toString() +" 1");

}

currentrs++;
Systemout.println("");

}

The preceding example shows how simple it is to code for this interface. This template can be expanded
to interact with most of the ESP web services and their methods.

This connector can be used to actuate various HPCC WebService methods. For example, the client can
request a list of available Target cluster names.

Li st<String> clusters = connector. get Avai | abl eTar get O ust er Nanes() ;

or cluster groups

String[] clusterGoups = connector. getAvail abl eCl ust er G oups() ;

Which can then be used as one of the required parameters for other WS actions, such as spraying a file:

© 2025 HPCC Systems®. All rights reserved
5

HPCC Systems® HPCC4J Project
HPCC4J Overview

connect or . sprayFl at HPCCFi | e(" per sons”, "mythor::persons", 155, clusters.get(0), true);

Example: User wants to read file "example::dataset" in a parallel fashion from HPCC Systems into a Java
client.

Reading Example:

The following example is for reading in parallel from

HPCCFile file = new HPCCFi | e("exanpl e: : dataset", "http://127.0.0.1:8010" , "user", "pass");
Dat aPartition[] fileParts = file.getFileParts();
ArraylLi st <HPCCRecord> records = new ArraylLi st <HPCCRecor d>() ;

for (int i =0; i <fileParts.length; i++)

{
HpccRenot eFi | eReader <HPCCRecor d> fil eReader = null;
try
{

HPCCRecor dBui | der recordBuil der = new
HPCCRecor dBui | der (fil e. get Proj ect edRecordDefinition());
fil eReader = new HpccRenot eFi | eReader <HPCCRecord>(fil eParts[i],
file.getRecordDefinition(), recordBuilder);
}
catch (Exception e) { }
while (fil eReader. hasNext())

HPCCRecord record = fil eReader. next();
records. add(record);

}

fil eReader. cl ose();

}
Writing Example:

Example: User wants to spray their dataset into an HPCC Systems logical file named "example::dataset.

Fi el dDef[] fiel dDefs = new Fi el dDef[2] ;
fieldDefs[0] = new Fi el dDef ("key", FieldType.|NTEGER, "|NTEGER4", 4, true, false,
HpccSrcType. LI TTLE_ENDI AN, new Fi el dDef[0]) ;
new Fi el dDef ("val ue", FieldType. STRING "STRING', 0, false, false,
HpccSrcType. UTF8, new Fi el dDef[0]);
Fi el dDef recordDef = new Fi el dDef (" Root Record", Fiel dType. RECORD, "rec", 4, false, false,
HpccSrcType. LI TTLE_ENDI AN, fi el dDefs);

fiel dDef s[1]

String ecl RecordDefn = RecordDefi nitionTransl ator.toECLRecord(recordDef);

/1 See WBO i ent docunentati on on connection / construction of WSC i ent
Pl at form pl at form
HPCCWsCl i ent wscl i ent;

HPCCWsDFUC i ent df uClient = wsclient.get WDFUC i ent();
DFUCr eat eFi | eW apper createResult = dfudient.createFil e("exanple::dataset", "nythor",
ecl RecordDef n, 300, false, DFUFileTypeWapper.Flat, "");
DFUFi | ePart W apper[] dfuFileParts = createResult.getFileParts();
Dat aPartition[] hpccPartitions = DataPartition.createPartitions(dfuFileParts,
new Nul | Remapper (new Rermapl nfo(), createResult.getFileAccesslinfo()),
df uFi l eParts. | ength, createResult.getFileAccesslnfoBlob());

© 2025 HPCC Systems®. All rights reserved
6

HPCC Systems® HPCC4J Project
HPCC4J Overview

ArraylLi st <HPCCRecord> records = new ArrayLi st <HPCCRecor d>();

int recordsPerPartition = records.size() / dfuFileParts.|ength;
int residual Records = records. size() %dfuFileParts. | ength;

int recordCount = 0;
int bytesWitten = 0;
for (int partitionlndex = 0; partitionlndex < hpccPartitions.|length; partitionlndex++)
{
int nunRecordslnPartition = recordsPerPartition;
if (partitionlndex == dfuFileParts.length - 1)
{

}

nunRecordsl nPartition += residual Records;

HPCCRecor dAccessor recordAccessor = new HPCCRecor dAccessor (recor dDef) ;

HPCCRenot eFi | eW i t er <HPCCRecord> fileWiter = new

HPCCRenot eFi | eWi t er <HPCCRecor d>(hpccPartitions[partitionlndex], recordDef,
recor dAccessor, Conpressi onAl gorithm NONE);

try
{
for (int j = 0; j < nunRecordslnPartition; j++ recordCount++)
fileWiter.witeRecord(records.get(recordCount));
}
fileWiter.close();
bytesWitten += fileWiter.getBytesWitten();
}
catch (Exception e)
{
}
}
e e
/] Publish and finalize the file
e e

dfuClient. publishFile(createResult.getFilelD(), ecl RecordDefn, recordCount, bytesWitten, true);

© 2025 HPCC Systems®. All rights reserved
7

HPCC Systems® HPCC4J Project
HPCC4J Overview

Buids

To build the projects using Maven, navigate to the base directory of the project and issue the following
command:

nmvn i nst al

NOTE: hpcccommons, wsclient, and dfsclient are controlled via the top-level maven pom file and can be
built with a single command. All sub-projects can be built individually using the pom file in each
sub-project directory.

For more information on how to use Maven see http://maven.apache.org

The source can be found under the HPCC Platform github account in the hpcc4j repo.

https://github.com/hpcc-systems/hpcc4j

To utilize this library as a dependency in your own maven project, add the following definition to your
pom.xml.

<dependency>
<gr oupl d>or g. hpccsyst ens</ gr oupl d>
<artifactld>wsclient</artifactld>
<ver si on>7. 8. 2- 1</ ver si on>

</ dependency>

Contributions to source are accepted and encouraged. All contributions must follow the JAVA source format
described in the HPCC-JAVA-Formatter.xml file which can be found in hpcc4j/eclipse. This formatter can
be used by the Eclipse IDE to automatically format JAVA source code.

» From eclipse, choose Window->Preferences->Java->Code Stype->Formatter.
Import the HPCC-JAVA-Formatter.xml file and set it as the Active profile.

* From the JAVA editor, choose Source->Format

© 2025 HPCC Systems®. All rights reserved
8

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on a Kubernetes Cluster

Using HPCC4J with HPCC on a
Kubernetes Cluster

The following section is based on the HPCC Systems Helm documentation that can found here: https://
github.com/hpcc-systems/HPCC-Platform/tree/master/helm/examples/certmanager

Certificate Manager Setup

During installation, the HPCC Systems Helm charts utilize a certificate manager to generate certificates for
the cluster. These certificates are required to create secure connections to the cluster and must be config-
ured in order to utilize HPCC4j. The following steps will setup a local certificate manager within Kubernetes:

Install JetStack Cert Manager

hel mrepo add jetstack https://charts.jetstack.io
kubect!| apply -f https://github.conlcert-manager/cert-nmanager/rel eases/ downl oad/ v1. 11. 0/ cert - manager. crds. yan
hel minstall cert-nmanager jetstack/cert-nmanager --version vi1.11.0

Add Root Certificate Authority

Create a certificate request similar to the following example:

[req]

default_bits = 2048

defaul t _keyfile = ca. key

di sti ngui shed_nane = dn

pr onpt = no

x509_ext ensi ons = x509_ca

[dn]

C = YOUR_CQOUNTRY

ST = YOUR_STATE

L = YOUR A TY

O = YOUR_ORGANI ZATI ON
(0] = YOUR_ORGANI ZATI ON_UNI T
CN = Internal Custer CA

enui | Addr ess YOUR_SUPPORT_ENAI L

[x509_ca]
basi cConstrai nt s=CA: true, pathl en: 1

Create the root certificate via OpenSSL and add it to a Kubernetes secret.

openssl req -x509 -newkey rsa: 2048 -nodes -keyout ca.key -sha256 -days 1825 -out ca.crt -config ca-req.cfg
kubect| create secret tls hpcc-local -issuer-key-pair --cert=ca.crt --key=ca.key
kubect| create secret tls hpcc-signing-issuer-key-pair --cert=ca.crt --key=ca.key

© 2025 HPCC Systems®. All rights reserved
9

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on a Kubernetes Cluster

Configuring the HPCC Systems Certifi-
cates

Now that we have created a certificate authority, we need to configure HPCC to utilize the certificate man-
ager / root certificate and enable the rowservice.

NOTE: The rowservice is an internal HPCC Systems service that HPCC4j depends on to read and write
data to / from HPCC Systems clusters in a performant and secure manner.

We can change this configuration by creating and applying an override yaml file to override the default
settings within the HPCC helm charts.

certificateValues.yaml:

certificates:
enabl ed: true
dafil esrv:
- nanme: rowservice
di sabl ed: false
application: stream
servi ce:
servi cePort: 7600
visibility: gl oba
- nane: direct-access
di sabl ed: true
application: directio
servi ce:
servi cePort: 7200
visibility: |oca
- name: spray-service
application: spray
servi ce:
servi cePort: 7300
visibility: cluster

Applying Helm Configuration Changes

Installing an HPCC cluster with configuration changes:

hel minstall nyhpcc hpcc/ hpcc --set global.inmage.version=latest -f certificateVal ues. yan
These configuration changes can also be made after the HPCC cluster has been installed via helm upgrade:
hel m upgrade -f certificateVal ues.yaml nyhpcc hpcc/ hpcc

NOTE: If you run into an issue where the HPCC Helm charts complain about the cert-manager missing
make sure to apply the cert-manager.crds.yaml in the above Certificate Manager Setup step, and then verify
cert-manager.io/vl is listed in the output of kubect | api - versi ons

© 2025 HPCC Systems®. All rights reserved
10

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on a Kubernetes Cluster

Trusting Generated Certificates

The certificates that were created during the previous steps come from an unknown certificate authority (the
local certificate authority we created) and are therefore not trusted by default. Since the certificates aren't
trusted any attempt to connect to the cluster will fail with an error message indicating that the certificates
aren't trusted and/or that building the PKIX path failed.

Example error message:

ERROR RowSer vi ceQut put St ream Exception occurred while attenpting to connect to row service (local host: 7600):
PKI X path building failed: sun.security.provider.certpath. SunCert Pat hBui | der Excepti on:
unable to find valid certification path to requested target

java. |l ang. Excepti on: Exception occured while attenpting to connect to row service (local host: 7600):
PKI X path building failed: sun.security.provider.certpath. SunCert Pat hBui | der Excepti on:
unable to find valid certification path to requested target

We can fix this issue by adding the certificates to the local trust store and adding an entry to our hosts file
for the domain names associated with the certificates.

© 2025 HPCC Systems®. All rights reserved
11

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on a Kubernetes Cluster

Resolving Certificate Domain Name Lo-
cally

Certificates are attached to a particular domain name when created; by default the HPCC Helm charts will
generate the certificates using the eclwatch.default domain name. However, your domain name server will
not know that the eclwatch.default domain should point to your local IP address; So we will need to add an
entry to your local host file so that eclwatch.default resolves correctly.

sudo -- sh -c -e "echo '127.0.0.1 eclwatch.default' >> /etc/hosts";
sudo -- sh -c -e "echo '127.0.0.1 rowservice.default' >> /etc/hosts";
sudo -- sh -c -e "echo '127.0.0.1 sql 2ecl .default' >> /etc/hosts";

Adding Certificates to the Java Trust Store
Download TLS certificate and add it to the Java keystore.

NOTE: The path to the keystore below may need to be updated. As an example in some installations the
path would instead be: $JAVA HOVE/ | i b/ security/cacerts

openssl s_client -showerts -connect eclwatch.default:8010 < /dev/null | openssl x509 -outform DER > cert.der

sudo keytool -inport -keystore $JAVA HOVE/jre/lib/security/cacerts -storepass changeit -nopronpt -alias eclwatch-tls -file cert.der
openssl s_client -showcerts -connect rowservice.default:7600 < /dev/null | openssl x509 -outform DER > cert.der

sudo keytool -inport -keystore $JAVA HOVE/jre/lib/security/cacerts -storepass changeit -nopronpt -alias dafilesrv-tls -file cert.der
openssl s_client -showcerts -connect sql2ecl.defaul t:8510 < /dev/null | openssl x509 -outform DER > cert.der

sudo keytool -inport -keystore $JAVA HOVE/jre/lib/security/cacerts -storepass changeit -nopronpt -alias sqltoecl-tls -file cert.der

Testing

Your local cluster should now be available at https://eclwatch.default:8010, however you will likely need to
tell your browser to trust the SSL certificates; as the above steps only created trust for Java applications.

The file utility within DFSClient can be used to test the certificate configuration; If you encounter a PKIX
error when running the file utility command then you need to revisit the above steps.

java -cp dfsclient-jar-wth-dependencies.jar org.hpccsystens.dfs.client.FileUtility -read existing::hpcc::file_to_read -url https://eclwatch.defaul t: 8010

© 2025 HPCC Systems®. All rights reserved
12

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on Bare Metal

Using HPCC4J with HPCC on Bare
Metal

Configuring Rowservice Signing Keys in
HPCC Systems

This guide provides steps to generate and configure rowservice signing keys to allow for secure commu-
nication between an HPCC Systems cluster and external clients. These signing keys are required for au-
thentication and secure reading and writing of data between HPCC4J clients and HPCC Systems clusters
and must be properly configured on target HPCC Systems clusters.

If signing keys do not already exist, they must be generated and placed in a directory that is accessible
to the hpcc user. The default directory /Thome/hpcc/certificate will be used in the example configuration
below, but on multi-node clusters it likely makes sense to change this directory.

Generate Signing Keys

sudo /opt/HPCCSystens/etc/init.d/ setupPKI
This command generates a pair of signing keys:
e Private Key: / horme/ hpcc/ certificat e/ key. pem

* Public Key: / honme/ hpcc/ certificate/public. key. pem

Once the keys are generated, they need to be referenced in the HPCC Systems environment.xml config-
uration file.

Add Keys Configuration Section

Modify the envi ronnment . xm file located at / et ¢/ HPCCSyst ens/ envi r onnment . xim to include the
following under the <EnvSet t i ngs> node:
<EnvSettings>
<Keys>
<Cl ust er G oup keyPai r Name="nyt hor" name="thorcluster_1"/>
<Cl ust er G oup keyPai r Name="nyt hor" name="thorcluster_2"/>

<KeyPai r name="nythor" privateKey="/hone/ hpcc/certificatel/key.pent publicKey="/hone/ hpcc/certificate/public.key.pen/>
</ Keys>

Explanation:

e <{ ust er Gr oup> entries define which Thor clusters will use the specified key pair.
» <KeyPai r > defines the key pair used for signing and must reference the correct file paths.

© 2025 HPCC Systems®. All rights reserved
13

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on Bare Metal

» Each Thor cluster in the HPCC system must have an associated <Cl ust er G- oup> entry specifying the
keyPai r Nane.

After updating the configuration, ensure that all nodes within the cluster have the updated envi r onmen-
t.xm file and the necessary key files.

Sync envi ronnment . xm to All Nodes
scp /et c/ HPCCSyst ens/ envi ronment . xm hpccadm n@odeX: / et ¢/ HPCCSyst ens/ envi r onnment . xm

Repeat this step for each node in the HPCC cluster.

Sync Signing Keys Across the Cluster

scp / home/ hpcc/certificat el key. pem hpccadm n@odeX: / hone/ hpcc/ certificatel/ key. pem
scp /home/ hpcc/certificatel/ public. key. pem hpccadm n@odeX: / hone/ hpcc/ certificat e/ public. key. pem

To ensure that the signing keys have been correctly synchronized across all nodes, compute the MD5 hash
of the key files and compare them.

Check MD5 Hash of Keys

Run the following command on each node:

nmd5sum / hone/ hpcc/ certifi cat e/ key. pem / hone/ hpcc/ certificate/ public. key. pem

Compare the output across all nodes. If the MD5 hash values are identical, the keys have been correctly
synchronized. If there are discrepancies, re-sync the keys and verify again.

Once the configuration and keys are updated across the cluster, the ESP and Dafilesrv services need to
be restarted for these changes to take affect.

sudo /etc/init.d/dafilesrv restart
sudo /etc/init.d/ hpcc-init -c nyesp restart

© 2025 HPCC Systems®. All rights reserved
14

HPCC Systems® HPCC4J Project
Using HPCC4J with HPCC on Bare Metal

The above configuration can be tested by using the FileUtility in the HPCC4j dfsclient library to attempt to
read a file from the configured HPCC Systems cluster. The latest copy of the dfsclient jar can be found here:
https://mvnrepository.com/artifact/org.hpccsystems/dfsclient

The following command will attempt to read “example::hpccsystems::file” from “http://your_cluster:8010”,
the should be updated to an already existing file on your target cluster and the URL of your HPCC Systems
ESP respectively.

j ava
-Dotel . service.nane=DFSClient.FileUility \
-cp dfsclient-9.10.1-0-jar-w th-dependencies.jar \
org. hpccsystens. dfs.client.FileUtility \
-read_t est exanpl e::hpccsystens::file \
-url http://your_cluster: 8010

If the keys have been successfully configured, you will see a similar result to the following indicating the
example file was successfully read.

[{
"bytesWitten": 0, "Read Bandw dt h":
"6.70 MB/s", "Wite Bandwi dth": "0.00 MB/s", "warns": [],
"recordsWitten": 0, "recordsRead": 6250000, "bytesRead": 100000000,
"time": "14.92 s", "operation":
"FileUtility. ReadTest _exanpl e: : hpccsystens::file", "errors": [],
"successful ": true

}H

Following these steps ensures that HPCC Systems can securely authenticate HPCC4j clients and allow
them to read and write data within the target HPCC systems cluster.

© 2025 HPCC Systems®. All rights reserved
15

	HPCC Systems® HPCC4J Project
	Table of Contents
	HPCC4J Overview
	Introduction to HPCC4J
	wsclient
	clienttools
	rdf2hpcc
	dfsclient
	commons-hpcc
	NOTE:

	Use Cases
	wsclient
	DFSClient
	Reading Example:
	Writing Example:

	Buids
	HPCC4J Source Code

	Using HPCC4J with HPCC on a Kubernetes Cluster
	Certificate Manager Setup
	Configuring the HPCC Systems Certificates
	Trusting Generated Certificates
	Resolving Certificate Domain Name Locally
	Testing

	Using HPCC4J with HPCC on Bare Metal
	Configuring Rowservice Signing Keys in HPCC Systems
	Step 1: Generate Signing Keys
	Generate Signing Keys

	Step 2: Configure Signing Keys in the HPCC Systems Environment
	Add Keys Configuration Section
	Explanation:

	Step 3: Synchronize Configuration and Keys Across the Cluster
	Sync environment.xml to All Nodes
	Sync Signing Keys Across the Cluster

	Step 4: Verify Key Synchronization
	Check MD5 Hash of Keys

	Step 5: Restart HPCC Rowservice and ESP
	Testing Configuration
	Conclusion

